Transparent liquid crystal display on display case

Information

  • Patent Grant
  • 10417943
  • Patent Number
    10,417,943
  • Date Filed
    Monday, January 29, 2018
    6 years ago
  • Date Issued
    Tuesday, September 17, 2019
    5 years ago
Abstract
A point-of-sale advertising system for use with a display case having a front glass sheet positioned in front of a cavity for accepting goods, the system containing a transparent LCD positioned behind the front glass sheet, and a plurality of LEDs positioned adjacent to one pair of opposing edges of the LCD and arranged so that light which is emitted from the LEDs is directed backwards towards the cavity. Further embodiments may also contain a door assembly and frame surrounding the front glass sheet and LCD, a switch positioned to determine when the door assembly is open or closed, and electrical circuitry adapted to turn off the LEDs when the door is open and turn on the LEDs when the door is closed.
Description
TECHNICAL FIELD

Embodiments generally relate to a transparent liquid crystal display (LCD) positioned adjacent to the display glass in a display case. Embodiments include a system and method for backlighting the LCD as well.


BACKGROUND OF THE ART

Display cases are used in a number of different retail establishments for illustrating the products that are available for sale. In some instances these display cases may be coolers or freezers which are placed in grocery stores, convenience stores, gas stations, restaurants, or other retail establishments. In other instances these display cases may be non-refrigerated transparent containers used in a jewelry or watch store, bakery, deli, antique shop, sporting goods store, electronics store, or other retail establishments. While the design and appearance of the product itself does provide some point-of-sale (POS) advertising, it has been found that additional advertising at the POS can increase the awareness of a product and in turn create additional sales.


Most retail establishments already contain some POS advertising, and depending on the type of establishment the proprietor may want to limit the amount of ‘clutter’ in the retail area—resulting in a very limited space for additional POS advertising. It has now become desirable to utilize the transparent glass that is typically placed in display cases with additional POS advertising. Most notably, it has been considered that transparent LCDs may be positioned along with the transparent glass and could display additional advertising materials while still allowing a patron to view the products inside the display case.


SUMMARY OF THE EXEMPLARY EMBODIMENTS

One exemplary embodiment provides a transparent LCD within the door of a display case. The LCD may be sandwiched between a pair of glass substrates. A plurality of LEDs may be positioned within the door assembly to provide additional illumination of the interior of the display case, reflecting and refracting off the products within the display case, effectively creating a backlight for the transparent LCD. The assembly may contain a switch so that an electronic controlling unit can detect when the door is open or closed. When closed, the LEDs are illuminated. When open, the LEDs are preferably off, but may be simply reduced in power. In some embodiments the LEDs may remain on even when the door is opened.


Another exemplary embodiment provides a transparent LCD within the front glass assembly of a display case. In these embodiments, the LEDs may remain on whenever the LCD is displaying an image. Here, the LCD may be positioned behind a front glass. In any of the embodiments, the video data for the LCD may be provided by CAT-V cable. Also in any of the embodiments, the LEDs may be positioned along opposing edges of the assembly or along all edges of the assembly.


The foregoing and other features and advantages of the present invention will be apparent from the following more detailed description of the particular embodiments, as illustrated in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of an exemplary embodiment will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:



FIG. 1 is a perspective illustration of a display case containing an exemplary embodiment of the transparent LCD.



FIG. 2 is a sectional view showing the interior of the display case shown in FIG. 1.



FIG. 3 is a rear elevation view of the door assembly from the embodiment shown in FIG. 1.



FIG. 4 is a logic flow chart showing one embodiment for controlling the LED lighting for the transparent LCD.



FIG. 5A is an illustration of an embodiment of the transparent LCD used with a vending machine.



FIG. 5B is an illustration of an embodiment of the transparent LCD built within the counter of a general retail establishment.



FIG. 5C is an illustration of an embodiment of the transparent LCD used with a bakery display case.



FIG. 6 is a side elevation view of an exemplary front glass assembly.



FIG. 7 is a rear elevation view of an exemplary front glass assembly.





DETAILED DESCRIPTION

The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Embodiments of the invention are described herein with reference to illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.



FIG. 1 is a perspective illustration of a display case 100 containing an exemplary embodiment of the transparent LCD 90 and 91. The display case 100 typically contains a plurality of products 57 which are offered for sale. As shown in the figure, transparent LCD 90 is displaying an advertising graphic while transparent LCD 91 is clear, showing a view similar to a traditional display case. The front portion of the door assembly 60 may be described in two parts. The first is a transparent portion 55 which contains the LCD 90. The second is a masked portion 50 which may allow room for various electrical components to run the LCD and backlighting. The section line 2-2 is shown as a vertical line, which cuts horizontally through the display case 100.



FIG. 2 is a sectional view showing the interior of the display case 100 shown in FIG. 1. Again, various products 57 are shown within the interior of the display case 100. The transparent LCD 91 is preferably sandwiched between two pieces of glass, a front glass 190 and a rear glass 191. As known in the art, a transparent LCD typically contains the core elements of a traditional LCD (front/rear polarizers, electrical controlling layer/TFT array, and color glass) with the notable lack of a traditional direct backlight. These LCDs are typically ‘normal white’ such that when zero volts are applied, the cells are substantially transparent, and as the voltage increases, the cells darken.


A switch 180 is preferably positioned so that it can sense whether the door assembly 60 has been opened. The switch 180 may be attached to the rear portion of the door assembly 60 or to the door jamb 175. The switch 180 may be any one of the following: push button, push to make, push to break, or any electrical component that can break an electrical circuit. The operation of the switch 180 is described more fully below.


As known in the art, LCDs act as a light filter and thus require light to pass through the device in order to create an image. Here, to increase the luminance through the LCD 91, a plurality of LEDs 126 have been positioned along the top of the door assembly 60 along with another plurality of LEDs 125 which are positioned along the bottom of the door assembly 60. While both sets 125 and 126 are not required, it has been found that utilizing both top and bottom LEDs 125 and 126 results in the greatest luminance and uniformity of the light. The LEDs 125 and 126 may be positioned adjacent to the LCD 91 and between the front glass 190 and rear glass 191. Further, the LEDs 125 and 126 may be placed behind the masking portion 50 of the door assembly 60 so that the LEDs are not visible to a patron.


An optional light diffusing element may be positioned between the LEDs 125 and 126 and the products 57. However, as shown in the figure, the light from the LEDs 125 and 126 may be permitted to bounce and scatter off various surfaces within the interior of the display case 100. Most notably, the light from the LEDs 125 and 126 may bounce/scatter off the products 57, both increasing the visibility of the products 57 as well as increasing the uniformity of the light emitted through the LCD 91. The light from the LEDs 125 and 126 may also bounce/scatter off the interior surfaces of the display case. The LEDs 125 and 126 are generally positioned so that the primary direction of emitted light is towards the interior cavity of the display case 100.



FIG. 3 is a rear elevation view of the door assembly from the embodiment shown in FIG. 1. The masking portion 50 is shown surrounding the LCD 91. Several electronic components may be positioned behind the masking portion 50. A first power supply 325 may be in electrical communication with the LEDs 125, which are preferably positioned along the bottom edge of the door assembly 60 and below the LCD 91. A second power supply 326 may be in electrical communication with the LEDs 126, which are preferably positioned along the top edge of the door assembly 60 and above the LCD 91. In other embodiments, the LEDs may be positioned along the vertical edges (i.e. left and right) of the door assembly 60 rather than the horizontal edges (i.e. top and bottom). In still further embodiments, the LEDs may be position along all of the edges of the door assembly (i.e. top, bottom, left, and right).


In some embodiments, a single power source may be placed in electrical communication with both sets of LEDs 125 and 126. If two power supplies 325 and 326 are used, they are preferably each in electrical communication with an electrical processor unit 300, which may be used to direct the amount of power to be sent to each set of LEDs. Even if two power supplies are not used, the sole power supply may preferably be in electrical communication with the electrical processor unit 300. Additionally, the switch 180 is preferably in electrical communication with the electrical processor unit 300. The electrical processor unit 300 may comprise any one of the following: EPROM, EEPROM, microprocessor, RAM, CPU, or any form of software driver capable of reading electrical signals from the switch 180 and controlling the power sent to the LEDs. The timing and control board (TCON) for the LCD 91 may be contained within the electrical processor unit 300 and thus is preferably in electrical communication with the LCD 91.


A power input 350 may also be in electrical communication with the electrical processor unit 300. The power from power input 350 may then be sent to the power supplies 325 and 326 or the power may be distributed directly from the power input 350 to the power supplies 325 and 326 without going through the electrical processor unit 300. A video signal input 375 may also be in electrical communication with the electrical processor unit 300. In an exemplary embodiment, the video signal input 375 would comprise a CAT-V cable. In other embodiments, the video signal input may instead comprise a wireless receiver.



FIG. 4 is a logic flow chart showing one embodiment for controlling the LED lighting for the transparent LCD 91. In some embodiments, this logic may provide at least a portion of the software for the electrical processor unit 300. Once the software has started, the system would preferably read the data from the switch 180 to determine if the door is open or closed. If the door is closed, the LEDs are preferably turned on, to increase the luminance through the LCD as well as the appearance of the products. If the door is open, the LEDs are preferably turned off, so that a patron is not subject to the bright illumination of the LEDs. Of course, there should still be illumination within the interior of the display case, sometimes provided by traditional fluorescent lighting. Whether the door is currently open or closed, the system should return to re-read the data from the sensor 180 to determine if the door's status has changed since the last check. This ‘loop’ is preferably run almost constantly, so that changes in the door's status can be almost instantaneously accounted for.



FIG. 5A is an illustration of an embodiment of the transparent LCD 450 used with a vending machine 400. FIG. 5B is an illustration of an embodiment of the transparent LCD 450 built within the counter 500 of a general retail establishment. FIG. 5C is an illustration of an embodiment of the transparent LCD 450 used with a bakery display case 600. In contrast to the embodiments described above, these embodiments do not contain a door or door assembly, but rather a front glass assembly 700.



FIG. 6 is a side elevation view of an exemplary front glass assembly 700. In this embodiment, the LCD 450 is placed behind a front glass 455 and the LEDs 475/476 are positioned along the vertical edges of the front glass assembly 700. Preferably, the LEDs 475/476 are positioned behind the masking portion 50.



FIG. 7 is a rear elevation view of an exemplary front glass assembly 700. In this embodiment, a first set of LEDs 475 are positioned along the left vertical edge of the front glass assembly 700 and a second set of LEDs 476 are positioned along the right vertical edge of the front glass assembly 700. A single power source 480 is in electrical communication with both sets of LEDs 475 and 476. An electrical processor unit 715 is also preferably in electrical communication with the power source 480 as well as the LCD 450.


A power input 350 may also be in electrical communication with the electrical processor unit 715. The power from power input 350 may then be sent to the power supply 480 or the power may be distributed directly from the power input 350 to the power supply 480 without going through the electrical processor unit 715. A video signal input 375 may also be in electrical communication with the electrical processor unit 715. In an exemplary embodiment, the video signal input 375 would comprise a CAT-V cable. In other embodiments, the video signal input may instead comprise a wireless receiver.


Having shown and described a preferred embodiment of the invention, those skilled in the art will realize that many variations and modifications may be made to affect the described invention and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. A display case comprising: a housing that defines a cavity that is adapted to receive goods;a front glass substrate positioned over said cavity;a transparent LCD adapted to produce an image such that an individual may see through said LCD into said cavity, said LCD having a first pair of opposing edges; anda plurality of LEDs adapted to provide lighting for said LCD, said LEDs positioned adjacent to at least one of said first pair of opposing edges of said LCD.
  • 2. The display case of claim 1 wherein said LEDs are configured such that light which is emitted from said LEDs is directed backward toward said cavity.
  • 3. The display case of claim 2 wherein said LEDs are configured such that light which is emitted from said LEDs is primarily directed backward toward said cavity.
  • 4. The display case of claim 2 wherein said LEDs are configured such that light which is emitted from said LEDs is adapted to reflect back toward said LCD to create a backlight for said LCD.
  • 5. The display case of claim 1 wherein: a first set of said LEDs is positioned adjacent to a first one of said opposing edges of said LCD; anda second set of said LEDs is positioned adjacent to a second one of said opposing edges of said LCD.
  • 6. The display case of claim 5 wherein: said LCD has a second pair of opposing edges; andsaid first pair of opposing edges is longer than said second pair of opposing edges.
  • 7. The display case of claim 5 wherein: said LCD has a second pair of opposing edges; andsaid first pair of opposing edges is shorter than said second pair of opposing edges.
  • 8. The display case of claim 5 wherein: said LCD has a second pair of opposing edges;a third set of said LEDs is positioned adjacent to a first one of said opposing edges of said second pair; anda fourth set of said LEDs is positioned adjacent to a second one of said opposing edges of said second pair.
  • 9. The display case of claim 1 wherein said first pair of opposing edges are vertical edges of said LCD.
  • 10. The display case of claim 1 wherein said first pair of opposing edges are horizontal edges of said LCD.
  • 11. The display case of claim 1 further comprising a rear glass substrate positioned over said cavity such that said LCD is positioned between said rear glass substrate and said front glass substrate.
  • 12. The display case of claim 1 wherein said LEDs are in line with said at least one of said first pair of opposing edges of said LCD.
  • 13. The display case of claim 1 wherein said LEDs are planar with said LCD.
  • 14. The display case of claim 1 wherein said LEDs abut said at least one of said first pair of opposing edges of said LCD.
  • 15. The display case of claim 1 further comprising a door assembly comprising said front glass substrate and said LCD.
  • 16. The display case of claim 15 further comprising: a switch positioned to determine when said door assembly is open or closed; andelectrical circuitry in communication with said switch, said electrical circuitry adapted to turn off said LEDs when said door assembly is open and turn on said LEDs when said door assembly is closed.
  • 17. The display case of claim 1 further comprising: masking around a portion of said front glass substrate;wherein said LEDs are positioned behind said masking.
  • 18. The display case of claim 17 further comprising: a power supply in electrical communication with said LEDs;wherein said power supply is positioned behind said masking.
  • 19. The display case of any of claims 1 to 18 wherein said display case is of a type selected from coolers and freezers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/649,764, filed Oct. 11, 2012, which claims priority to U.S. Provisional Application No. 61/546,809, filed Oct. 13, 2011, each of which is hereby incorporated by reference in its entirety.

US Referenced Citations (141)
Number Name Date Kind
3629972 Rehberg et al. Dec 1971 A
4040726 Paca Aug 1977 A
4299092 Ibrahim Nov 1981 A
4371870 Biferno Feb 1983 A
4853678 Bishop, Jr. et al. Aug 1989 A
4950344 Glover et al. Aug 1990 A
7413233 Jung Aug 2008 B1
7455412 Rottcher Nov 2008 B2
7513637 Kelly et al. Apr 2009 B2
7922381 Han et al. Apr 2011 B2
8254121 Lee et al. Aug 2012 B2
8417376 Smolen Apr 2013 B1
8578081 Fils Nov 2013 B1
8683745 Artwohl et al. Apr 2014 B2
8982013 Sako et al. Mar 2015 B2
8988635 Dunn et al. Mar 2015 B2
9052536 Artwohl et al. Jun 2015 B2
9155405 Artwohl et al. Oct 2015 B2
9173509 Mischel, Jr. et al. Nov 2015 B2
9500801 Dunn Nov 2016 B2
9500896 Dunn et al. Nov 2016 B2
9514661 Riegel Dec 2016 B2
9519185 Dunn et al. Dec 2016 B2
9526352 Dunn et al. Dec 2016 B2
9535293 Dunn Jan 2017 B2
9633366 Dunn Apr 2017 B2
9661939 Dunn et al. May 2017 B2
9684124 Dunn Jun 2017 B2
9733420 Dunn et al. Aug 2017 B2
9832847 Dunn et al. Nov 2017 B2
9881528 Dunn Jan 2018 B2
9983427 Dunn May 2018 B2
10052026 Tran Aug 2018 B1
20020064037 Lee May 2002 A1
20020075552 Poll et al. Jun 2002 A1
20020187575 Maruyama et al. Dec 2002 A1
20030062813 Cording Apr 2003 A1
20030117790 Lee et al. Jun 2003 A1
20030139169 Arreazola, Jr. Jul 2003 A1
20040148055 Shoenfeld Jul 2004 A1
20040160388 O'Keeffe Aug 2004 A1
20050195972 Barr Sep 2005 A1
20050265019 Sommers et al. Dec 2005 A1
20060012985 Archie, Jr. et al. Jan 2006 A1
20060215958 Yeo et al. Sep 2006 A1
20060284788 Robinson et al. Dec 2006 A1
20070151274 Roche et al. Jul 2007 A1
20070171647 Artwohl et al. Jul 2007 A1
20070195535 Artwohl et al. Aug 2007 A1
20070214812 Wagner et al. Sep 2007 A1
20080024047 Juo et al. Jan 2008 A1
20080042554 Komoto Feb 2008 A1
20080055534 Kawano Mar 2008 A1
20080094854 Coleman et al. Apr 2008 A1
20080284942 Mahama et al. Nov 2008 A1
20080295033 Lee et al. Nov 2008 A1
20090002990 Becker et al. Jan 2009 A1
20090015400 Breed Jan 2009 A1
20090097227 Kim et al. Apr 2009 A1
20090121970 Ozbek May 2009 A1
20090225519 Mischel, Jr. et al. Sep 2009 A1
20090244884 Trulaske, Sr. Oct 2009 A1
20090278766 Sako et al. Nov 2009 A1
20090300953 Frisch et al. Dec 2009 A1
20100026912 Ho Feb 2010 A1
20100058628 Reid et al. Mar 2010 A1
20100162747 Hamel et al. Jul 2010 A1
20100238394 Dunn Sep 2010 A1
20100275477 Kim Nov 2010 A1
20100293827 Suss et al. Nov 2010 A1
20100309687 Sampsell et al. Dec 2010 A1
20110056102 Reid et al. Mar 2011 A1
20110083460 Thomas et al. Apr 2011 A1
20110116000 Dunn et al. May 2011 A1
20110116231 Dunn et al. May 2011 A1
20110261282 Jean et al. Oct 2011 A1
20120020560 Zarubinsky Jan 2012 A1
20120105424 Lee et al. May 2012 A1
20120105428 Fleck et al. May 2012 A1
20120206500 Koprowski et al. Aug 2012 A1
20120206941 He Aug 2012 A1
20120275477 Berendt et al. Nov 2012 A1
20120285089 Artwohl et al. Nov 2012 A1
20120287368 Que et al. Nov 2012 A1
20120287379 Koike Nov 2012 A1
20130016296 Fujita et al. Jan 2013 A1
20130063326 Riegel Mar 2013 A1
20130063676 Tsuchihashi et al. Mar 2013 A1
20130120815 Aspnes et al. May 2013 A1
20130151006 Garson et al. Jun 2013 A1
20130158703 Lin et al. Jun 2013 A1
20130208447 Maslen Aug 2013 A1
20130211583 Borra Aug 2013 A1
20130265525 Dunn et al. Oct 2013 A1
20130271674 Liu et al. Oct 2013 A1
20130271696 Dunn Oct 2013 A1
20140062316 Tischler et al. Mar 2014 A1
20140078407 Green et al. Mar 2014 A1
20140085564 Hendren et al. Mar 2014 A1
20140104538 Park et al. Apr 2014 A1
20140137065 Feng et al. May 2014 A1
20140144083 Artwohl et al. May 2014 A1
20140204452 Branson Jul 2014 A1
20140285732 Tanabe et al. Sep 2014 A1
20140300979 Tomida et al. Oct 2014 A1
20140333541 Lee et al. Nov 2014 A1
20150035432 Kendall et al. Feb 2015 A1
20150172385 Kuroyama et al. Jun 2015 A1
20150177480 Bullock et al. Jun 2015 A1
20150250021 Stice et al. Sep 2015 A1
20150253612 Hasegawa et al. Sep 2015 A1
20150300628 Dunn et al. Oct 2015 A1
20150309263 Abovitz et al. Oct 2015 A2
20150338715 Schaefer et al. Nov 2015 A1
20150362667 Dunn Dec 2015 A1
20150362768 Dunn Dec 2015 A1
20150362792 Dunn et al. Dec 2015 A1
20150363819 Dunn Dec 2015 A1
20150366083 Dunn et al. Dec 2015 A1
20160037657 Yoshizumi Feb 2016 A1
20160061514 Seo et al. Mar 2016 A1
20160091755 Dunn Mar 2016 A1
20160095450 Trulaske, Sr. Apr 2016 A1
20160103275 Diaz et al. Apr 2016 A1
20160106231 Dunn et al. Apr 2016 A1
20160192451 Dunn et al. Jun 2016 A1
20170010771 Bernstein et al. Jan 2017 A1
20170046991 Riegel Feb 2017 A1
20170053456 Cho et al. Feb 2017 A1
20170068042 Dunn et al. Mar 2017 A1
20170068044 Dunn Mar 2017 A1
20170099960 Dunn et al. Apr 2017 A1
20170108735 Dunn Apr 2017 A1
20170228770 Dunn Aug 2017 A1
20170256115 Diaz Sep 2017 A1
20170329078 Dunn et al. Nov 2017 A1
20180012526 Dunn et al. Jan 2018 A1
20180020847 Dunn et al. Jan 2018 A1
20180035521 Dunn et al. Feb 2018 A1
20180151097 Dunn May 2018 A1
20180368240 Dunn et al. Dec 2018 A1
Foreign Referenced Citations (23)
Number Date Country
2015277337 Dec 2015 AU
2015277337 Sep 2018 AU
2815355 May 2012 CA
101949526 Jan 2011 CN
202815379 Mar 2013 CN
3155607 Apr 2017 EP
3422907 Jan 2019 EP
2008180502 Aug 2008 JP
2008299660 Dec 2008 JP
2010171010 Aug 2010 JP
5173088 Mar 2013 JP
2017531198 Oct 2017 JP
1020040045939 Jun 2004 KR
1020110119360 Nov 2011 KR
2012004874 May 2012 KR
WO2006055873 May 2006 WO
WO2010116202 Oct 2010 WO
WO2013056109 Apr 2013 WO
WO2014006490 Jan 2014 WO
WO2015195681 Dec 2015 WO
2016021751 Feb 2016 WO
WO2017151934 Sep 2017 WO
WO2018009399 Jan 2018 WO
Non-Patent Literature Citations (3)
Entry
A. Vogler & H. Kunkley, Photochemistry and Beer, Jan. 1982, 3 pages, vol. 59, No. 1.
Dave Roos, How Transmissive Film Works, 2008, 9 Pages.
Pilkington TEC Glass, for the Refrigeration Market, 2002, 2 Pages.
Related Publications (1)
Number Date Country
20180151097 A1 May 2018 US
Provisional Applications (1)
Number Date Country
61546809 Oct 2011 US
Continuations (1)
Number Date Country
Parent 13649764 Oct 2012 US
Child 15882817 US