Embodiments described herein generally relate to electronic devices. More particularly, the present embodiments relate to one or more transparent strain sensors in an electronic device.
Strain gauges or sensors are used to detect or measure strain on an object. Typically, the electrical resistance of a strain sensor varies in proportion to the compression and tension forces it is experiencing. The gauge factor of a strain sensor represents the sensitivity of the material to strain. In other words, the gauge factor indicates how much the resistance of the strain sensor changes with strain. The higher the gauge factor, the larger the change in resistance. Higher gauge factors allow a greater range of strain to be detected and measured.
In some situations, it is desirable for the strain sensors to be made of a transparent material. For example, transparent strain sensors may be used when the strain sensors are located in an area where the strain sensors can be detected visually by a user (e.g., though a display). However, some materials that are used to form transparent strain sensors have low or zero gauge factors.
One or more transparent strain sensors can be included in an electronic device. As used herein, the term “strain sensor” refers to a strain sensitive element and the one or more strain signal lines that connect directly to the strain sensitive element. In one embodiment, the strain sensor(s) are used to detect a force that is applied to the electronic device, to a component in the electronic device, such as an input button, and/or to an input region or surface of the electronic device. In one non-limiting example, a force sensing device that includes one or more strain sensors may be incorporated into a display stack of an electronic device. The one or more strain sensors can be positioned in an area of the display stack that is visible to a user when the user is viewing the display. As such, the one or more transparent strain sensors can be formed with a transparent conductive material or two or more transparent conductive materials.
In some embodiments, each transparent strain sensitive element is formed or processed to have a first gauge factor and a first conductance. Each transparent strain signal line is formed or processed to have a different second gauge factor and a different first conductance. For example, in one embodiment the transparent material or materials that form a transparent strain sensitive element may have a higher gauge factor than the transparent material(s) of the at least one transparent strain signal line while the conductance of the transparent strain sensitive element may be less than the conductance of the transparent strain signal line(s). Thus, the transparent strain sensitive element is configured to be more sensitive to strain than the transparent strain signal line(s) and the transparent strain signal line(s) is configured to transmit signals more effectively.
In one aspect a transparent strain sensor includes a transparent strain sensitive element and a transparent strain signal line connected directly to the strain sensitive element. The transparent strain sensitive element is formed with comprised a first transparent conductive material having a first gauge factor. The transparent strain signal line is formed with a second transparent conductive material having a second gauge factor. The first gauge factor can be greater than the second gauge factor in one embodiment. Additionally or alternatively, the first transparent conductive material may have a first electrical resistance and the second transparent conductive material a second electrical resistance with the first electrical resistance being greater than the second electrical resistance. In a non-limiting example, the transparent strain sensitive element may be formed with a transparent GZO film or a transparent AZO film and the at least one transparent strain signal line is formed with a transparent ITO film.
In another aspect, a transparent strain sensor can be formed with a hybrid transparent conductive material that includes at least one first transparent conductive segment that has a first gauge factor and a first electrical resistance and at least one second transparent conductive segment that has a second gauge factor and a second electrical resistance. The first transparent conductive segment is connected to the second transparent conductive segment. The first gauge factor can be greater than the second gauge factor and the first electrical resistance greater than the second electrical resistance.
In another aspect, a transparent strain sensor can include a transparent strain sensitive element and at least one transparent strain signal line connected directly to the transparent strain sensitive element. The transparent strain sensitive element and transparent strain signal line(s) can be formed with the same a transparent conductive material or materials, but the transparent conductive material(s) in the strain sensitive element and/or in the at least one strain signal line may be doped with one or more dopants to change the gauge factor and/or the conductance of the transparent conductive material. Thus, the transparent strain sensitive element and the at least one transparent strain signal line can have different gauge factors and/or electrical conductance. In some embodiments, the gauge factor of the transparent strain sensitive element is greater than the gauge factor of the at least one strain signal line. Additionally or alternatively, the transparent strain sensitive element can have a first electrical resistance and the transparent strain signal line(s) a second overall electrical resistance where the first electrical resistance is greater than the second electrical resistance.
In yet another aspect, a method for producing a transparent strain sensor may include providing a transparent strain sensitive element on a substrate and providing a transparent strain signal line that is connected directly to the transparent strain sensitive element on the substrate. The transparent strain sensitive element is formed with one or more transparent conductive materials having a first gauge factor. The transparent strain signal line is formed with one or more transparent conductive materials having a different second gauge factor.
In another aspect, a method for producing a transparent strain sensor can include providing a transparent strain sensitive element on a substrate, where the transparent strain sensitive element comprises one or more transparent conductive materials, and providing a transparent strain signal line that is connected directly to the strain sensitive element on the substrate. The one or more transparent conductive materials of the transparent strain sensitive element is processed to increase a gauge factor of the transparent strain sensitive element. In one non-limiting example, the one or more transparent conductive materials may be can be laser annealed to increase the crystallinity of the transparent strain sensitive element, which results in a higher gauge factor. In some embodiments, the transparent strain signal line can also be formed with the same or different transparent conductive material(s), and the transparent conductive material(s) of the transparent strain signal line may be processed to increase a conductance of the transparent strain signal line.
In yet another aspect, a method for producing a transparent strain sensor may include providing a transparent strain sensitive element on a substrate and providing a transparent strain signal line that is connected directly to the strain sensitive element on the substrate. The transparent strain signal line is formed with one or more transparent conductive materials. The one or more transparent conductive materials of the transparent strain signal line can be processed to increase a conductance of the transparent strain signal line. In one non-limiting example, the one or more transparent conductive materials may be doped with a dopant or dopants that reduce the overall electrical resistance of the strain signal line, which in turn increases the conductance of the transparent strain signal line.
In yet another aspect, an electronic device can include a cover glass and a strain sensing structure positioned below the cover glass. The strain sensing structure may include a substrate, a first transparent strain sensitive element positioned on a first surface of the substrate and a second transparent strain sensitive element positioned on a second surface of the substrate. One or more transparent strain signal lines are connected to each transparent strain sensitive element. In some embodiments, the first and second transparent strain sensitive elements have a gauge factor that is greater than a gauge factor of the transparent strain signal lines. Sense circuitry is electrically connected to the transparent strain signal lines, and a controller is operably connected to the sense circuitry. The controller is configured to determine an amount of force applied to the cover glass based on the signals received from the sense circuitry. In some embodiments, the first and second transparent strain sensitive elements and the transparent strain signal lines are positioned in an area of the display stack that is visible to a user when the user is viewing the display.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
The following disclosure relates to an electronic device that includes one or more strain sensors configured to detect strain based on an amount of force applied to the electronic device, a component in the electronic device, and/or an input region of the electronic device. As one example, the one or more strain sensors can be incorporated into a display stack of an electronic device, and at least a portion of the top surface of the display screen may be an input region. In some embodiments, the one or more transparent strain sensors are located in an area of the display stack that is visible to a user when the user is viewing the display. As used herein, the term “strain sensor” includes a strain sensitive element and at least one strain signal line physically or directly connected to the strain sensitive element. Additionally, “optically transparent” and “transparent” are defined broadly to include a material that is transparent, translucent, or not visibly discernable by the human eye.
In some embodiments, each strain sensitive element is formed or processed to have a first gauge factor and a first conductance. Each strain signal line is formed or processed to have a different second gauge factor and a different first conductance. For example, in one embodiment the material or materials that form a strain sensitive element may have a higher gauge factor than the material(s) of the at least one strain signal line while the conductance of the strain sensitive element may be less than the conductance of the strain signal line(s). Thus, the strain sensitive element is configured to be more sensitive to strain than the strain signal line(s) and the strain signal line(s) is configured to transmit signals more effectively. In a non-limiting example, the strain sensitive element may be formed with a transparent GZO film or a transparent AZO film and the at least one strain signal line formed with a transparent ITO film.
In some embodiments, a gauge factor and/or a conductance of a strain sensitive element or a strain signal line can be based at least in part on the structure and/or the operating conditions of the electronic device or a component in the electronic device that includes one or more strain sensors.
In another embodiment, a strain sensitive element and/or the one or more strain signal lines connected to the strain sensitive element may be processed after the strain sensitive elements and the strain signal line(s) are formed. In a non-limiting example, the material used to form the strain sensitive element and the strain signal line(s) can be the same material or materials, and the material(s) in the strain sensitive element and/or the material(s) in the strain signal lines is processed to adjust the conductance and/or the gauge factor of the processed component. In one embodiment, the strain sensitive element can be laser annealed to increase the crystallinity of the strain sensitive element, which results in a higher gauge factor. Additionally or alternatively, the one or more strain signal lines may be doped with a dopant or dopants that reduce the overall electrical resistance of the strain signal line(s), which in turn increases the conductance of the strain signal line(s).
And in yet another embodiment, one or more parameters of the fabrication process that is used to form the strain sensitive element and/or the strain signal line(s) may be adjusted to increase the gauge factor and/or the conductance of the component. For example, in one embodiment the flow rate of oxygen can be increased when the strain sensitive element is deposited onto the substrate. The higher oxygen flow rate can reduce the carrier concentration and/or mobility of the carriers in the strain sensitive element. In another embodiment, the thickness of the material used to form the strain sensitive element and/or the strain signal line(s) may be adjusted to increase the gauge factor or the conductance of the component.
Directional terminology, such as “top”, “bottom”, “front”, “back”, “leading”, “trailing”, etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments described herein can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration only and is in no way limiting. When used in conjunction with layers of a display or device, the directional terminology is intended to be construed broadly, and therefore should not be interpreted to preclude the presence of one or more intervening layers or other intervening features or elements. Thus, a given layer that is described as being formed, positioned, disposed on or over another layer, or that is described as being formed, positioned, disposed below or under another layer may be separated from the latter layer by one or more additional layers or elements.
These and other embodiments are discussed below with reference to
The electronic device 100 includes an enclosure 102 surrounding a display 104 and one or more input/output (I/O) devices 106 (shown as button). The enclosure 102 can form an outer surface or partial outer surface for the internal components of the electronic device 100, and may at least partially surround the display 104. The enclosure 102 can be formed of one or more components operably connected together, such as a front piece and a back piece. Alternatively, the enclosure 102 can be formed of a single piece operably connected to the display 104.
The display 104 can be implemented with any suitable display, including, but not limited to, a multi-touch sensing touchscreen device that uses liquid crystal display (LCD) technology, light emitting diode (LED) technology, organic light-emitting display (OLED) technology, or organic electro luminescence (OEL) technology.
In some embodiments, the I/O device 106 can take the form of a home button, which may be a mechanical button, a soft button (e.g., a button that does not physically move but still accepts inputs), an icon or image on a display, and so on. Further, in some embodiments, the button can be integrated as part of a cover glass of the electronic device. Although not shown in
Strain sensors can be included in one or more locations of the electronic device 100. For example, in one embodiment one or more strains sensors may be included in the I/O device 106. The strain sensor(s) can be used to measure an amount of force and/or a change in force that is applied to the I/O device 106. In another embodiment, one or more strain sensors can be positioned under at least a portion of the enclosure to detect a force and/or a change in force that is applied to the enclosure. Additionally or alternatively, one or more strains sensors may be included in a display stack for the display 104. The strain sensor(s) can be used to measure an amount of force and/or a change in force that is applied to the display or to a portion of the display. As described earlier, a strain sensor includes a strain sensitive element and at least one strain signal line physically or directly connected to the strain sensitive element.
In one non-limiting example, the entire top surface of a display may be an input region that is configured to receive one or more force inputs from a user.
As discussed earlier, the strain sensitive elements 204 are configured to detect strain based on an amount of force applied to an input region of the display. The strain sensitive elements 204 may be formed with a transparent conductive material or materials such as, for example, polyethylenedioxythiophene (PEDOT), a tin doped indium oxide (ITO) film, a gallium doped zinc oxide (GZO) film, an aluminum doped zinc oxide (AZO) film, carbon nanotubes, graphene, silver nanowire, other metallic nanowires, and the like. In certain embodiments, the strain sensitive elements 204 may be selected at least in part on temperature characteristics. For example, the material selected for transparent strain sensitive elements 204 may have a negative temperature coefficient of resistance such that, as temperature increases, the electrical resistance decreases.
In this example, the transparent strain sensitive elements 204 are formed as an array of rectilinear sensing elements, although other shapes and array patterns can also be used. In many examples, each individual strain sensitive element 204 may have a selected shape and/or pattern. For example, in certain embodiments, a strain sensitive element 204 may be deposited in a serpentine pattern, such as the pattern shown in
The strain sensitive element 204 may include at least two electrodes 300, 302 that are configured to be physically or directly connected to one or more strain signal lines (not shown). The strain signal line(s) can be connected to a conductive contact 206, which operably connects the strain sensitive element 204 to sense circuitry (not shown). The conductive contact 206 may be a continuous contact or can be formed in segments that surround or partially surround the array of strain sensitive elements 204. In other embodiments, a strain sensitive element 204 may be electrically connected to sense circuitry without the use of electrodes. For example, a strain sensitive element 204 may be connected to the sense circuitry using conductive traces that are formed as part of a film layer.
Referring now to
In one embodiment, the material(s) of each strain sensitive element has a lower conductance than the conductance of the material(s) of the at least one strain signal line. For example, the material(s) of each strain sensitive element may have a higher electrical resistance than the material(s) of the at least one strain signal line. Additionally, the first gauge factor of the strain sensitive element is higher than the second gauge factor of the at least one strain signal line that is connected to the strain sensitive element. Thus, the strain sensitive element is more sensitive to strain than the strain signal line(s) and the strain signal line(s) is configured to transmit signals more effectively. In a non-limiting example, the strain sensitive element may be formed with a transparent GZO film or a transparent AZO film and the at least one strain signal line formed with a transparent ITO film.
Referring now to
The at least one strain signal line 400 is connected to the conductive contact 206. In some embodiments, the conductive contact is made of copper and is positioned in a non-visible area of an electronic device (e.g., in a non-visible area of a display). A dielectric or insulating layer 602 may be disposed over at least a portion of the at least one strain signal line 400 and the strain sensitive element 204. The insulating layer 602 may act as a protective layer for the strain signal line 400 and the strain sensitive element 204. In embodiments where the strain sensitive element and the strain signal line(s) are formed with a substantially transparent material or materials, the insulating layer 602 can be made of a material or combination of materials that has an index of refraction that substantially matches the index of refraction of the strain sensitive element 204 and/or the at least one strain signal line 400.
The strain signal line 400 that is connected to the strain sensitive element 204 can be formed with a material or combination of materials that has a conductance and a gauge factor that are different from the overall conductance and the gauge factor of the multi-layer structure of the strain sensitive element 204. As described earlier, the overall conductance of the strain sensitive element 204 may be less than the conductance of the strain signal line(s), while the gauge factor of the strain sensitive element 204 can be greater than the gauge factor of the strain signal line(s).
In the embodiments illustrated in
Referring now to
The one or more strain signal lines that are directly connected to the hybrid strain sensitive element is formed or processed to have a gauge factor and a conductance that is different from the overall gauge factor and overall conductance of the strain sensitive element. For example, the strain sensitive element has a greater overall gauge factor than the gauge factor of the at least one strain signal line. The higher overall gauge factor allows the strain sensitive element to be more sensitive to strain than the strain signal line(s). Additionally, in some embodiments the electrical conductance of the strain signal line(s) is higher than the overall conductance of the strain sensitive element. Based on the higher conductance, the strain signal line(s) can effectively transmit signals produced by the strain sensitive element to the conductive contact 206 (see
The segments 802, 804 can have the same dimensions or one segment (e.g., segment 802) can have dimensions that are different from the dimensions of the other segment (e.g., segment 804). For example, one segment can be longer than another segment, which may result in a given gauge factor and/or conductance. In some embodiments, the given gauge factor can be a gauge factor that is equal to or greater than a threshold gauge factor. The given gauge factor and/or conductance can be based at least in part on the structure and/or operating conditions of the electronic device or a component in the electronic device that includes one or more hybrid strain sensors. In one embodiment, at least two same segments (e.g., at least two segments 802) can have different dimensions. Thus, at least one segment 802 can have dimensions that differ from another segment 802 and/or at least one segment 804 can have dimensions that differ from another segment 804. In another embodiment, all of the segments can have different dimensions. And in some embodiments, the hybrid strain sensitive element 800 may be formed with three or more materials having different properties.
The embodiments of a strain sensor shown in
Next, as shown in block 1000, the strain signal line(s) are processed to increase the conductance of the one or more strain signal lines. The strain signal line(s) may be processed using any suitable technique that increases the conductance of the strain signal line(s). For example, in one embodiment the one or more strain signal lines are doped with a dopant or dopants that reduce the overall electrical resistance of the strain signal line(s), which in turn increases the conductance of the strain signal line(s). For example, the one or more dopants can be diffused into the strain signal line(s) to increase the conductance of the strain signal line(s).
In still other embodiments, one or more parameters of the fabrication process that is used to form the strain sensitive elements and/or the strain signal line(s) can be adjusted to increase the gauge factor and/or the conductance of the component.
Next, as shown in block 1102, one or more strain signal lines are formed on the substrate and connected to the strain sensitive element. One or more parameters of the fabrication process used to form the strain signal line(s) may be altered to increase the conductance of the strain signal line(s). Additionally or alternatively, the one or more strain signal lines can be processed after formation to increase the conductance of the strain signal line(s).
In some embodiments, a full sheet of a transparent conducting oxide film can be formed over and extend across the surface of a substrate (e.g., substrate 202 in
In other embodiments, two or more sheets of a transparent conducting oxide film can be formed over the surface of a substrate (e.g., substrate 202 in
Referring now to
The one or more processing devices 1202 can control some or all of the operations of the electronic device 1200. The processing device(s) 1202 can communicate, either directly or indirectly, with substantially all of the components of the device. For example, one or more system buses 1216 or other communication mechanisms can provide communication between the processing device(s) 1202, the memory 1204, the I/O device(s) 1206, the power source 1208, the one or more sensors 1210, the network communication interface 1212, and/or the display 1214. At least one processing device can be configured to determine an amount of force and/or a change in force applied to an I/O device 1206, the display, and/or the electronic device 1200 based on a signal received from one or more strain sensors.
The processing device(s) 1202 can be implemented as any electronic device capable of processing, receiving, or transmitting data or instructions. For example, the one or more processing devices 1202 can be a microprocessor, a central processing unit (CPU), an application-specific integrated circuit (ASIC), a digital signal processor (DSP), or combinations of multiple such devices. As described herein, the term “processing device” is meant to encompass a single processor or processing unit, multiple processors, multiple processing units, or other suitably configured computing element or elements.
The memory 1204 can store electronic data that can be used by the electronic device 1200. For example, the memory 1204 can store electrical data or content such as audio files, document files, timing and control signals, operational settings and data, and image data. The memory 1204 can be configured as any type of memory. By way of example only, memory 1204 can be implemented as random access memory, read-only memory, Flash memory, removable memory, or other types of storage elements, in any combination.
The one or more I/O devices 1206 can transmit and/or receive data to and from a user or another electronic device. Example I/O device(s) 1206 include, but are not limited to, a touch sensing device such as a touchscreen or track pad, one or more buttons, a microphone, a haptic device, a speaker, and/or a force sensing device 1218. The force sensing device 1218 can include one or more strain sensors. The strain sensor(s) can be configured as one of the strain sensors discussed earlier in conjunction with
As one example, the I/O device 106 shown in
The power source 1208 can be implemented with any device capable of providing energy to the electronic device 1200. For example, the power source 1208 can be one or more batteries or rechargeable batteries, or a connection cable that connects the electronic device to another power source such as a wall outlet.
The electronic device 1200 may also include one or more sensors 1210 positioned substantially anywhere on or in the electronic device 1200. The sensor or sensors 1210 may be configured to sense substantially any type of characteristic, such as but not limited to, images, pressure, light, heat, touch, force, temperature, humidity, movement, relative motion, biometric data, and so on. For example, the sensor(s) 1210 may be an image sensor, a temperature sensor, a light or optical sensor, an accelerometer, an environmental sensor, a gyroscope, a magnet, a health monitoring sensor, and so on. In some embodiments, the one or more sensors 1210 can include a force sensing device that includes one or more strain sensors. The strain sensor(s) can be configured as one of the strain sensors discussed earlier in conjunction with
As one example, the electronic device shown in
The network communication interface 1212 can facilitate transmission of data to or from other electronic devices. For example, a network communication interface can transmit electronic signals via a wireless and/or wired network connection. Examples of wireless and wired network connections include, but are not limited to, cellular, Wi-Fi, Bluetooth, infrared, RFID, Ethernet, and NFC.
The display 1214 can provide a visual output to the user. The display 1214 can be implemented with any suitable technology, including, but not limited to, a multi-touch sensing touchscreen that uses liquid crystal display (LCD) technology, light emitting diode (LED) technology, organic light-emitting display (OLED) technology, organic electroluminescence (OEL) technology, or another type of display technology. In some embodiments, the display 1214 can function as an input device that allows the user to interact with the electronic device 1200. For example, the display can include a touch sensing device 1222. The touch sensing device 1222 can allow the display to function as a touch or multi-touch display.
Additionally or alternatively, the display 1214 may include a force sensing device 1224. In some embodiments, the force sensing device 1224 is included in a display stack of the display 1214. The force sensing device 1224 can include one or more strain sensors. An amount of force that is applied to the display 1214, or to a cover glass disposed over the display, and/or a change in an amount of applied force can be determined based on the signal(s) received from the strain sensor(s). The strain sensor(s) can be configured as one of the strain sensors discussed earlier in conjunction with
It should be noted that
As described earlier, a force sensing device that includes one or more strain sensors can be included in a display stack of a display (e.g., display 104 in
An adhesive layer 1304 can be disposed between the cover glass 1301 and the front polarizer 1302. Any suitable adhesive can be used for the adhesive layer, such as, for example, an optically clear adhesive. A display layer 1306 can be positioned below the front polarizer 1302. As described previously, the display layer 1306 may take a variety of forms, including a liquid crystal display (LCD), a light-emitting diode (LED) display, and an organic light-emitting diode (OLED) display. In some embodiments, the display layer 1306 can be formed from glass or have a glass substrate. Embodiments described herein include a multi-touch touchscreen LCD display layer.
Additionally, the display layer 406 can include one or more layers. For example, a display layer 406 can include a VCOM buffer layer, a LCD display layer, and a conductive layer disposed over and/or under the display layer. In one embodiment, the conductive layer may comprise an indium tin oxide (ITO) layer.
A rear polarizer 1308 may be positioned below the display layer 1306, and a strain sensitive structure 1310 below the rear polarizer 1308. The strain sensitive structure 1310 includes a substrate 1312 having a first set of independent transparent strain sensors 1314 on a first surface 1316 of the substrate 1312 and a second set of independent transparent strain sensors 1318 on a second surface 1320 of the substrate 1312. In the illustrated embodiment, the first and second sets of transparent strain sensors are located in an area of the display stack that is visible to a user. As described earlier, a strain sensor includes a strain sensitive element and the one or more strain signal lines physically or directly connected to the strain sensitive element. In the illustrated embodiment, the first and second surfaces 1316, 1320 are opposing top and bottom surfaces of the substrate 1312, respectively. An adhesive layer 1322 may attach the substrate 1312 to the rear polarizer 1308.
As described earlier, the strain sensors may be formed as an array of rectilinear strain sensors. Each strain sensitive element in the first set of independent strain sensors 1314 is aligned vertically with a respective one of the strain sensitive elements in the second set of independent strain sensors 1318. In many embodiments, each individual strain sensitive element may take a selected shape. For example, in certain embodiments, the strain sensitive elements may be deposited in a serpentine pattern, similar to the serpentine pattern shown in
A back light unit 1324 can be disposed below (e.g., attached to) the strain sensitive structure 1310. The back light unit 1324 may be configured to support one or more portions of the substrate 1312 that do not include strain sensitive elements. For example, as shown in
The strain sensors are typically connected to sense circuitry 1326 through conductive connectors 1328. The sense circuitry 1326 is configured to detect changes in an electrical property of each of the strain sensitive elements. In this example, the sense circuitry 1326 may be configured to detect changes in the electrical resistance of the strain sensitive elements, which can be correlated to a force that is applied to the cover glass 1301. In some embodiments, the sense circuitry 1326 may also be configured to provide information about the location of a touch based on the relative difference in the change of electrical resistance of the strain sensors 1314, 1318.
As described earlier, in some embodiments the strain sensitive elements are formed with a transparent conducting oxide film. When a force is applied to an input region (e.g., the cover glass 1301), the planar strain sensitive structure 1310 is strained and the electrical resistance of the transparent conducting oxide film changes in proportion to the strain. As shown in
Two vertically aligned strain sensitive elements (e.g., 1330 and 1332) form a strain sensing device 1334. The sense circuitry 1326 may be adapted to receive signals from each strain sensing device 1334 and determine a difference in an electrical property of each strain sensing device. For example, as described above, a force may be received at the cover glass 1301, which in turn causes the strain sensitive structure 1310 to bend. The sense circuitry 1326 is configured to detect changes in an electrical property (e.g., electrical resistance) of the one or more strain sensing devices based on signals received from the strain sensing device(s) 1334, and these changes are correlated to the amount of force applied to the cover glass 1301.
In the illustrated embodiment, a gap 1336 exists between the strain sensitive structure 1310 and the back light unit 1324. Strain measurements intrinsically measure the force at a point on the top surface 1316 of the substrate 1312 plus the force from the bottom at that point on the bottom surface 1320 of the substrate 1312. When the gap 1336 is present, there are no forces on the bottom surface 1320. Thus, the forces on the top surface 1316 can be measured independently of the forces on the bottom surface 1320. In alternate embodiments, the strain sensitive structure 1310 may be positioned above the display layer when the display stack 1300 does not include the gap 1336.
Other embodiments can configure a strain sensitive structure differently. For example, a strain sensitive structure can include only one set of strain sensitive elements on a surface of the substrate. A processing device may be configured to determine an amount of force, or a change in force, applied to an input region based on signals received from the set of strain sensitive elements.
Referring now to
A first reference voltage (VREF_TOP) is received at node 1504 and a second reference voltage (VREF_BOT) is received at node 1506. A force signal at node 1508 of the strain sensing device 1334 and a reference signal at node 1510 of the reference voltage divider 1502 are received by the sense circuitry 1512. The sense circuitry 1512 is configured to detect changes in an electrical property (e.g., electrical resistance) of the strain sensing device 1334 based on the differences in the force and reference signals of the two voltage dividers. The changes can be correlated to the amount of force applied to a respective input region of an electronic device (e.g., the cover glass 1201 in
Various embodiments have been described in detail with particular reference to certain features thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the disclosure. For example, the one or more strain sensitive elements can be formed with a non-metal opaque material. Additionally or alternatively, the one or more strain sensitive elements can be formed on one layer and the strain signal line(s) on another layer such that a strain sensitive element and corresponding strain signal line(s) are not co-planar (on different planar surfaces). A via can be formed through the interposing layer or layers to produce an electrical contact between the strain sensitive element and the strain signal lines.
Even though specific embodiments have been described herein, it should be noted that the application is not limited to these embodiments. In particular, any features described with respect to one embodiment may also be used in other embodiments, where compatible. Likewise, the features of the different embodiments may be exchanged, where compatible.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 62/195,030, filed on Jul. 21, 2015, and entitled “Transparent Strain Sensors in an Electronic Device,” which is incorporated by reference as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4516112 | Chen | May 1985 | A |
5673041 | Chatigny et al. | Sep 1997 | A |
5915285 | Sommer | Jun 1999 | A |
6288829 | Kimura | Sep 2001 | B1 |
6369865 | Hinata | Apr 2002 | B2 |
7154481 | Cross et al. | Dec 2006 | B2 |
7176897 | Roberts | Feb 2007 | B2 |
7211885 | Nordal et al. | May 2007 | B2 |
7511702 | Hotelling | Mar 2009 | B2 |
7755616 | Jung et al. | Jul 2010 | B2 |
7800592 | Kerr et al. | Sep 2010 | B2 |
8020456 | Liu et al. | Sep 2011 | B2 |
8050876 | Feen et al. | Nov 2011 | B2 |
8243225 | Kai et al. | Aug 2012 | B2 |
8305358 | Klinghult et al. | Nov 2012 | B2 |
8434369 | Hou et al. | May 2013 | B2 |
8456430 | Oliver et al. | Jun 2013 | B2 |
8605053 | Murphy et al. | Dec 2013 | B2 |
8669952 | Hashimura et al. | Mar 2014 | B2 |
8669962 | Kuan | Mar 2014 | B2 |
8692646 | Lee et al. | Apr 2014 | B2 |
8780074 | Castillo et al. | Jul 2014 | B2 |
8870087 | Pienta et al. | Oct 2014 | B2 |
8878803 | Kimura et al. | Nov 2014 | B2 |
9024910 | Stephanou et al. | May 2015 | B2 |
9030427 | Yasumatsu | May 2015 | B2 |
9063599 | Yanagi et al. | Jun 2015 | B2 |
9099971 | Lynn et al. | Aug 2015 | B2 |
9110532 | Ando et al. | Aug 2015 | B2 |
9116570 | Lee et al. | Aug 2015 | B2 |
9182849 | Huang et al. | Nov 2015 | B2 |
9304348 | Jang | Apr 2016 | B2 |
9383848 | Daghigh | Jul 2016 | B2 |
9417696 | DeLuca | Aug 2016 | B2 |
9466783 | Olien et al. | Oct 2016 | B2 |
20020149571 | Roberts | Oct 2002 | A1 |
20060082565 | Saito | Apr 2006 | A1 |
20080165159 | Soss et al. | Jul 2008 | A1 |
20080218488 | Yang | Sep 2008 | A1 |
20090002199 | Lainonen et al. | Jan 2009 | A1 |
20090189866 | Haffenden et al. | Jul 2009 | A1 |
20090316380 | Armstrong | Dec 2009 | A1 |
20100053116 | Daverman et al. | Mar 2010 | A1 |
20100103115 | Hainzl | Apr 2010 | A1 |
20100117809 | Dai et al. | May 2010 | A1 |
20110248839 | Kwok et al. | Oct 2011 | A1 |
20110261021 | Modarres et al. | Oct 2011 | A1 |
20110285660 | Prabhu et al. | Nov 2011 | A1 |
20120038577 | Brown et al. | Feb 2012 | A1 |
20120105367 | Son et al. | May 2012 | A1 |
20120139864 | Sleeman et al. | Jun 2012 | A1 |
20120188198 | Jeong et al. | Jul 2012 | A1 |
20120293491 | Wang et al. | Nov 2012 | A1 |
20130074988 | Chou | Mar 2013 | A1 |
20130082970 | Frey et al. | Apr 2013 | A1 |
20130141365 | Lynn et al. | Jun 2013 | A1 |
20130147739 | berg | Jun 2013 | A1 |
20130154933 | Sheik-Nainar | Jun 2013 | A1 |
20130215056 | Johansson et al. | Aug 2013 | A1 |
20130271697 | DeForest | Oct 2013 | A1 |
20130328803 | Fukushima et al. | Dec 2013 | A1 |
20140118635 | Yang | May 2014 | A1 |
20140174190 | Kulkarni et al. | Jun 2014 | A1 |
20140191973 | Zellers et al. | Jul 2014 | A1 |
20150002452 | Klinghult | Jan 2015 | A1 |
20150301684 | Shimamura | Oct 2015 | A1 |
20160062517 | Meyer et al. | Mar 2016 | A1 |
20160357297 | Picciotto et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
1796955 | Jul 2006 | CN |
101071354 | Nov 2007 | CN |
101201277 | Jun 2008 | CN |
101950224 | Jan 2011 | CN |
102012772 | Apr 2011 | CN |
102175362 | Sep 2011 | CN |
103026327 | Apr 2013 | CN |
204461655 | Jul 2015 | CN |
0332365 | Sep 1989 | EP |
0467562 | Jan 1992 | EP |
1840714 | Oct 2007 | EP |
2120136 | Nov 2009 | EP |
2381340 | Oct 2011 | EP |
2629075 | Aug 2013 | EP |
2907563 | Apr 2008 | FR |
201039458 | Feb 2010 | JP |
2010197066 | Sep 2010 | JP |
WO 9638833 | Dec 1996 | WO |
WO 0235461 | May 2002 | WO |
WO 2011156447 | Dec 2011 | WO |
WO 2013177322 | Nov 2013 | WO |
WO 2015106183 | Jul 2015 | WO |
WO 2015158952 | Oct 2015 | WO |
Entry |
---|
Bau, et al., “TeslaTouch: Electrovibration for Touch Surfaces,” UIST'10, Oct. 3-6, 2010, New York, New York USA, 10 pages. |
Feist, “Samsung snags patent for new pressure sensitive touchscreens,” posted on AndroidAuthority.com at URL: http://www.androidauthority.com/samsung-patent-pressure-sensitive-touchscreens-354860, Mar. 7, 2014, 1 page. |
Rausch, “Printed piezoresistive strain sensors for monitoring of light-weight structures,” SENSOR+TEST Conferences 2011—SENSOR Proceedings, pp. 216-220. |
Schweizer, “Electrical characterization and investigation of the piezoresistive effect of PEDOT:PSS thin films,” A Thesis Presented to the Academic Faculty in Partial Fulfillment of the Requirements for the Degree Master of Science of Electrical and Computer Engineering, Georgia Institute of Technology, Apr. 2005, 89 pages. |
Takamatsu, et al., “Transparent conductive-polymer strain sensors for touch input sheets of flexible displays,” Journal of Micromechanics and Microengineering, vol. 20, 2010, 6 pages. |
Tsai, et al., “Fabrication of Graphene-based Micro Strain Gauge,” NPL Management Ltd.—Internal, Oct. 15-16, 2012, 1 page. |
Number | Date | Country | |
---|---|---|---|
20170023420 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62195030 | Jul 2015 | US |