Server clusters are commonly used to provide failover and high availability of information to clients. The use of a server cluster allows for transparent failover to clients so that any server failure is transparent to applications requesting server operations on clients. Server clusters can be useful in shared file systems to provide access to file information to several clients in a network. However, issues may arise when the shared file system utilizes a stateful protocol, such as the Server Message Block (SMB) protocol. When a server in a server cluster fails, some stateful protocols do not provide a way to transfer client state from the failed server to an alternative server. Also, file access protocols that do provide for storing some state information do not provide for different components to store different state information.
It is with respect to these and other considerations that embodiments have been made. Also, although relatively specific problems have been discussed, it should be understood that the embodiments should not be limited to solving the specific problems identified in the background.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description section. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Described are embodiments that utilize persistent handles in a shared file system. The persistent handles are used to retain state across network failures and server failovers. Persistent handles are requested by a client after a session has been established with a file server. The request for the persistent handle includes a handle identifier generated by the client. The server uses the handle identifier to associate with state information. When there is a network failure or a server failover, and a reconnection to the client, the handle identifier is used to identify replayed requests that if replayed would create an inconsistent state on the server. The replayed requests are then appropriately handled.
Embodiments may be implemented as a computer process, a computing system or as an article of manufacture such as a computer program product or computer readable media. The computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process. The computer program product may also be a propagated signal on a carrier readable by a computing system and encoding a computer program of instructions for executing a computer process.
Non-limiting and non-exhaustive embodiments are described with reference to the following figures.
Various embodiments are described more fully below with reference to the accompanying drawings, which form a part hereof, and which show specific exemplary embodiments. However, embodiments may be implemented in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the embodiments to those skilled in the art. Embodiments may be practiced as methods, systems or devices. Accordingly, embodiments may take the form of a hardware implementation, an entirely software implementation or an implementation combining software and hardware aspects. The following detailed description is, therefore, not to be taken in a limiting sense.
As shown in
In accordance with one embodiment, servers 106A, 106B, and 106C are utilized to provide consistent availability of the file system stored on cluster 106. This is done by utilizing components on clients 102 and 104 and servers 106A, 106B, and 106C to store state information that can be used to reestablish sessions between clients 102 and 104 and cluster 106 should there be a failure of network 108 or a failure of one of servers 106A, 106B, and 106C. As described in greater detail below, the storing of state information allows clients 102 and 104 to have consistent file access and failover that is transparent to applications running on clients 102 and 104.
The servers, e.g., 106A, 106B, and 106C, of cluster 106, in embodiments, each provide access to file information to clients and are configured to provide consistent availability of the file information to the clients. To illustrate one embodiment, client 102 may send a request to establish a session with a server of cluster 106. For example, client 102 may establish a session with server 106A to access a shared file system stored on server cluster 106. As part of the process of establishing the session, client 102 may utilize a file access protocol. In embodiments, the file access protocol is a version of the Network File System (NFS), or the Server Message Block (SMB) protocol.
The establishment of a session may involve the exchange of a number of negotiate requests and responses transmitted between client 102 and server 106A. In versions of the SMB protocol, there are specifically defined negotiate packets that are used to negotiate the exact version of the protocol that will be used during the session, as well as advertise the capabilities of both the client, e.g., 102, and server, e.g., 106A, to each other. In one embodiment, the negotiate packets may include an indication that the server 106A is part of a cluster, e.g. cluster 106. This allows the client to know that the server 106A can provide consistent availability, in other words, transparent failover capabilities.
Continuing with the example above, after the session is established, client 102 can send a message formatted according to the file access protocol to server 106A for a persistent handle to access a file in the file system. Requesting a persistent handle, in embodiments, indicates that the client would like to utilize the transparent failover capabilities available as a result of server 106A being part of cluster 106. In embodiments, the request includes a handle identifier that is a globally unique identifier.
The server 106A will receive the request for a persistent handle and store the handle identifier with state information for the session with client 102. The storing of state information may merely involve the file server persisting the handle identifier to storage and storing state information in association with the handle identifier. As described in greater detail below, in some embodiments, different types of state information may be stored using separate components, such as a filter. In yet other embodiments, information relating to persistent handles is replicated between nodes and is not stored to persistent storage on the file system. In still other embodiments, information concerning persistent handles is both replicated between nodes and is stored to persistent storage on the file system.
The server 106A sends a response to client 102 granting the persistent handle and access to file information. Client 102 can then proceed to send other requests for performing various operations on the file. For example, client 102 may send requests to read file information, write to the file, enumerate attributes of the file, close the file, and request various locks on the file. Each of the operations requested by the client may result in updating the state information to ensure that if the client is disconnected, the state of the client can be reinstated. This updating may involve saving the additional state information in association with the handle identifier.
At some point, the client 102 may be disconnected from the server. The disconnection may be because of network failure or disruptions, for example. Alternatively, the disconnection may be because of failure of server 106A. In those embodiments involving a network failure, client 102 may detect that a disconnection has occurred and wait for the network to become available to reconnect with the server 106A. In other embodiments, once client 102 detects a failure it sends a request to reconnect to cluster 106, which will provide a failover server to handle the reconnection request.
In either case, client 102 sends a request to reconnect. The request will include the handle identifier. The server 106A, or an alternative server (106B or 106C) will retrieve the state information based on the handle identifier, reestablish the previous state using the state information, and send the client a response indicating that the reconnection is successful. In some embodiments, the reconnection may not be possible, if the previous state information has been lost or is otherwise unavailable. In these situations, the server may treat the reconnection request as a request to establish a session and respond accordingly.
After the session is reestablished, client 102 sends new file access requests. In some embodiments, one of the new file access requests may be replays of previous requests. The replayed request may be of a type that if processed by the server, without recognizing that it is a replay, would create an inconsistent state on the server. The exact type of request depends upon how requests are handled by the file access protocol being used. For example, in versions of the SMB protocol, byte range locks may be requested and granted on portions of a file. Therefore, if the client sent a request to lock portions of a file and the request is completed but the client is not notified prior to the disconnection, the client could replay the previous request. The server would need to be able to identify that the request is a replay. Therefore, in embodiments, the handle identifier sent with the original request for the persistent handle is used to identify replayed requests. Once identified, the replayed requests may be processed in order to avoid an inconsistent state on the server.
In some embodiments, in order to provide transparent failover to applications on the client 102, there may be state information that is stored on the client 102. That is, the server 106A (or a failover server) may not be responsible for storing all of the information that is necessary to restore state after a reconnection. In some embodiments, the client may be responsible for reestablishing some state. For example, if requests to read file information were sent before the disconnection, the server may not be responsible for saving state information regarding the read requests. When the reconnection occurs, the client may be responsible for resending the read requests. Additional description of embodiments, in which state information is restored by different components, is described in greater detail below with respect to
The foregoing description is merely one example of how the embodiment shown in
Turning now to
As is shown in
Server 1, server 2, and server 3 are shown in
The use of the SMB protocol to establish a session between a client and a server begins with a redirector, such as the redirector on client 202, sending a negotiate request to a file server such as server 1 in server cluster 206. The redirector and file server exchange negotiate packets to negotiate the version of SMB that will be used for the session. Additionally, during the negotiation, capabilities may also be exchanged. In one embodiment, a file server may include a capability flag in a negotiate response packet sent from the file server to the client to indicate to the client that the file server supports the use of persistent handles. In some embodiments, this is done in situations in which the file server is part of a cluster that can provide consistent availability to a client by failing over to another server in the cluster. In other embodiments, stand-alone servers may also have this capability in order to be able to reconnect to clients if there is a network failure.
Once the negotiation is completed, the redirector on the client and the file server establish a session. The client redirector can then send file access requests to the file server. In one embodiment, the redirector requests a persistent handle. Versions of the SMB protocol provide for durable handles which can be used for reconnecting to clients that are disconnected. However, they do not necessarily provide for storing and reestablishing state after a client reconnects. Thus, in embodiments, the redirector can send a request for a durable handle with some additional flag and/or indicator to note that the client redirector is requesting a persistent handle. In addition, the client may include a handle identifier that can be used to identify replayed requests after reconnection. Below is one embodiment of a durable handle request structure that may be used in a version of the SMB protocol for requesting the persistent handle:
In response to the request, the file server on server 1, in embodiments, responds by granting the persistent handle and providing a file identifier to the client redirector on client 202. The client redirector is then able to access information from the file associated with the persistent handle and the file identifier. In some embodiments, the client redirector may request a persistent handle for a directory. That is, instead of the persistent handle being associated with an individual file, the handle may be associated with a directory.
In addition to the file server on server 1 granting the persistent handle, the file server will also store state information in storage 212. The state information may be stored in association with the handle identifier generated by the client redirector and may also be stored in association with the file identifier provided to the client redirector on client 202. As described in greater detail below, the file server may directly store state information as file server state information 216. In other embodiments, the file server may utilize a resume filter to store state information. In yet other embodiments, the file server may both directly store state information and also use the resume filter for storing other state information.
After the negotiation is complete, the client redirector sends file access requests using, for example, a version of the SMB protocol. In some embodiments, the file server will store state information for each of the requests received from the client redirector. At some point in time, there may be a disconnect between client 202 and server 1, as a result of a network failure or a failure of server 1, for example. Client 202 can reestablish a connection with server 1 if the failure was based on a network failure, or with a failover server (one of server 2 or server 3). As part of the reconnection, client 202 can send a reconnect request that includes the previously provided handle identifier as well as the file identifier provided by the file server when negotiating the original session. Because the state information is available in storage 212 which is accessible by all of the servers in server cluster 206, a failover server can identify previous state information based on the handle identifier and/or the file identifier provided by the client in the reconnect request. In those embodiments where the client is attempting to reestablish a connection with server 1, the file server on server 1 can also access the state information on storage 212 to reestablish the previous state of the session with the client.
As noted above, in some embodiments, different components in environment 200 are responsible for storing different types of state information in order to provide reestablishment of state to clients that are disconnected. As shown in
In some embodiments, the client is also responsible for storing some state information. As shown in
As can be appreciated, the state information that is stored on different components in environment 200 depends upon different design considerations. For example, there may be some information that is important enough that requires the file server to guarantee that the state information is coherent and consistently available, in which case the information should be stored by the file server and/or the resume filter. For example, in order for a server to enforce sharing modes and ensure that new clients requesting access do not interfere with existing client's access, state information must be stored on the server, according to embodiments. Other state information may not be as critical, and some incoherency may be tolerated in the information. As an example, a client may have locally cached file properties. The cached file properties may be requested anew after a client reconnects to a file server following a disconnect.
In one embodiment, where a version of the SMB protocol is used for communication between the client redirector and the file server, the SMB protocol may provide for specific states to be stored by the various components shown in environment 200. In one embodiment, the operations available using the SMB protocol are divided into three groups. State information associated with each group is stored by different components.
The first group may be referred to generally as non-idempotent operations, meaning that if these operations are replayed, e.g., reapplied on a file after already being applied once before a client disconnect, would create an inconsistent state on the file server. In versions of the SMB protocol, byte range locks are an example of operations that require replay detection because these locks are stacked and unstacked. Other examples include appending writes and opens/creates, which can modify disk state, for example by creating new files or overwriting existing files. In embodiments, state associated with these types of operations is stored by the file server because the file server must recognize that these operations are being replayed. In the embodiment shown in
A second group of operations relates to data open operations. These operations may be requests to read, write, execute, or delete information in a file. In order to be able to enforce sharing modes and prevent other clients from affecting existing clients, state regarding these open operations has to be stored on the server side, according to embodiments. State regarding open operations is also stored on the server side to block local operations from interfering with persistent handles. For example, programs running on cluster nodes are prevented from modifying, or otherwise affecting, handles being reserved for clients. In embodiments, state regarding these types of operations is stored by the resume filter. As noted above, the resume filter in embodiments is not specific to the SMB protocol but can also be used when a file server is using a different file access protocol such as NFS. In the embodiment shown in
The third group of operations includes operations that if reapplied at the server would not change the final state of the server. These may be referred to as idempotent operations. Some operations in this group include but are not limited to reads, non-appending writes, deletes, renames, metadata-set operations, and metadata-query operations. Lease state also can be stored by the client and need not be persisted by the server. In embodiments, a lease is a mechanism that is designed to allow clients to dynamically alter their buffering strategy in a consistent manner in order to increase performance and reduce network use. The network performance for remote file operations may be increased if a client can locally buffer file data, which reduces or eliminates the need to send and receive network packets. A client may not have to write information into a file on a remote server if the client confirms that no other client is accessing the data. Likewise, the client may buffer read-ahead data from the remote file if the client confirms that no other client is writing data to the remote file.
According to embodiments, lease state does not need to be persisted on the server because the resume filter blocks all creates to a given file while clients are resuming their handles after a failover. This implicitly provides a guarantee that handle leases will never be lost during the failover process if clients reconnect/resume their handles during the grace period. In other words, clients will always get back their handle leases during the resume phase. Furthermore, exclusive leases such as read/write, read/write/handle leases are granted to only a single client at any given time. This implies that there are no other data opens to the file from any other client. So during failover, since the resume filter will not allow new creates to the file until the client holding the exclusive lease has resumed all its handles, there is a guarantee that the client will get back its exclusive lease. Shared leases which do not require an acknowledgement, such as read lease, can be lost at any time without the knowledge of either server or the resume filter because the underlying file system allows the operation which caused the break to proceed. For such leases, the client, in embodiments, assumes that the lease is broken across a failover and purges its cache to prevent stale reads. State for the operations in the third group can therefore be recreated by the client without any additional support from the server. In the embodiment shown in
In operation, environment 200 allows applications on clients 202 and 204 to request access to files that are stored in file storage 210 in a shared file system. The applications can transparently request file information. The redirectors on the clients will establish a session with one of the servers in cluster 206, as described above, requesting a persistent handle so that the redirector can reconnect and reestablish the session should there be a disconnect. The file server will store state information in storage 212 either directly as file server state information 216 or as resume filter state information 214 using a resume filter. In some embodiments, the client will also store some state information. In the event of a disconnect, the redirector can request to reconnect to the file server, or to a failover server. The state information stored on the server side, e.g., in storage 212, and the client side can then be used to reestablish the previous state of the client. This all occurs transparent to the applications on clients 202 and 204.
As may be appreciated, the above description of environment 200 is not intended to limit the embodiments described herein.
The description of
Furthermore, although operational flows 300 and 400 are illustrated and described sequentially in a particular order, in other embodiments, the operations may be performed in different orders, multiple times, and/or in parallel. Further, one or more operations may be omitted or combined in some embodiments.
Operational flow 300 illustrates steps for providing replay defense on server failover. In embodiments, flow 300 illustrated in
Operational flow passes from operation 304 to operation 306 where a second request is received for a persistent handle. The request is sent by the client and includes a handle identifier that is generated by the client. The handle identifier is used in embodiments by the server to store state information regarding the session established between the client and the file server. As part of storing the state information, flow 300 may include, in embodiments, operation 308 in which the file server registers with a resume filter in order to store some state information. In embodiments, the resume filter is located between the protocol layer and the underlying storage system and can be used in embodiments to store state information regarding a session established between the file server and the client.
At operation 310 the state information is stored in association with the handle identifier. The state information may be stored in any appropriate form, such as in a table, database, or log file. The storage is persistent and available to the file server for reestablishing state when necessary. The state information may be stored directly by the file server. In other embodiments, flow 300 includes operation 312, in which the resume filter is used to store state information. As indicated above, the file server may register with the resume filter in some embodiments to store state information.
Flow 300 passes from operation 312 to operation 314 where a response is sent to the client granting access to the file using the persistent handle. The response includes a file identifier that is provided by the file server in the response and is also stored in association with the state information stored at operation 310, and optionally at operation 312.
Flow 300 then passes to operation 316, where optionally a number of file access requests are received. The file access requests may include a number of file operations to perform on the file associated with the persistent handle. The operations may be, for example, opens to read/write data, enumerate attributes, lease requests to allow caching of data locally, or other file access operations. The various states associated with receiving the file access requests at operation 316 may be updated at operation 318. That is, when these requests are granted to the client, the state information stored in the previous operations (310 and 312) is updated to reflect the additional state information.
After operation 318, there are a number of additional operations identified within box 319. These operations may be performed as a result of the client being disconnected from the file server. As can be appreciated, in those situations where the file server that originally performed operations 302-318 is unavailable because of a failure, the additional operations within box 319 are performed by a failover server. In other embodiments, where the failure is a result of a network problem, the operations within box 319 are performed by the same file server.
At operation 320, a request to reconnect is received. The request includes the file handle previously provided by the file server, as well as the handle identifier that the client used when requesting the persistent handle. The file server that receives the request at operation 320 can use the handle identifier and the file identifier to look up the state information. As indicated above, this operation may involve using the resume filter in order to retrieve the state information that was previously saved using the resume filter.
Flow 300 passes from operation 320 to operation 322 where the state information is used to reestablish the connection and previous state with the client. After operation 322, flow passes to operation 324 where new file access requests are received. Operation 324 therefore may include a number of operations that each includes receiving a file access request from the client.
Some of the requests received at operation 324 may be replays of previous requests that were sent prior to the disconnect between the file server and the client. As a result, some of these operations if reapplied at the file server may create an inconsistent state. At operation 326, the new file access requests that are replays are detected. In embodiments, this operation may involve identifying the file access requests using the handle identifier previously provided by the client. Once the replay is detected at operation 326, the requests are properly processed at operation 328. That is, if the replayed operations would create an inconsistent state on the file server, they may be ignored if the previous operation was successfully performed. Alternatively, if the previous operation was not successfully performed, then the replayed operation may be applied. Flow 300 then ends at 330.
Operational flow 400 illustrates steps for maintaining consistent availability. In embodiments, flow 400 may be performed by redirectors on clients, such as clients 202 and 204 (
Flow 400 begins at operation 402 where a request to connect to the file server is sent. The request sent at operation 402 is a request to establish a session with the file server in order to access file information stored on a shared file system accessible through the file server. The request may be sent to a file server on a server, e.g., server 1, server 2, and server 3, that is part of a server cluster (
After operation 402, flow 400 passes to operation 404 where a response is received indicating that a session has been established. In some embodiments, operations 402 and 404 may be part of a number of messages that are exchanged between a client and a server to negotiate a session. The exchange of messages may include an exchange of capabilities including the capability of the file server to provide persistent handles.
Operational flow passes from operation 404 to operation 406 where a request is sent for a persistent handle. As a result of the negotiating process (operations 402 and 404), the client may have been notified that the file server is capable of providing persistent handles. In order to ensure that applications on the client can have their states reestablished after a disconnect and reconnection, the client may request a persistent handle at operation 406. The request includes a handle identifier that is generated by the client.
Flow 400 passes from operation 406 to operation 408 where a response is received granting access to the file using the persistent handle. The response includes a file identifier that is provided by the file server in the response.
At operation 410 state information may, in some embodiments, be stored by the client. The state information is stored in association with the handle identifier and the file identifier provided in the response received granting the persistent handle. The state information may be stored in any appropriate form, such as in a table, database, or log file. The storage is persistent and available to the client for reestablishing state when necessary. As can be appreciated, the state information stored by the client is, in embodiments, state information for operations that can be safely replayed back to the file server without creating an inconsistent state on the file server. The replayed operations may be, for example, leases for locally caching data, reads, writes, deletes, and meta-data enumerations.
Flow 400 passes from operation 410 to operation 412 where the client sends a number of file access requests. Operation 412 may thus involve the sending of several requests to perform file operations, according to embodiments. Following operation 412 is operation 414, where state information on the client is updated. As may be appreciated, operations 414 may occur numerous times, namely each time that a file access request is sent by the client at operation 412.
From operation 414, flow passes to operation 416 where a disconnect is detected. The detection may occur by virtue of a timeout, an event notification or some other means. Following operation 416, a request is sent to reconnect and reestablish the session previously established with the file server at operation 418. The request includes the file handle previously provided by the file server, as well as the handle identifier that the client used when requesting the persistent handle.
Flow 400 passes from operation 418 to operation 420 where a determination is made that the reconnect is successful. After operation 420, flow passes to operation 422 where state information stored on the client is used to reestablish the previous state. Operation 422 may involve sending a number of different requests, including read, write, enumerate, requests for locks or other operations to reestablish the previous state. Flow passes from operation 422 to operation 424, where the client sends new file access requests. Flow ends at 426.
In its most basic configuration, system 500 typically includes at least one processing unit 502 and memory 504. Depending on the exact configuration and type of computing device, memory 504 may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or some combination of the two. This most basic configuration is illustrated in
The term computer readable media as used herein may include computer storage media. Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. System memory 504, removable storage, and non-removable storage 508 are all computer storage media examples (i.e., memory storage). In embodiments, data, such as state information 520, for example, are stored. Computer storage media may include, but is not limited to, RAM, ROM, electrically erasable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store information and which can be accessed by computing device 500. Any such computer storage media may be part of device 500. Computing device 500 may also have input device(s) 514 such as a keyboard, a mouse, a pen, a sound input device, a touch input device, etc. Output device(s) 516 such as a display, speakers, a printer, etc. may also be included. The aforementioned devices are examples and others may be used.
The term computer readable media as used herein may also include communication media. Communication media may be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” may describe a signal that has one or more characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared, and other wireless media.
Reference has been made throughout this specification to “one embodiment” or “an embodiment,” meaning that a particular described feature, structure, or characteristic is included in at least one embodiment. Thus, usage of such phrases may refer to more than just one embodiment. Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
One skilled in the relevant art may recognize, however, that the embodiments may be practiced without one or more of the specific details, or with other methods, resources, materials, etc. In other instances, well known structures, resources, or operations have not been shown or described in detail merely to avoid obscuring aspects of the embodiments.
While example embodiments and applications have been illustrated and described, it is to be understood that the embodiments are not limited to the precise configuration and resources described above. Various modifications, changes, and variations apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems disclosed herein without departing from the scope of the claimed embodiments.
The present application is a continuation application of U.S. Non-Provisional application Ser. No. 13/174,271, filed Jun. 30, 2011, and entitled “TRANSPARENT FAILOVER”, now issued U.S. Pat. No. 8,856,582, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4399504 | Obermarck | Aug 1983 | A |
4780821 | Crossley | Oct 1988 | A |
4791566 | Sudama | Dec 1988 | A |
4825354 | Agrawal | Apr 1989 | A |
4887204 | Johnson | Dec 1989 | A |
4891785 | Donohoo | Jan 1990 | A |
4914570 | Peacock | Apr 1990 | A |
5008853 | Bly | Apr 1991 | A |
5109519 | Zimmet | Apr 1992 | A |
5113519 | Johnson | May 1992 | A |
5202971 | Henson | Apr 1993 | A |
5218696 | Baird et al. | Jun 1993 | A |
5261051 | Masden et al. | Nov 1993 | A |
5265261 | Rubin et al. | Nov 1993 | A |
5313646 | Hendricks et al. | May 1994 | A |
5349642 | Kingdon | Sep 1994 | A |
5375207 | Blakely et al. | Dec 1994 | A |
5410697 | Baird | Apr 1995 | A |
5437013 | Rubin et al. | Jul 1995 | A |
5452447 | Nelson | Sep 1995 | A |
5491752 | Kaufman et al. | Feb 1996 | A |
5493728 | Solton | Feb 1996 | A |
5513314 | Kandasamy | Apr 1996 | A |
5522042 | Fee et al. | May 1996 | A |
5535375 | Eshel et al. | Jul 1996 | A |
5560008 | Johnson et al. | Sep 1996 | A |
5588117 | Karp et al. | Dec 1996 | A |
5628005 | Hurvig | May 1997 | A |
5764887 | Kells et al. | Jun 1998 | A |
5826027 | Pedersen et al. | Oct 1998 | A |
5931913 | Meriwether et al. | Aug 1999 | A |
5933602 | Grover | Aug 1999 | A |
5978802 | Hurvig | Nov 1999 | A |
5987621 | Duso et al. | Nov 1999 | A |
6085247 | Parsons et al. | Jul 2000 | A |
6092199 | Dutcher | Jul 2000 | A |
6125122 | Favichia et al. | Sep 2000 | A |
6131125 | Rostoker et al. | Oct 2000 | A |
6208952 | Goertzel | Mar 2001 | B1 |
6219799 | Kandasamy | Apr 2001 | B1 |
6243862 | Lebow | Jun 2001 | B1 |
6247139 | Walker et al. | Jun 2001 | B1 |
6275953 | Vahalia et al. | Aug 2001 | B1 |
6317844 | Kleiman | Nov 2001 | B1 |
6324581 | Xu et al. | Nov 2001 | B1 |
6349250 | Hart et al. | Feb 2002 | B1 |
6349350 | Harthorn et al. | Feb 2002 | B1 |
6401123 | Shields et al. | Jun 2002 | B1 |
6430691 | Di Santo et al. | Aug 2002 | B1 |
6438691 | Mao | Aug 2002 | B1 |
6452903 | Peck et al. | Sep 2002 | B1 |
6453354 | Jiang et al. | Sep 2002 | B1 |
6640226 | Shringeri et al. | Oct 2003 | B1 |
6658476 | Van | Dec 2003 | B1 |
6829473 | Raman et al. | Dec 2004 | B2 |
6883015 | Geen et al. | Apr 2005 | B1 |
6910082 | Marcotte | Jun 2005 | B1 |
6928577 | Moser et al. | Aug 2005 | B2 |
7020651 | Ripley | Mar 2006 | B2 |
7050984 | Kerpelman | May 2006 | B1 |
7103007 | Natarajan et al. | Sep 2006 | B2 |
7111035 | McClellan et al. | Sep 2006 | B2 |
7111060 | Araujo et al. | Sep 2006 | B2 |
7197535 | Salesky et al. | Mar 2007 | B2 |
7243132 | Choi | Jul 2007 | B2 |
7290141 | Sengodan et al. | Oct 2007 | B2 |
7293192 | Allen et al. | Nov 2007 | B2 |
7318102 | Krause et al. | Jan 2008 | B1 |
7330910 | Young et al. | Feb 2008 | B2 |
7339885 | Ahrens et al. | Mar 2008 | B2 |
7380080 | Hughes | May 2008 | B2 |
7380155 | Fung et al. | May 2008 | B2 |
7383463 | Hayden et al. | Jun 2008 | B2 |
7386889 | Shay | Jun 2008 | B2 |
7388866 | Fan et al. | Jun 2008 | B2 |
7409420 | Pullara et al. | Aug 2008 | B2 |
7421502 | Czap et al. | Sep 2008 | B2 |
7434087 | Singh | Oct 2008 | B1 |
7444536 | Jairath | Oct 2008 | B1 |
7451221 | Basani et al. | Nov 2008 | B2 |
7453879 | Lo | Nov 2008 | B1 |
7457722 | Shain et al. | Nov 2008 | B1 |
7475142 | Sharma et al. | Jan 2009 | B2 |
7509407 | Miller et al. | Mar 2009 | B2 |
7526658 | He et al. | Apr 2009 | B1 |
7526668 | Shitomi et al. | Apr 2009 | B2 |
7539722 | Mohamed et al. | May 2009 | B2 |
7562129 | Lee et al. | Jul 2009 | B1 |
7664991 | Gunda et al. | Feb 2010 | B1 |
7673066 | Zheng | Mar 2010 | B2 |
7702745 | Lin et al. | Apr 2010 | B2 |
8275815 | Aronovich et al. | Sep 2012 | B2 |
8316129 | Kruse et al. | Nov 2012 | B2 |
8332526 | Kruse et al. | Dec 2012 | B2 |
8631277 | Swan et al. | Jan 2014 | B2 |
8788579 | Kruse et al. | Jul 2014 | B2 |
8825885 | Kruse et al. | Sep 2014 | B2 |
8850025 | Kruse et al. | Sep 2014 | B2 |
8856582 | George et al. | Oct 2014 | B2 |
20020019874 | Borr | Feb 2002 | A1 |
20020024963 | Reeve | Feb 2002 | A1 |
20020062379 | Widegren | May 2002 | A1 |
20020073211 | Lin et al. | Jun 2002 | A1 |
20020083130 | Shimada et al. | Jun 2002 | A1 |
20020152315 | Kagan et al. | Oct 2002 | A1 |
20020161980 | Nishikawa | Oct 2002 | A1 |
20030014480 | Pullara et al. | Jan 2003 | A1 |
20030018927 | Gadir et al. | Jan 2003 | A1 |
20030056069 | Cabrera et al. | Mar 2003 | A1 |
20030058277 | Bowman-Amuah | Mar 2003 | A1 |
20030093643 | Britt, Jr. | May 2003 | A1 |
20030093678 | Bowe et al. | May 2003 | A1 |
20030112754 | Ramani et al. | Jun 2003 | A1 |
20030115341 | Sinha et al. | Jun 2003 | A1 |
20030126195 | Reynolds et al. | Jul 2003 | A1 |
20030140129 | Livnat et al. | Jul 2003 | A1 |
20030169859 | Strathmeyer et al. | Sep 2003 | A1 |
20030182282 | Ripley | Sep 2003 | A1 |
20040003210 | Duale et al. | Jan 2004 | A1 |
20040003241 | Sengodan et al. | Jan 2004 | A1 |
20040018829 | Raman et al. | Jan 2004 | A1 |
20040019660 | E et al. | Jan 2004 | A1 |
20040032876 | Garg et al. | Feb 2004 | A1 |
20040044930 | Keller et al. | Mar 2004 | A1 |
20040103342 | Moser et al. | May 2004 | A1 |
20040111527 | Czap, Jr. et al. | Jun 2004 | A1 |
20040136325 | Dobric et al. | Jul 2004 | A1 |
20040160909 | Sheynblat | Aug 2004 | A1 |
20040215794 | Lauer | Oct 2004 | A1 |
20040225952 | Brown et al. | Nov 2004 | A1 |
20040255202 | Wong | Dec 2004 | A1 |
20040260748 | Springer et al. | Dec 2004 | A1 |
20040267932 | Voellm et al. | Dec 2004 | A1 |
20040267935 | Patiejunas | Dec 2004 | A1 |
20040268118 | Bazan Bejarano | Dec 2004 | A1 |
20050010670 | Greschler et al. | Jan 2005 | A1 |
20050015511 | Izmailov et al. | Jan 2005 | A1 |
20050015747 | Zatloukal et al. | Jan 2005 | A1 |
20050021832 | Bennett et al. | Jan 2005 | A1 |
20050038828 | Kaluskar et al. | Feb 2005 | A1 |
20050041686 | Roy et al. | Feb 2005 | A1 |
20050055345 | Ripley | Mar 2005 | A1 |
20050060442 | Beverly et al. | Mar 2005 | A1 |
20050091212 | Mohamed et al. | Apr 2005 | A1 |
20050102537 | Zheng | May 2005 | A1 |
20050111030 | Berkema et al. | May 2005 | A1 |
20050114670 | Bowe et al. | May 2005 | A1 |
20050125378 | Kawada | Jun 2005 | A1 |
20050129045 | Machulsky et al. | Jun 2005 | A1 |
20050131832 | Fransdonk | Jun 2005 | A1 |
20050132077 | Biran et al. | Jun 2005 | A1 |
20050138528 | Ameigeiras et al. | Jun 2005 | A1 |
20050149817 | Biran et al. | Jul 2005 | A1 |
20050177635 | Schmidt et al. | Aug 2005 | A1 |
20050182850 | Kohno | Aug 2005 | A1 |
20050198113 | Mohamed et al. | Sep 2005 | A1 |
20050198247 | Perry et al. | Sep 2005 | A1 |
20050198359 | Basani et al. | Sep 2005 | A1 |
20050198380 | Panasyuk et al. | Sep 2005 | A1 |
20050223014 | Sharma et al. | Oct 2005 | A1 |
20050228884 | Hawley | Oct 2005 | A1 |
20050246803 | Spencer | Nov 2005 | A1 |
20050248803 | Ohara | Nov 2005 | A1 |
20050251448 | Gropper | Nov 2005 | A1 |
20050257022 | Hughes | Nov 2005 | A1 |
20050258022 | Horton et al. | Nov 2005 | A1 |
20050262084 | Tomita | Nov 2005 | A1 |
20050262103 | Stakutis et al. | Nov 2005 | A1 |
20050273592 | Pryor | Dec 2005 | A1 |
20060031519 | Helliwell et al. | Feb 2006 | A1 |
20060041698 | Han et al. | Feb 2006 | A1 |
20060045005 | Blackmore et al. | Mar 2006 | A1 |
20060047818 | Kruglick et al. | Mar 2006 | A1 |
20060059118 | Byrd et al. | Mar 2006 | A1 |
20060080443 | Kruglick et al. | Apr 2006 | A1 |
20060080568 | Subbaraman et al. | Apr 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060095382 | Mahlbacher | May 2006 | A1 |
20060130107 | Gonder et al. | Jun 2006 | A1 |
20060168262 | Frazer | Jul 2006 | A1 |
20060206705 | Khosravi | Sep 2006 | A1 |
20060271679 | Mousseau et al. | Nov 2006 | A1 |
20060271692 | Kruse et al. | Nov 2006 | A1 |
20060271697 | Kruse et al. | Nov 2006 | A1 |
20060281525 | Borissov | Dec 2006 | A1 |
20070150558 | Teodosiu et al. | Jun 2007 | A1 |
20070171793 | Mesut et al. | Jul 2007 | A1 |
20070192326 | Angal et al. | Aug 2007 | A1 |
20070220155 | Nalla et al. | Sep 2007 | A1 |
20080010485 | Shitomi et al. | Jan 2008 | A1 |
20080126704 | Ulrich et al. | May 2008 | A1 |
20080151885 | Horn et al. | Jun 2008 | A1 |
20080172397 | Maeda et al. | Jul 2008 | A1 |
20080256231 | Burnett et al. | Oct 2008 | A1 |
20090077097 | Lacapra et al. | Mar 2009 | A1 |
20090138615 | Cristallo et al. | May 2009 | A1 |
20090172085 | Arthursson | Jul 2009 | A1 |
20090222582 | Josefsberg et al. | Sep 2009 | A1 |
20090319661 | Shiozawa et al. | Dec 2009 | A1 |
20090327798 | D'Amato et al. | Dec 2009 | A1 |
20100042715 | Tham et al. | Feb 2010 | A1 |
20100161855 | Mohamed et al. | Jun 2010 | A1 |
20100185704 | George et al. | Jul 2010 | A1 |
20110040826 | Chadzelek et al. | Feb 2011 | A1 |
20110131334 | Takasu | Jun 2011 | A1 |
20120151249 | Swan et al. | Jun 2012 | A1 |
20130007180 | Talpey et al. | Jan 2013 | A1 |
20130007518 | George et al. | Jan 2013 | A1 |
20130066941 | Kruse et al. | Mar 2013 | A1 |
20130067095 | Kruse et al. | Mar 2013 | A1 |
20130091199 | Kruse et al. | Apr 2013 | A1 |
20130097211 | Kruse et al. | Apr 2013 | A1 |
20130304932 | Kruse et al. | Nov 2013 | A1 |
20150026248 | Kruse et al. | Jan 2015 | A1 |
20150281404 | Kruse et al. | Oct 2015 | A1 |
20150365482 | Kruse et al. | Dec 2015 | A1 |
20160226951 | Talpey et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
1155119 | Jul 1997 | CN |
1299484 | Jun 2001 | CN |
1758608 | Apr 2006 | CN |
1767472 | May 2006 | CN |
1882933 | Dec 2006 | CN |
1906593 | Jan 2007 | CN |
1937532 | Mar 2007 | CN |
101207635 | Jun 2008 | CN |
101217483 | Jul 2008 | CN |
101594320 | Dec 2009 | CN |
101605194 | Dec 2009 | CN |
101926155 | Dec 2010 | CN |
1 259 045 | Nov 2002 | EP |
1 259 045 | Nov 2002 | EP |
1643406 | Apr 2006 | EP |
1669850 | Jun 2006 | EP |
1 727 056 | Nov 2006 | EP |
2727287 | May 2014 | EP |
60-019341 | Jan 1985 | JP |
62-297927 | Dec 1987 | JP |
63-061148 | Mar 1988 | JP |
63-205747 | Aug 1988 | JP |
64-061148 | Mar 1989 | JP |
02-101847 | Apr 1990 | JP |
03-048558 | Mar 1991 | JP |
03-074745 | Mar 1991 | JP |
04-172039 | Jun 1992 | JP |
04-229746 | Aug 1992 | JP |
05-089048 | Apr 1993 | JP |
05-143488 | Jun 1993 | JP |
06-075890 | Mar 1994 | JP |
H-07-036760 | Feb 1995 | JP |
H10-133971 | May 1998 | JP |
10-313342 | Nov 1998 | JP |
11-055314 | Feb 1999 | JP |
2000-066922 | Mar 2000 | JP |
2001-077844 | Mar 2001 | JP |
2001-094613 | Apr 2001 | JP |
2003-504699 | Feb 2003 | JP |
2003-069610 | Mar 2003 | JP |
2003-281091 | Mar 2003 | JP |
2003-125022 | Apr 2003 | JP |
2003-196178 | Jul 2003 | JP |
2003-337717 | Nov 2003 | JP |
2004-078949 | Mar 2004 | JP |
2005-032172 | Feb 2005 | JP |
2005-517241 | Jun 2005 | JP |
2006-079603 | Mar 2006 | JP |
2006-113735 | Apr 2006 | JP |
2006-191617 | Jul 2006 | JP |
2007-058506 | Mar 2007 | JP |
10-1994-0001700 | Mar 1994 | KR |
2118051 | Aug 1998 | RU |
2313824 | Dec 2007 | RU |
2365983 | Aug 2009 | RU |
2368944 | Sep 2009 | RU |
2380749 | Jan 2010 | RU |
WO 03096646 | Nov 2003 | WO |
WO 03105439 | Dec 2003 | WO |
2004-003765 | Jan 2004 | WO |
Entry |
---|
New Zealand Notice of Acceptance in Application 622122, mailed Jan. 15, 2015, 1 page. |
U.S. Appl. No. 14/473,488, Notice of Allowance mailed Feb. 12, 2015, 5 pgs. |
European Extended Search Report in Application 12829430.3, mailed Feb. 12, 2015, 6 pgs. |
European Supplementary Search Report in Application 11846483.3, mailed Dec. 16, 2014. 10 pgs. |
European Communication in Application 11846483.3, mailed Jan. 12, 2015, 1 page. |
Chinese 3rd Office Action in Application 201110329007,4, mailed Dec. 29, 2014,6 pgs. |
U.S. Appl. No. 14/473,488, Notice of Allowance mailed Jan. 26, 2015, 15 pgs. |
Aboba et al., Extensible Authentication Protocol (EAP) [online], See Fast Connect, RFC 3748, Jun. 2004, [Retrieved Mar. 3, 2007], Retrieved from: http://www.ietf.org/rfc/rfc3748.txt?number=3748. |
Almeida, “FIFS: A Framework for Implementing User-Mode File Systems in Windows NT”, Proceedings of the 3rd USENIX Windows NT Symposium, Jul. 12-15, 1999, 19 pgs. |
Alvisi et al., “Low-Overhead Protocols for Fault-Tolerant File Sharing”; In Proceedings of the IEEE 18th International Conference on Distributed Computing Systems; 1998; 10 pgs. |
ANSI, Financial Institution Message Authentication (Wholesale), Financial Services Technical Publication, ANSI X9.9-1994, Aug. 15, 1986; 38 pgs. |
Asokan et al., Server Supported Signatures, Journal of Computer Security, Fall 1997; 13 pgs. |
Bell Labs, Plan 9 default Fossil File System [online], [Retrieved Sep. 17, 2007], Retrieved from: http://plan9.bell-labs.com/magic/man2html/4/fossil; 4 pgs. |
Bensaou et al., Credit-Based Fair Queueing (CBFQ): A Simple Service-Scheduling Algorithm for Packet-Switched Networks, IEEE/ACM Transactions on Networking, vol. 9, No. 5, Oct. 2001. |
Chinese 4th Office Action in Application 200510127998.2, mailed Nov. 16, 2011, 7 pgs. |
Chinese 5th Office Action in Application 200510127998.2, mailed Mar. 2, 2012, 8 pgs. |
Chinese 1st Office Action in Application 201210330725.8, mailed Oct. 10, 2014, 11 pgs. |
Chinese 1st Office Action in Application 201210434813.2, mailed Nov. 3, 2014, 10 pgs. |
Chinese Notice of Allowance in Application 2005101279978.2, mailed Dec. 5, 2011, 4 pgs. |
Chinese Notice of Allowance in Application 200510127998.2, mailed Aug. 20, 2012, 4 pgs. |
Chinese Notice of Entering into Substantive Examination in Application 201210331041.X, mailed Mar. 6, 2013, 3 pgs. |
Chinese Office Action dated Apr. 29, 2010 in Application No. 200510127997.8, 16 pgs. |
Chinese Office Action dated Apr. 29, 2010 in Application No. 200510127998.2, 10 pgs. |
Chinese Second Office Action dated Mar. 3, 2011 in Application No. 200510127998.2, 8 pgs. |
Chinese Second Office Action dated Mar. 30, 2011 in Application No. 200510127997.8, 26 pgs. |
Chinese Third Office Action dated Jul. 7, 2011 in Application No. 200510127998.2, 9 pgs. |
CIFS http://msdn.microsoft.com/library/default.asp?url= /library/en-us/cifs/protocol/cifs.asp, 2 pgs. |
CIFS Oplock File Locking, MSDN, [Retrieved Jan. 7, 2008], Retrieved from: http://msdn2.microsoft.com/en-us/library/aa302210.aspx; 3 pgs. |
CIFS or Public SMB Information on Common Internet File System http://support.microsoft.com/default.aspx ?scid=kb;en-us;199072; 2 pgs. |
Dehaese, G., The ISO 9660 File System [online], May 1995, [Retrieved Sep. 14, 2007], Retrieved from: http://users.pandora.be/it3.consultants.bvba/handouts/ISO9960.html. |
Digital Equipment Corporation, Introduction to RSX-11M [online, Order No. AA-L763B-TC, RSX-11M Version 4.2, First Printing Sep. 1979, Revised Nov. 1981 and Jul. 1985, [Retrieved Aug. 9, 2007], Retrieved from: http://www.computer.museum.uq.edu.au/RSX-11%20Manuals.html; 65 pgs. |
Digital Equipment Corporation, RSX-11M/M-Plus RMS-11 User's Guide [online], Order No. AA-L669A-TC, Apr. 1983, [Retrieved Aug. 17, 2007], Retrieved from: http://www.computer.museum.uq.edu.au/RSX-11%20Manuals.html. |
ECMA, Volume and File Structure for Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange 3rd Edition [online], ECMA-167, Jun. 1997, [Retrieved Aug. 9, 2007, Retrieved from: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-167.pdf; 150 pgs. |
European Exam Report in Application 05111885.9 mailed Sep. 13, 2007, 5 pgs. |
European Invitation to Correct Defects in Application No. 08008916.2 mailed Sep. 4, 2008, 6 pgs. |
European Notice of Allowance in Application 05111885.9 mailed Jun. 11, 2008, 6 pgs. |
European Notice of Allowance in Application 080089162 mailed Jan. 24, 2011, 6 pgs. |
European Notice to Grant in Application 05111885.9 mailed Oct. 9, 2008, 1 page. |
European Search Report dated Feb. 1, 2011 in Application No. 10013021.0, 9 pgs. |
European Search Report dated Feb. 15, 2006 in Application No. 05111729.9, 193 pgs. |
European Search Report dated Feb. 22, 2006 in Application No. 05111729.9, 8 pgs. |
European Search Report dated Jan. 20, 2006 in Application No. RS113279/US18298905, 2 pgs. |
European Search Report dated Jan. 20, 2006 in Application No. RS113280/US18225105, 4 pgs. |
European Search Report dated Jan. 4, 2011 in Application No. 10012923.8, 9 pgs. |
European Search Report dated Jun. 18, 2008 in Application No. 08008916.2, 9 pgs. |
European Search Report dated Sep. 19, 2006 in Application No. 055111885.9, 8 pgs. |
French, Steven M., “A New Network File System is Born: Comparison of SMB2, CIFS, and NFS”, retrieved Mar. 23, 2011, 14 pgs. |
Gifford et al., The Cedar File System, Communications of the ACM, vol. 31, No. 3, Mar. 1998; 11 pgs. |
Greenberg et al., “NFILE—A File Access Protocol”; Network Working Group; RFC 1037; Dec. 1997; 43 pgs. |
Gu et al., “SABUL: A High Performance Data Transfer Protocol”; IEEE Communications Letters; 2001; 11 pgs. |
Hartman; “The Zebra Striped Network File System”; Doctoral dissertation at the University of California at Berkeley; 1991; 159 pgs. |
Hertel, Implementing CIFS the Common Internet File System [online], [Retrieved Jul. 13, 2007], Retrieved from: http://ubiqx.org/cifs/; 3 pgs. |
Hiltunen et al., “Implementing Integrated Fine-Grain Customizable QoS Using Cactus”; The 29th Annual International Symposium on Fault-Tolerant Computing (Fast Abstract); Madison, WI; 1999, 2 pgs. |
Hitz et al., File System Design for an NFS File Server Appliance [online], Network Appliance, TR 3002, 1994, [Retrieved Aug. 9, 2007], Retrieved from: http://www.netapp.com/library/tr/3002.pdf; 13 pgs. |
Hobbit, CIFS: Common Insecurities Fail Scrutiny [online], Avian Research, Jan. 1997, Retrieved from: http://web.textfiles.com/hacking/cifs.txt; 39 pgs. |
Hong Kong Certificate of Grant in Application 07105689.8 mailed Jun. 26, 2009, 2 pgs. |
IBM, IBM Personal Computer Seminar Proceedings, vol. 2, No. 5, Sep. 1984; 13 pgs. |
Indian First Exam Report in Application 3305/DE/L2005, mailed Mar. 28, 2013, 2 pgs. |
International Organization for Standardization, Banking—Approved algorithms for message authentication—, ISO 8731-1, Jun. 1, 1987; 4 pgs. |
Internet Assigned Numbers Authority, Well-Known Port Numbers, http://www.jana.org/assignments/port-numbers, 233 pgs. |
Japanese Office Action in Application 200510127997.8 mailed Aug. 3, 2011, 8 pgs. |
Japanese Office Notice of Allowance in Application 2006-307121 mailed Feb. 14, 2012, 6 pgs. |
Japanese Office Notice of Rejection in Application 2006-307121 mailed Aug. 12, 2011, 5 pgs. |
Japanese Office Notice of Rejection mailed Apr. 3, 2007 in Application No. 2005-356145, 6 pgs. |
Japanese Office Notice of Rejection mailed Jan. 15, 2008 in Application No. 2005-356145, 5 pgs. |
Japanese Office Notice of Rejection mailed Mar. 10, 2006 in Application No. 2005-356146, 5 pgs. |
Japanese Office Notice of Rejection mailed May 12, 2006 in Application No. 2005-356145, 4 pgs. |
Japanese Office Notice of Rejection mailed Nov. 10, 2006 in Application No. 2005-356146, 3 pgs. |
John H. Samba Team Terpstra, “Chapter 32. High Availability Part III. Advanced Configuration”, retrieved Mar. 22, 2011, 6 pages. |
Kent et al., IP Authentication Header [online], RFC 2402, Nov. 1998, [Retrieved Aug. 9, 2007], Retrieved from: http://tools.ietf.org/html/rfc2402, 20 pgs. |
Kent et al., Security Architecture for the Internet Protocol [online], RFC 2401, Nov. 1998, [Retrieved Jun. 6, 2007], Retrieved from: http://www.ietf.rg/rfc/rfc2401.txt? number=2401, 62 pgs. |
Klima, “Tunnels in Hash Functions: MD5 Collisions Within a Minute”, Version 1, Mar. 2006, Version Apr. 2, 2006, Cryptology ePrint Archive, 17 pgs. |
Korean Notice of Preliminary Rejection mailed Jan. 21, 2011, Application No. 2007-0080691, 4 pgs. |
Korean Notice of Rejection mailed Nov. 17, 2006 in Application No. 10-2005-0124340, 5 pgs. |
Krawczyk, “HMAC: Keyed-Hashing for Message Authentication”, RFC-2104, Feb. 1997, http://www.jetf.org/rfc/rfc2104.txt, 10 pgs. |
Leach et al., CIFS Logon and Pass Through Authentication Preliminary Draft [online], Jan. 3, 1997, 22 pgs. |
Leach et al., CIFS/E Browser Protocol Preliminary Draft [online], Jan. 10, 1997, 33 pgs. |
Leach et al., draft-leach-cifs-print-spec-00.txt, CFIS Printing Specification Preliminary Draft [online], Jan. 31, 1997; 30 pgs. |
Leach et al., draft-leach-cifs-rap-spec-00.txt, CFIS Remote Administration Protocol Preliminary Draft [online], Feb. 26, 1997; 39 pgs. |
Leach, P. et a., “A Common Internet File System (CIFS/1.0) Protocol Preliminary Draft”, draft-leach-cifs-v1-spec-02, Mar. 13, 1997, http://microsoft.com/mscorp/ip/protocols/BSTD/CIFS; 160 pgs. |
Leach, P., Naik, D., A Common Internet File System (CIFS/1.0) Protocol Preliminary Draft [online], Dec. 19, 1997. Retrieved from: http://tools.ietf.org/html/draft-leach-cifs-v1-spec-01; 132 pgs. |
LeGrow, “Maintenance—MSRPC Update (Version 11) and SMB Update (Version 3)”; cfr-users mailing list; http://list.nfr.com/mailman/listingfo/nfr-users; May 20, 2004; 2 pgs. |
Linn, “Generic Security Service Application Program Interface, Version 2, Update 1”, RFC 2743, Jan. 2000, http://www.ieft.org/rfc/rfc2743.txt, 90 pgs. |
Loafman, Zach, “SMB1/SMB2; A BSD Perspective”, retrieved Mar. 22, 2011, 35 pgs. |
Maiworm, Daniel, “Symantec Enterprise Vault”, Retrieved at http://www.cstl.com/products/Symantec/Symantec- Enterprise—Vault/File System Archiving.pdf, Feb. 5, 2007, pp. 35. |
Microsoft Computer Dictionary, Microsoft Press, Fifth Edition, 2002, p. 486. |
Morris, “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, vol. 29, No. 3, Mar. 1986, New York, 20 pgs. |
MS-SMB2—Preview: Server Message Block (SMB) Version 2 Protocol Specification, copyright 2010 Microsoft Corporation, 309 pgs. |
Mullender, “A Distributed File Service Based on Optimistic Concurrency Control”, Proceedings of the Tenth ACM Symposium on Operating Systems Principles, Dec. 1-4, 1985, Orcas Island, WA, 14 pgs. |
Murphy, Origins and Development of TOPS-20 [online], © 1989, 1996, [Retrieved Aug. 9, 2007], Retrieved from: http://www.opost.com/dlm/tenex/hbook.html; 28 pgs. |
National Bureau of Standards, Computer Data Authentication, Federal Information Processing Standards Publication 113, May 30, 1985; 9 pgs. |
NTFS Design Goals and Features, Retrieved at http://wininternals.uw.hu/ch12Iev1sec4.html, Retrieved Date: Oct. 11, 2010, pp. 9. |
Oehme, et al.,“IBM Scale out File Services: Reinventing network-attached storage”, Retrieved at http://www-935.ibm.com/services/us/its/pdf/sofs-am-journal-final-07010B.pdf, Vol. 52 No. 4/5 July/September 200B, 10 Pages. |
Pawlowski, Brian et al. “The NFS Version 4 Protocol” (Publication date not available), 20 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2011/063618, mailed Jun. 28, 2012, 9 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/041049, mailed Jan. 17, 2013, 12 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/041703, mailed Feb. 14, 2013, 13 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/054038, mailed Feb. 20, 2013, 10 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/054039, mailed Feb. 27, 2013, 11 pgs. |
Periasamy, Anand Babu, “Next-Gen Linux File Systems: Change Is the New Constant”, retrieved Mar. 23, 2011, 4 pages. |
Platform SDK: File Systems: Microsoft SMB Protocol and CIFS Protocol Overview http://msdn.microsoft.com/ library/default.asp?url=/library/ en-us/fileio/fs/ microsoft—smb—protocol—and—cifs—protocol—overview.asp; 1 pg. |
Pranevich, “The Wonderful World of Linux 2.6”; 2005; 17 pgs. |
Rivest “The MD5 Message-Digest-Algorithm”, RFC 1321, Apr. 1992, http://www.jetf.org/rfc/rfc2104.txt, 19 pgs. |
Rubin, F., Message Authentication Using Quadratic Residues [online], Jan. 31, 1995, [Retrieved Sep. 14, 2007], Retrieved from: http://www.mastersoftware.biz/crypt002.htm; 6 pgs. |
Samba Team, The Samba Team are pleased to announce Samba1.9.18 [online], Jan. 7, 1998, [Retrieved Jan. 4, 2008], Retrieved from: http://de.samba.org/samba/history/samba1.9.18.html; 4 pgs. |
Satran et al. Internet Small Computer Systems Interface (iSCSI) [online], RFC 3720, Apr. 2004, [Retrieved Mar. 3, 2007], Retrieved from: http://www.ietf.org/rfc/rfc3720.txt?number=3720; 67 pgs. |
Satyanaryanan et al, “Scalable, Secure and Highly Available Distributed File Access”, May 1990, 12 pgs. |
Schneier, B., Applied Cryptography Protocols, Algorithm and Source Code in C Second Edition, John Wiley & Sons, Inc., © 1996; 788 pgs. |
Shepler, S. et al., “Network File System (NFS) Version 4 Protocol”, Network Working Group, Request for Comments: 3530, Apr. 2003, 275 pgs. |
Shepler, S. et al., “NFS Version 4 Protocol”, RFC 3010, Proceedings on the 2nd International System Administration and Networking Conference (SANE2000), Dec. 2000, 212 pgs. |
Shepler, S., NFS Version 4 Design Considerations [online], RFC 2624, Jun. 1999, [Retrieved Jan. 4, 2008], Retrieved from: http://tools.ietf.org/html/rfc2624; 22 pgs. |
SMB: The Server Message Block Protocol [online], 1999, Retrieved from: http://ubiqx.org/cifs/SMB.html; 143 pgs. |
SNIA, Common Internet File System (CIFS) Technical Reference [online], Mar. 1, 2002, Retrieved from: http://www.snia.org/tech—activities/CIFS/CIFS-TR-1p00—FINAL.pdf; 150 pgs. |
Soules et al., Metadata Efficiency in a Comprehensive Versioning File System, May 2002; 33 pgs. |
Srinivasan et al., Spritely NFS: Implementation and Performance of Cache-Consistency Protocols [online], May 1989, [Retrieved Jan. 4, 2008], Retrieved from: http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-89-5.pdf; 35 pgs. |
Szczerbina, “Novell's NetWare Core Protocol”, Dr. Dobb's Journal, Nov. 1993, 17 pgs. |
Talpey et al., “NFSv4 Session Extensions, draft-ietf-nfsv4-sess-01”; Internet Draft; The Internet Society; Feb. 2005; 70 pgs. |
The Java CIFS Client Library [online], [Retrieved Jul. 13, 2007], Retrieved from: http://jcifs.samba.org/, 8 pgs. |
The Open Group; Technical Standard; Protocols for X/Open PC Interworking: SMB, Version 2; http://www.opengroup.org/onlinepubs/9697999099/toc.pdf; retrieved on Sep. 1, 1992; 534 pgs. |
Tichy, W., RCS—A System for Version Control [online], Jan. 3, 1991, [Retrieved Aug. 6, 2007], Retrieved from: http://www.cs.purdue.edu/homes/trinkle/RCS/rcs.ps; 20 pgs. |
TOPS-20 [online], Wikipedia, [Retrieved Mar. 4, 2007], Retrieved from: http://en.wikipedia.org/wiki/TOPS-20; 4 pgs. |
Tridgell, “Inside Microsoft Networking”, Jun. 25, 1998, 6 pgs. |
U.S. Official Action dated Feb. 2, 2010 cited in U.S. Appl. No. 11/182,989, 18 pgs. |
U.S. Official Action dated Jan. 25, 2010 cited in U.S. Appl. No. 11/182,251, 20 pgs. |
U.S. Official Action dated Jul. 23, 2010 cited in U.S. Appl. No. 11/182,989, 17 pgs. |
U.S. Official Action dated Jul. 30, 2010 cited in U.S. Appl. No. 11/182,251, 23 pgs. |
U.S. Official Action dated Mar. 13, 2009 cited in U.S. Appl. No. 11/182,251, 20 pgs. |
U.S. Official Action dated May 14, 2009 cited in U.S. Appl. No. 11/182,989, 23 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Oct. 11, 2012, 2 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Nov. 26, 2008, 12 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Nov. 30, 2010, 17 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Nov. 4, 2011, 17 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Apr. 26, 2010, 17 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed May 30, 2012, 14 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Jun. 15, 2009, 14 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Sep. 14, 2009, 7 pgs. |
U.S. Appl. No. 11/182,251, Notice of Allowance mailed Jul. 12, 2012, 8 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Jan. 30, 2012, 24 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Nov. 6, 2008, 4 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Aug. 22, 2008, 7 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Aug. 4, 2011, 23 pgs. |
U.S. Appl. No. 12/964,749, Amendment and Response filed Apr. 29, 2013, 9 pgs. |
U.S. Appl. No. 12/964,749, Amendment and Response filed Aug. 23, 2013, 8 pgs. |
U.S. Appl. No. 12/964,749, Notice of Allowance mailed Sep. 5, 2013, 11 pgs. |
U.S. Appl. No. 12/964,749, Office Action mailed Jan. 29, 2013, 17 pgs. |
U.S. Appl. No. 12/964,749, Office Action mailed May 23, 2013, 13 pgs. |
U.S. Appl. No. 13/172,757, Amendment and Response filed Aug. 19, 2013, 14 pgs. |
U.S. Appl. No. 13/172,757, Office Action mailed Apr. 19, 2013, 23 pgs. |
U.S. Appl. No. 13/228,732, Office Action mailed Jul. 8, 2013, 16 pgs. |
U.S. Appl. No. 13/228,818, Office Action mailed Jul. 18, 2013, 18 pgs. |
U.S. Appl. No. 13/663,827, Advisory Action mailed Aug. 22, 2013, 3 pgs. |
U.S. Appl. No. 13/663,827, Amendment and Response filed Apr. 29, 2013, 10 pgs. |
U.S. Appl. No. 13/663,827, Amendment and Response filed Aug. 6, 2013, 7 pgs. |
U.S. Appl. No. 13/663,827, Amendment and Response filed Sep. 9, 2013, 8 pgs. |
U.S. Appl. No. 13/663,827, Notice of Allowance mailed Sep. 26, 2013, 11 pgs. |
U.S. Appl. No. 13/663,827, Office Action mailed Jan. 29, 2013, 16 pgs. |
U.S. Appl. No. 13/663,827, Office Action mailed May 7, 2013, 16 pgs. |
U.S. Appl. No. 13/664,012, Amendment and Response filed Apr. 24, 2013, 10 pgs. |
U.S. Appl. No. 13/664,012, Amendment and Response filed Jul. 30, 2013, 12 pgs. |
U.S. Appl. No. 13/664,012, Notice of Allowance mailed Sep. 12, 2013, 14 pgs. |
U.S. Appl. No. 13/664,012, Office Action mailed Jan. 25, 2013, 19 pgs. |
U.S. Appl. No. 13/664,012, Office Action mailed Apr. 30, 2013, 16 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response filed Dec. 1, 2011, 13 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response filed May 29, 2012, 11 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Oct. 19, 2009, 6 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Oct. 29, 2010, 14 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Nov. 26, 2008, 12 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed May 3, 2010, 14 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Aug. 14, 2009, 11 pgs. |
U.S. Appl. No. 11/182,989, Notice of Allowance mailed Jun. 21, 2012, 5 pgs. |
U.S. Appl. No. 11/182,989, Office Action mailed Feb. 28, 2012, 20 pgs. |
U.S. Appl. No. 11/182,989, Office Action mailed Sep. 1, 2011, 19 pgs. |
U.S. Appl. No. 11/182,989, Office Action mailed Sep. 5, 2008, 6 pgs. |
Vanwasi, “Unleashing the power of P2P”; Network Magazine India; Apr. 2002; 5 pgs. |
Zhu, “The Simple and Protected Generic Security Service Application Program Interface (GSS-API) Negotiation Mechanism”, RFC-4178, Oct. 2005, http://www.ietf.org/rfc/rfc4178.txt, 20 pgs. |
U.S. Appl. No. 13/228,818, Amendment and Response filed Oct. 18, 2013, 24 pgs. |
Chinese 1st Office Action in Application 201110329007.4, mailed Oct. 10, 2013, 13 pgs. |
U.S. Appl. No. 13/228,732, Amendment and Response filed Nov. 8, 2013, 15 pgs. |
U.S. Appl. No. 13/228,818, Amendment and Response filed Nov. 25, 2013, 28 pgs. |
U.S. Appl. No. 13/172,757, Office Action mailed Dec. 6, 2013, 27 pgs. |
U.S. Appl. No. 12/964,749, Notice of Allowance mailed Nov. 15, 2013, 2 pgs. |
U.S. Appl. No. 13/663,827, Notice of Allowance mailed Jan. 13, 2014, 10 pgs. |
U.S. Appl. No. 13/664,012, Notice of Allowance mailed Dec. 24, 2013, 11 pgs. |
U.S. Appl. No. 13/174,271, Office Action mailed Jan. 10, 2014, 17 pgs. |
U.S. Appl. No. 13/228,732, Notice of Allowance mailed Mar. 4, 2014, 17 pgs. |
U.S. Appl. No. 13/172,757, Amendment and Response filed Mar. 6, 2014, 16 pgs. |
U.S. Appl. No. 13/664,012, Amendment and Response filed Mar. 19, 2014, 7 pgs. |
U.S. Appl. No. 13/228,818, Office Action mailed Mar. 14, 2014, 18 pgs. |
European Intention to Grant in Application 10013021.0, mailed Jan. 28, 2014, 7 pgs. |
U.S. Appl. No. 13/174,271, Amendment and Response filed Apr. 10, 2014, 10 pgs. |
U.S. Appl. No. 13/663,827, Notice of Allowance mailed Apr. 25, 2014, 10 pgs. |
Chinese 1st Office Action in Application 201110462797.3, mailed Apr. 16, 2014, 11 pgs. |
U.S. Appl. No. 13/664,012, Notice of Allowance mailed May 20, 2014, 13 pgs. |
U.S. Appl. No. 13/174,271, Notice of Allowance mailed May 29, 2014, 10 pgs. |
U.S. Appl. No. 13/228,818, Amendment and Response filed Jun. 16, 2014, 15 pgs. |
Chinese 2nd Office Action in Application 201110329007.4, mailed Jun. 12, 2014, 8 pgs. |
U.S. Appl. No. 13/228,732, Amendment after Allowance filed Jun. 4, 2014, 7 pgs. |
U.S. Appl. No. 13/228,732, USPTO response to Amendment after Allowance mailed Jun. 27, 2014, 2 pgs. |
U.S. Appl. No. 13/174,271, Notice of Allowance mailed Aug. 8, 2014, 2 pgs. |
U.S. Appl. No. 13/228,818, Office Action mailed Aug. 15, 2014, 17 pgs. |
Chinese 2nd Office Action in Application 201110462797.3, mailed Sep. 24, 2014, 6 pgs. |
Chinese 1st Office Action in Application 201210331041.X, mailed Sep. 3, 2014, 14 pgs. |
New Zealand Examination Report in Application 622122, mailed Aug. 28, 2014, 2 pgs. |
U.S. Appl. No. 13/174,271, Supplemental Notice of Allowance mailed Sep. 8, 2014, 2 pgs. |
U.S. Appl. No. 13/228,818, Amendment and Response filed Nov. 17, 2014, 14 pgs. |
Chinese 2nd Office Action in Application 201210331041.X, mailed Mar. 9, 2015, 10 pgs. |
European Communication and partial Search Report in Application 12830847.5, mailed Mar. 18, 2015, 6 pgs. |
European Communication in Application 12829430.3, mailed Mar. 3, 2015, 1 page. |
U.S. Appl. No. 14/473,488, Notice of Allowance mailed Apr. 16, 2015, 2 pgs. |
U.S. Appl. No. 13/228,818, Office Action mailed Mar. 25, 2015, 18 pgs. |
U.S. Appl. No. 13/172,757, Office Action mailed Apr. 10, 2015, 34 pgs. |
Chinese Notice of Allowance in Application 201110462797.3, mailed Mar. 3, 2015, 4 pgs. |
U.S. Appl. No. 13/946,550, Office Action mailed Sep. 23, 2015, 24 pgs. |
European Notice of Allowance in Application 11846483.3, mailed Aug. 11, 2015, 7 pgs. |
European Office Action in Application 12829430.3, mailed Oct. 6, 2015, 4 pgs. |
Indian Office Action in Patent Application No. 3306/DEL/2005, mailed Aug. 10, 2015, 2 pages. |
U.S. Appl. No. 13/172,757, Notice of Allowance mailed Nov. 12, 2015, 11 pgs. |
Japanese Office Action in Application 2013-543293, mailed Nov. 4, 2015, 15 pgs. |
Chinese Notice of Allowance in Application 201210434813.2, mailed Oct. 10, 2015, 4 pgs. |
U.S. Appl. No. 14/720,083, Amendment and Response filed Sep. 16, 2015, 12 pgs. |
European Search Report in Application 12805065.5, mailed Jun. 1, 2015, 9 pgs. |
Sapuntzakis, C. et al., Internet Draft: “TCP RDMA option”; Available at: draft-csapuntz-tcprdma-00.txt, Feb. 1, 2000, 20 pgs. |
Defense Advanced Research Projects Agency, by Information Sciences Institute Univ. of So. CA., “Internet Protocol—DARPA Internet Program Protocol Specification”; Available at: https://www.rfc-editor.org/rfc/rfc791.txt, Sep. 1, 1981, 52 pgs. |
Recio, R. et al., “A Remote Direct Memory Access Protocol Specification”, Network Working Group Request for Comments: 5040, Available at: https://tools.ietf.org/html/rfc5040, Oct. 1, 2007, 66 pgs. |
European Partial Search Report in Application 12804233.0, mailed May 7, 2015, 7 pgs. |
South African Notice of Allowance in Application 2014/01381, mailed May 5, 2015, 1 page. |
U.S. Appl. No. 13/172,757, Amendment and Response filed Jul. 10, 2015, 17 pgs. |
European extended Search Report in Application 12804233.0, mailed Jul. 15, 2015, 18 pgs. |
European extended Search Report in Application 12830847.5, mailed Jul. 7, 2015, 11 pgs. |
European Communication in Application 12830847.5, mailed Jul. 24, 2015, 1 page. |
European Communication in Application 12805065.5, mailed Jun. 18, 2015, 1 page. |
U.S. Appl. No. 14/720,083, Office Action mailed Jul. 1, 2015, 28 pgs. |
European Communication in Application 12804233.0, mailed Jul. 31, 2015, 1 page. |
Australian Office Action in Application 2012275906, mailed Jan. 11, 2016, 3 pgs. |
Chinese 4th Office Action in Application 201210331041.X, mailed Jan. 20, 2016, 10 pgs. |
Chinese 3rd Office Action in Application 201210330725.8, mailed Jan. 20, 2016, 11 pgs. |
Israeli Communication in Application 231373, mailed Dec. 28, 2015, 3 pgs. |
Singapore Notice of Allowance and Supplemental Examination Report in Application 11201400442S , mailed Jan. 26, 2016, 4 pgs. |
U.S. Appl. No. 13/946,550, Amendment and Response filed Dec. 23, 2015, 10 pgs. |
U.S. Appl. No. 14/720,083, Notice of Allowance mailed Dec. 22, 2015, 8 pgs. |
U.S. Appl. No. 14/720,083, Notice of Allowance mailed Jan. 11, 2016, 2 pgs. |
U.S. Appl. No. 13/172,757, Notice of Allowance mailed Jan. 21, 2016, 2 pgs. |
U.S. Appl. No. 13/172,757, Notice of Allowance mailed Mar. 31, 2016, 2 pgs. |
U.S. Appl. No. 13/946,550, Notice of Allowance mailed Apr. 26, 2016, 12 pgs. |
U.S. Appl. No. 14/720,083, Notice of Allowance mailed Apr. 1, 2016, 2 pgs. |
Chinese 2nd Office Action in Application 201280032558.7, mailed Mar. 28, 2016, 6 pgs. |
Australian Office Action in Application 2011338485, mailed Mar. 18, 2016, 2 pgs. |
Russian Notice of Allowance in Application 2013126471, mailed Feb. 29, 2016, 18 pgs. |
European Notice of Allowance in Application 12804233.0, mailed Apr. 7, 2016. 7 pgs. |
Japanese office Action in Application 2014-518599, mailed Apr. 14, 2016, 7 pgs. |
Russian Notice of Allowance in Application 2013158710, mailed Apr. 5, 2016, 16 pgs. |
European Notice of Allowance in Application 05111729.9, mailed Mar. 23, 2016, 7 pgs. |
European Notice of Allowance in Application 10012923.8, mailed Apr. 5, 2016, 7 pgs. |
European Notice of Allowance in Application 12829430.3, mailed Apr. 29, 2016, 7 pgs. |
Russian Notice of Allowance in Application 2014108995, mailed Apr. 1, 2016, 13 pgs. |
Australian Notice of Allowance in Application 2012275906, mailed May 24, 2016, 2 pages. |
Japanese Office Action in Application 2014-529876, mailed May 24, 2016, 8 pages. |
Isreal Office Action in Application 231373, mailed Jun. 21, 2016, 2 pages. |
European Extended Search Report in Application 16159584.8, mailed Jul. 5, 2016, 11 pgs. |
Chinese Notice of Allowance in Application 201210330725.8, mailed Jul. 13, 2016, 4 pgs. |
Japanese Office Action in Application 2013-543293, mailed Aug. 2, 2016, 12 pgs. |
Japanese Office Action in Application 2014-529877, mailed Jul. 19, 2016, 11 pgs. |
Australian Office Action in Application 2012304549, mailed Aug. 12, 2016, 3 pgs. |
Australian Notice of Allowance in Application 2011338485, mailed Jul. 11, 201, 2 pgs. |
U.S. Appl. No. 13/946,550, Notice of Allowance mailed Jun. 3, 2016, 2 pages. |
U.S. Appl. No. 13/946,550, Amendment and Response filed Jun. 28, 2016, 146 pgs. |
U.S. Appl. No. 13/946,550, USPTO Response, mailed Jul. 1, 2016, 2 pgs. |
U.S. Appl. No. 13/946,550, Notice of Allowance mailed Aug. 3, 2016, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20140372521 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13174271 | Jun 2011 | US |
Child | 14475081 | US |