The present invention generally relates to electronic devices and more particularly to a transparent pressure sensor.
The market for electronic devices having displays, for example, televisions, computer monitors, cell phones, personal digital assistants (PDA's), digital cameras, and music playback devices (MP3), is very competitive. Manufactures are constantly improving their product with each model in an attempt to cut costs and production requirements.
In many electronic devices, such as portable communication devices, touch panel displays (touch screen) present information to a user and also receive input from the user. A touch screen offers intuitive inputting for a computer or other data processing devices. It is especially useful in portable communication devices where other input devices, such as a keyboard and a mouse, are not easily available.
There are many different types of touch sensing technologies, including capacitive, resistive, infrared, and surface acoustic wave. All of these technologies sense the position of touches on a screen. However, they do not respond to the pressure that is applied against the touch screen.
It has been previously been disclosed in U.S. Pat. No. 6,492,979 to use a combination of capacitive touch screen and force sensors to prevent false touch. This disclosure however complicates the sensor interface and can not sense different touch forces at the same time. It has also been proposed in U.S. Pat. No. 7,196,694 to use force sensors at the peripherals of the touch screen to determine the position of a touch. This however does not offer a capability of multi-touch. It has also been proposed in US patent publication 2007/0229464 to use a capacitive force sensor array, overlaying a display to form a touch screen. This approach offers multi-touch capability; however, a capacitive pressure sensor has limited spatial resolution. It also is subject to environmental interferences such as EMI and capacitive coupling of fingers and other input devices.
Accordingly, it is desirable to provide a transparent pressure sensor to form a force sensing touch screen. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background.
Embodiments of the present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
A transparent pressure sensing material includes a transparent matrix including, for example, at least one polymer material, and a plurality of transparent conducting particles dispersed in the transparent matrix. The polymer material may comprise, for example, phenoxy resin, polyester, silicone rubber, or polyimide. The transparent conducting particles may be, for example, indium tin oxide, zinc oxide, or tin oxide. The transparent conducting particles dispersed in the transparent matrix preferably have a dimension less than the wavelength of light in the visible range to minimize light scattering.
A transparent pressure sensor is formed by applying transparent conducting electrodes to the opposite surfaces of the piezoresistive material. When pressure is applied against the sensor, the resistance across the electrodes decreases and is measured through the electrodes. This change in resistance is then converted into pressure changes.
This piezoresistive material may be used in many types of devices, including touch screens, and any other force sensing applications which require underneath features being visible so the transparent nature of the force sensing material is desired. One example would be applications in polishing process where a transparent force sensing device can be applied to a transparent wafer. In this fashion, not only the pressure can be mapped across the wafer, the contact points between the wafer and the polishing pad can be directly observed.
There are many different types of touch sensing technologies, including capacitive, resistive, infrared, and surface acoustic wave. All of these technologies sense the position of touches on a screen. However, it is desirable to have a touch sensing device that not only senses the position of the touch, but also the force applied to the touch screen. Force sensing provides an extra dimension of freedom in inputting: it can simplify the input process by enabling different combinations of positions and forces on a touch screen. It also offers the possibility of discriminating against false touches by setting different force thresholds before a touch can register. An additional advantage is that force sensing is not limited to only finger touch as in the case of capacitive sensing, it also accept input from almost all other devices including stylus, glove, and credit cards. It is also more tolerant to environmental noises such as EMI and dirt/oil on surface.
The touch screen sensor described herein is formed on a transparent substrate, comprising glass or a polymer, for example. A layer of first patterned conductive traces are deposited over the substrate. A layer of second patterned conductive traces are deposited over the layer of first patterned conductive traces to form an array of addressable intersects (pixels). Scan and read signals are sent and received through tab connectors attached to each of the first and second patterned conductive traces. A piezoresitive material is deposited between the first and second patterned conductive traces at the intersect of each first and second conductive traces. The piezoresistive material may be a continuous layer or may be patterned to be positioned only at the intersects and preferably has a transparent elastomeric matrix, such as polyester, phenoxy resin, or silicone rubber. Transparent conductive or semiconductive particles such as indium tin oxide, zinc oxide, or tin oxide dispersed within the matrix. The dimensions of these particles are smaller than the wavelength of visible light so that scattering of light passing through the matrix is minimum.
The resistance at each intersect is controlled by the pressure applied at that intersect. Current flows through the piezoresistive material and through the particles, either directly when the particles are in contact with each other, or by tunneling when the particles are separated by a very small distance. When pressure is applied to the material, it deforms and shortens the tunneling distance between the particles as well as the conductive path of current flow, thus lowering the resistance.
By scanning the rows and columns of the conductive traces and mapping the resistance of the piezoresistive materials at each intersection, a corresponding pressure map of the touch screen may be obtained. This map provides both the position and the force of the corresponding touch. The touch screen sensor is also multitouch capable. When multiple fingers or objects are placed on the screen, each individual position and force can be distinguished, thus enabling greater freedom of inputting.
Referring to
This transparent matrix 100 may be used as a pressure sensor in many electronic applications. When pressure is applied to the transparent matrix 100 in a direction 106 (
Referring to
Transparent matrix 100 is disposed on the traces 305 as a layer or in a predetermined pattern. The transparent material 102 preferably is a transparent elastomeric matrix such as polyester, phenoxy resin, or silicone rubber. Transparent conductive or semiconductive particles 104 such as indium tin oxide, zinc oxide, or tin oxide dispersed within the matrix 110 as discussed above.
A patterned layer 312 of transparent conductive traces 313 is deposited over the layer 308 of the transparent matrix 100. The placement of the transparent conductive traces 313 creates a plurality of intersections, each including one of the transparent conductive traces 313, the transparent matrix 100 and the transparent conductive traces 305 (
When pressure is applied to the transparent matrix 100 by applying pressure to the layer 314, the matrix 100 is compressed, reducing the distance between adjacent particles 104 as well as the conductive path, thereby lowering the resistance between conductive traces 305 and 313. Current flows through the matrix 100 and through the particles 104, either directly when the particles 104 are in contact with each other, or by tunneling through the matrix 100 when the particles 104 are separated by a very small distance.
By being able to sense this change in resistance due to pressure being applied to the transparent pressure sensor 300, the selection of modes, or functions, may be accomplished. This selection of modes by applying pressure may be accomplished alone or in combination with a conventional imaging device 301, for example a liquid crystal display. Those skilled in the art will appreciate that other types of imaging devices 301 may be utilized as exemplary embodiments, including, for example, transmissive, reflective or transflective liquid crystal displays, cathode ray tubes, micromirror arrays, and printed panels.
While the transparent pressure device described herein may be used in electronic devices in general, a block diagram of a force imaging system 600 as an example using the transparent pressure sensor is depicted in
A first exemplary embodiment, shown in
In a second exemplary embodiment (
In a third exemplary embodiment (
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.