Presently, buildings account for approximately 40% of the energy usage and CO2 emissions in the United States, and windows account for approximately 30% to 50% of the energy losses in buildings. This is because the vast majority of the trillions of square feet of installed windows have very poor energy efficiencies. Considering that the life expectancy of installed windows is greater than 30 years, it could take decades and tens of trillions of dollars before they are replaced with higher efficiency windows, and these new windows may still be less energy efficient than the walls and roofs of buildings.
To address the overall energy being consumed by buildings, improvements are needed in both space conditioning and building envelope technologies. However, while there are relatively inexpensive methods to treat the energy loss through roofs and walls of older buildings by applying low cost insulation, the only way to substantially improve the insulation value of windows is through replacement with relatively expensive new windows that typically require substantial construction and add substantial weight. While the walls and roofs of older buildings can be retrofitted to have R-values in the 15 to 50 range, new replacement windows typically have R values less than 3 and older windows have R values much less than 1. In addition, replacement of windows can be a very costly ($200 to $1000 just for the window) and arduous task. Thus, there is a need to improve the energy efficiency of installed windows in older buildings at a lower cost.
Presently, vacuum insulated glass (VIG), in which a vacuum is pulled between two panes of glass, provides an energy-efficiency solution for windows with thermal conductivities around 0.007 Watts per meter-degree Kelvin (W/m-K) (i.e., insulation value R12) with low-e coatings. However, VIG is expensive, with costs projected to be approximately $6/ft2 (approximately 25% more than present conventional windows). Furthermore, VIG has substantial differential thermal expansion problems that require tempered glass, which also increases costs and reduces durability. Finally, due to the fact that VIG needs to be sealed at the edges, it is only available in preset assembled sizes, making use with retrofitting more expensive and difficult. Thus, it would be advantageous to retrofit installed windows and to develop new windows to improve energy efficiency by using transparent insulating materials that overcome the drawbacks of VIG, such as high cost, low durability, edge seal leaking, and weight problems.
Recently, hollow glass microspheres (HGMs), also known as glass bubbles, have been incorporated into insulation systems, hydrogen storage, and other applications. Typically, these HGMs are on the order of 10 micrometers to 1000 micrometers in diameter, and scatter visible light. HGMs may be filled with a fluid or gas, evacuated, and/or coated with materials such as dielectrics and metals. Commercially available HGMs that have not been evacuated are used to improve the insulating value of many products including paint, vacuum insulating panels, and insulation for cryogenic applications. However, the size, thickness, and/or density of the HGMs needed to achieve a high insulation value prevents their use as a transparent layer.
When used in very thin layers, such as a monolayer or two of HGMs, HGMs can be used for antireflection coatings for windows, for visibly transparent applications, and to improve the optical quality of glass. For example, when used as an antireflection coating, HGMs improved the transmission of visible light from approximately 90% to 96%, while reducing the reflection from 8% to 2%. However, these layers are too thin to provide a substantial increase of the insulation value. Further, CN102618016 discloses a method of incorporating evacuated HGMs within a resin matrix to produce a transmissive and insulating film. However, because the HGMs are limited to 1% of the mass of the resin, the reduction in the thermal conductivity of the film is minimal. Specifically, the thermal conductivity of the film is reported to be approximately 0.05 W/m-K. Accordingly, it would be advantageous to provide a method of producing a film in which the thermal conductivity is substantially reduced while the visible light transmission is maintained.
Exemplary embodiments of the invention use evacuated capsules to provide transparent and insulating materials. According to an aspect of the invention, a method includes forming evacuated capsules within a solution, and dispersing and suspending the evacuated capsules within the solution such that a packing density of the evacuated capsules within the solution is greater than 30%, and a visible light transmission of the solution including the evacuated capsules is greater than 75%.
The dispersing and suspending of the evacuated capsules may include adjusting a pH of the solution to a value between 9 and 14, and adding a polycation or a polyanion to the solution. The packing density of the evacuated capsules within the solution may be greater than 70%.
The method may also include processing the solution with a sol-gel method, and drying the processed solution to form a layer. The method may also include adding a strengthening agent to the solution before processing the solution. The strengthening agent may include poly(vinyl alcohol) and/or boric acid.
Forming the evacuated capsules may include forming templates using dodecanethiol and cetyl-trimethylammonium bromide, coating the templates with a silica-gel, and heating the templates to a temperature of at least 250° C. in vacuum. Forming the evacuated capsules may also include performing atomic layer deposition, physical vapor deposition, chemical vapor deposition, or solution phase deposition to deposit a low-emissivity coating on shells formed by heating the templates.
Each of the evacuated capsules may have a lateral dimension between 50 nm and 300 nm. The lateral dimension may be between 80 nm and 100 nm.
According to another aspect of the invention, a layer includes a plurality of evacuated capsules distributed within a dried sol-gel. A thermal conductivity of the layer is between 0.02 W/m-K and 0.001 W/m-K, and the layer has a visible light transmission of greater than 30%.
Each of the evacuated capsules may have a lateral dimension between 50 nm and 300 nm. The lateral dimension may be between 80 nm and 100 nm. A packing density of the evacuated capsules within the dried silica-gel is greater than 30%. The packing density may be greater than 70%.
Each of the evacuated capsules may include a silica shell. Each of the evacuated capsules may also include a low-e coating formed on the silica shell. The low-e coating may include at least one of tin oxide or zinc oxide.
The visible light transmission may be greater than 75%. At least one of the evacuated capsules may include a plurality of primary shells surrounded by a secondary shell.
Other objects, advantages, and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
As shown in
The templates may then be coated with a silica-gel such as tetraethoxysilane (TEOS) in step 210. The silica-gel may coat individual templates and/or groups of templates. The templates are then removed by evaporation and the silica-gel is dried at high temperatures of approximately 50° C. at step 220, thereby creating hollow silica shells. In general, any material may be used for the templates, provided that it has the desired size and shape to form the shells, and can be removed after the shells are formed.
Primary shells may be formed by coating individual templates with silica-gel in step 210, while secondary shells may be formed by coating multiple templates that are in contact with each other with silica-gel in step 210. The thicknesses of the primary and secondary shells may be varied from a few nanometers to 20 nm based on the amount of silica-gel that is added during step 210. Further, the silica-gel may be injected into the solution at different times after introducing the initial silica-gel. This causes the primary shells to have different thicknesses and forms the secondary shells around multiple primary shells, such that the secondary shells have longer shapes that are similar to cylinders.
A low-emissivity (low-e) coating may also be deposited on the silica shells at step 230. The low-e coating is transparent in the visible range of the spectrum (from 390 to 700 nm) and reflects more than 50% in the far infrared range of the spectrum (from 8 to 13 μm). An oxide layer may be used as the low-e coating. For example, tin oxide and/or zinc oxide may be deposited on the silica shells by using atomic layer deposition (ALD). In this case, the silica shells are placed in a vacuum chamber, and vapor phase tin oxide and/or zinc oxide is deposited monolayer-by-monolayer to achieve the desired thicknesses and low-e properties. Alternatively, the low-e coating may be applied by physical vapor deposition, chemical vapor deposition, or solution phase deposition. The low-e coating may have a thickness between 0.5 nm and 10 nm. As another alternative, the low-e coating may be incorporated into the silica-gel that is used to form the shells.
Once the capsules have been formed at step 100, the capsules are then evacuated at step 110.
The temperature applied at step 110 may be adjusted based on the thickness, composition, and structure of the capsules. For example, thicker and denser shells require higher temperatures to be evacuated. Further, the chemical composition of the capsules can affect the molecular transport rate through the shells, thus affecting the temperature needed for transport. A final pressure inside the capsules of less than 1 microtorr may be achieved to minimize the thermal conductivity. However, the internal pressure of the capsules may vary depending on the desired thermal conductivity, with a lower pressure required for higher thermal conductivities.
As shown in
As shown in
The sol-gels are then dried by any suitable method at step 320. For example, the sol-gels may be covered in methanol and heated at 50° C. for 4 hours. All of the liquids are then removed and the sol-gels are covered with methanol again. This process is repeated for a total of 4 times. The sol-gels are then covered loosely in a petri dish and allowed to dry at ambient conditions for a few days to a few weeks. A drying agent such as trimethylchlorosilane may be used after the second rinse to make the surfaces more hydrophobic and accelerate the removal of water.
In another example, the sol-gels may be placed in a super-critical CO2 drying chamber after the second rinse with methanol. CO2 is then added at a pressure above approximately 6 bar at ambient temperature, to cover the sol-gels in liquid CO2. The sol-gels are soaked for 2 hours, and this process is repeated 3 more times. The sol-gels are then removed from the drying chamber and allowed to sit in a loosely covered petri dish for a few hours to completely dry out.
In yet another example, the sol-gels may be covered in equal parts methanol and toluene in a sealed chamber. The sol-gels are heated to a temperature between 150° C. and 250° C., and the pressure is released quickly by opening a vent valve. The ratio of methanol and toluene may be adjusted to affect the critical point temperature based on the standard rule of mixtures and vapor point knowledge in the literature, and to optimize the rapid removal of solvent from the sol-gel pores without collapsing the pores due to surface tension from the solvent.
Although the secondary shells are optional, they provide more volume that can be evacuated, such that there is less volume with air once the transparent film is formed. Preferably, the evacuated capsules have a cubic or cylindrical shape, and are packed closely together to form a stack with very little air between the evacuated capsules. The packing density of the evacuated capsules within the dried sol-gel material may be greater than 30%. Advantageously, the packing density may be greater than 70%, in order to maximize the insulation value of the film.
An example of a layer produced by the methods discussed above is shown in
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 62/365,621, filed on Jul. 22, 2016, the contents of which are hereby incorporated by reference in their entirety.
The United States Government has rights in this invention under Contract No. DE-AC36-08GO28308 between the United States Department of Energy and the Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory.
Number | Date | Country | |
---|---|---|---|
62365621 | Jul 2016 | US |