This invention relates to electronic security seals. It also relates to housings for transponders. In particular, but not exclusively, the present invention relates to electronic security seals for use on shipping containers.
The security of containers has become an important issue in today's security-conscious environment. This is particularly apparent in the shipping of containers across borders. The locking of loaded containers to prevent unauthorised access after the containers have been loaded and before the containers reach their destination is now seen as an important, if not mandatory security precaution.
Of course, a lock on a container may be removed and then replaced. Therefore, it is important that tampering with a lock is able to be detected. To assist with the identification of tampering with locks, electronic seals have been utilised.
One form of electronic seal that has been used in the past is an electronic tagging device that wirelessly transmits information to an interrogator. This information identifies whether the lock has been tampered with.
U.S. Pat. No. 6,265,973 (Brammall et al.) describes an electronic security seal. A conductor along the bolt shank is connected to a circuit and provides a tamper evident signal to the circuit when the bolt is severed. The circuit senses removal of the bolt or severed bolt condition and generates a “tamper” signal, which is transmitted to a local receiver/reader.
U.S. Pat. No. 6,747,558 (Thorne et al.) describes a method and apparatus for providing container security with a tag. A device includes a bolt, which extends through openings in a latch mechanism on the container. The bolt also passes through spaced coils of the seal device. The sealed device uses one coil to generate a magnetic field, while monitoring the corresponding magnetic field induced in the other coil. Tampering with the bolt affects the magnetic field, which in turn permits the seal device to detect the tampering. The seal device periodically transmits wireless signals, which can be remotely received for the purpose of tracking the container and monitoring the integrity of the seal.
A major disadvantage of providing sophisticated electronic security seals is the increased cost involved in shipping containers. Even if the devices are made to be reusable, there is the associated cost, inconvenience and possible additional security issues related to the reuse of electronic seals. In addition, electronic seals that actively transmit signals may be subject to stringent regulations regarding the maximum power of transmission and the frequency bands in which transmissions may be made. These regulations may change from jurisdiction to jurisdiction and over time. There is also the problem of passive transponders interfering with the signals from other passive transponders when interrogated. This problem remains even in applications where evidence of tampering with a lock is not required.
Apart from the sealing function of electronic seals, there are many other applications where removal or tampering with a value item needs to be detected.
It is therefore an object the present invention to overcome or ameliorate problems with electronic seals and/or transponder devices at present, or at least to provide the public with a useful alternative.
Any reference in this specification to the prior art does not constitute, nor should it be considered, an admission that such prior art was widely known or forms part of the common general knowledge in Australia, or in any other jurisdiction, before the priority date of any of the appended claims.
According to a first aspect of the present invention, there is provided an electronic seal comprising a sealing mechanism that seals a value item, a transponder receptacle, and an actuator for a transponder held in the transponder receptacle that is actuated upon engagement of the sealing mechanism, wherein the electronic seal maintains a transponder held in the transponder receptacle in an inoperable state until and only until the actuator is actuated.
Preferably, the sealing mechanism comprises a receptacle to receive a locking member and wherein insertion of the locking member in the receptacle causes the actuator to actuate.
Preferably, the electronic seal comprises an electrically conductive object and wherein actuation of the actuator results in movement of the electrically conductive object away from a position where it can contact a transponder held in the transponder receptacle.
Preferably, the transponder receptacle comprises at least a portion that is shaped and dimensioned to hold at least one part of at least one antenna of a transponder in a curved shape. The curved shape may have a convex side facing away from the sealing mechanism and a concave side facing towards the sealing mechanism.
Preferably, the transponder receptacle is formed within a cover for the sealing mechanism. The electronic seal may be adapted for use to seal a shipping container having at least one door, wherein the sealing mechanism is adapted to seal the at least one door and the cover maintains the transponder in an orientation outwards of the at least one door.
According to a second aspect of the present invention, there is provided a transponder housing for a transponder having a flexible antenna structure, the housing including a transponder receptacle that extends into three planes so as to enable a transponder located in the transponder receptacle to transmit a signal over a wider range of angles than if the transponder receptacle were planar.
Preferably, the transponder housing forms part of an electronic seal comprising a sealing mechanism that seals a value item, and a cover one of formed integrally with and secured to the sealing mechanism, wherein the cover inhibits access to the sealing mechanism without first either removing the cover from the sealing mechanism or damaging at least one of the cover and any transponder held in the receptacle.
Preferably, the transponder receptacle has a non-linear shape along a first axis and a substantially planar shape along a second axis that is transverse to the first axis. The non-linear shape may be a curve.
Alternatively, the transponder receptacle has a non-linear shape along two orthogonal axes. The non-linear shape may be a curved shape.
Preferably, the housing is attachable to a separate object and is shaped and dimensioned to maintain the transponder in a required orientation after it has been attached to the object.
Preferably, the cover is removably engaged with the sealing mechanism by an engagement mechanism and wherein release of the engagement mechanism causes a transponder held in said transponder receptacle to be one of detectably modified and damaged.
Preferably, the transponder housing comprises a transponder in the transponder receptacle. The housing may be constructed so that removal of the transponder from the transponder receptacle is prevented without visibly damaging the housing. At least part of the housing may be formed by a material that was moulded about the transponder.
According to a third aspect of the present invention, there is provided an electronic seal comprising a sealing mechanism that seals a value item, a transponder receptacle, and a removable cover that inhibits access to the sealing mechanism, wherein removal of the removable cover causes a transponder held in the transponder receptacle to be one of detectably modified and damaged.
Preferably, the removable cover is removed by actuating an actuator, wherein actuation of the actuator causes a transponder held in the transponder receptacle to be one of detectably modified and damaged.
Preferably, removal of the cover for the sealing mechanism causes the seal to physically damage a transponder held in the transponder receptacle.
Preferably, the seal is constructed so that after a transponder has been received by the transponder receptacle, removal of a transponder from the transponder receptacle is prevented without visibly damaging the seal.
Preferably, the electronic seal comprises a transponder in the transponder receptacle. At least part of the seal may be formed by a material that was moulded about the transponder. The cover may include a first portion that is a clamp to hold the transponder in place and a second portion that is moulded over the clamp.
According to a fourth aspect of the present invention, there is provided an electronic seal comprising a sealing mechanism that seals a value item, a removable cover for the sealing mechanism, the removable cover having therein a transponder receptacle and being one of formed integrally with and secured to the sealing mechanism, and an actuator that is actuated upon engagement of the sealing mechanism, wherein the electronic seal maintains a transponder held in the transponder receptacle in an inoperable state until and only until the actuator is actuated, and wherein the transponder receptacle is adapted to cause a transponder located in the receptacle to have a shape that extends into three planes and wherein removal of the removable cover causes a transponder held in the transponder receptacle to be one of detectably modified and damaged.
Preferably, removal of the removable cover involves actuating a further actuator and wherein the actuation of the further actuator causes a transponder held in the transponder receptacle to be one of detectably modified and damaged.
Preferably, the electronic seal comprises a transponder in the transponder receptacle, the removable cover formed so that removal of the transponder from the transponder receptacle is prevented without damaging the cover.
According to a fifth aspect of the present invention, there is provided a method of manufacturing an electronic seal, the method comprising forming a seal mechanism for a value item and forming a cover for the seal mechanism, the cover for the seal mechanism moulded about a transponder to enclose the transponder, the cover formed in a shape so that disengagement of the seal from a value item can only be achieved by one of damaging and modifying the transponder.
Preferably, the transponder is a passive transponder and the cover is formed in a shape so that disengagement of the seal from a value item can only be achieved by damaging an antenna of the transponder.
Preferably, the method further comprises forming the seal mechanism and cover as separate removably engageable components and forming an actuator, wherein actuation of the actuator both allows disengagement of the seal mechanism and cover after they have been engaged and causes the transponder to be one of damaged and modified.
According to a sixth aspect of the present invention, there is provided an electronic device for monitoring a value item comprising a transponder, and an actuator for the transponder that is actuated upon tampering with the value item, wherein the electronic device maintains a transponder held in the transponder receptacle in an inoperable state until and only until the actuator is actuated or vice-versa.
Preferably, the actuator comprises a receptacle to receive a locking member and wherein one of removal and insertion of the locking member in the receptacle causes the actuator to actuate.
Preferably, the electronic device comprises an electrically conductive object and wherein actuation of the actuator results in movement of the electrically conductive object into or out of contact with the transponder to place the transponder in an inoperable and operable state respectively.
Preferably, the transponder receptacle comprises at least a portion that is shaped and dimensioned to hold at least one part of at least one antenna of a transponder in a curved shape.
According to a seventh aspect of the present invention, there is provided an electronic seal for a shipping container, the electronic seal comprising a sealing mechanism that seals the shipping container through the use of a locking member, a cover for the sealing mechanism that is one of formed integrally with and secured to the sealing mechanism and a transponder receptacle that is located spaced apart from the locking member when the locking member is used with the sealing mechanism.
Preferably, the transponder receptacle is adapted to cause a transponder located in the receptacle to have a shape that extends into three planes.
Preferably, the cover forms a partial enclosure of the sealing mechanism.
Preferably, the transponder receptacle is formed within said cover.
According to an eighth aspect of the present invention, there is provided a transponder device comprising a transponder and an actuator that when actuated moves a conductive object from and to a predetermined position, wherein when the conductive object is in the predetermined position the transponder is maintained in an inoperable state and changes to an operable state when the conductive object is moved from the predetermined position.
Preferably, the transponder is housed within a cover and the actuator is adapted to be moved when the cover is engaged with an object in a predetermined manner.
The electronic seal, transponder housing or transponder device preferably comprises a cover and the cover and sealing mechanism may be engaged by a frangible link and wherein breakage of the frangible link causes the transponder to become inoperable.
According to a ninth aspect of the present invention, there is provided a method of forming a transponder device, the method comprising forming on a flexible substrate a planar antenna structure for a transponder and forming a housing for the antenna structure, the housing shaping the transponder into a required three dimensional shape to achieve required transmission characteristics for the antenna structure.
Preferably, the method further comprises forming the housing so as to be secured to or securable to an object and forming the housing in a shape that is adapted to hold the transponder in a required orientation relative to said object.
Further aspects of the present invention will become apparent from the following description, given by way of example only and with reference to the accompanying drawings.
The present invention relates to an electronic seal. The electronic seal may be used to seal a value item (for example a door indicated by 300 in
The electronic seal may have particular application to the sealing of shipping containers and may provide advantages and functionally that make it particularly suited to this application. The following description is therefore provided with specific reference to an electronic seal for a shipping container. Variations and/or modifications to the electronic seal of the present invention to make the electronic seal suitable or more suited to other applications will be apparent to those skilled in the relevant arts, and such variations and/or modifications are intended to be within the scope of the present invention.
A cross-sectional view through the cover 1 and the bolt 2 through line AA of
The cover 1 includes a receptacle for a transponder (not shown in
The clamp 50 includes two parts 50a and 50b, which are brought together to hold the transponder, which is suitably a radio frequency identification device (RFID), between them. Prior to locating a RFID in the clamp 50, a button 4 is inserted into a central aperture 50c of the clamp 50. The rest of the cover 1 is over-moulded about the clamp 50. During the over-moulding process, the clamp 50 may be held by mechanical supports in a known manner, the removal of these mechanical supports creating apertures 1e in the cover 1. In order to maintain a uniform thickness of the clamp 50 in the region of the planar section 1b, the clamp 50 may have a comb shape 1f in this region.
The cover 1 is shaped so that once an RFID has been inserted in the clamp 50 and the rest of the cover 1 moulded about the clamp 50, the RFID can not be removed from the cover 1 without damaging the cover 1. This is one aspect of the seal 100 that contributes to its characteristic of being a tamper evident seal.
The sealing mechanism 5 is engaged with the clamp 50 of the cover 1 through an interlocking engagement mechanism 5a (see
The sealing mechanism 5 includes a first shaft 5b and a second shaft 5c, which extend transverse to each other and intersect one another. The first shaft 5b is shaped, dimensioned and oriented to receive the bolt 2 and engage with circumferential rings 2a provided on the bolt 2 so as to prevent the bolt 2 from being removed from the shaft 5b after it has been inserted.
The second shaft 5c, which in the embodiment shown in the accompanying drawings is formed in one part by the clamp 50 and in another part by the sealing mechanism 5, contains a movable member 6, which includes an aperture 6a through it and which has a frustoconical shaped opening 6b on the side of the aperture 6a that receives the bolt 2. In
A conductive ring 9 is located at the distal end of the movable member 6 from the cap 8. The conductive ring 9 is annular shaped and is dimensioned to extend around a chip on the RFID, thereby shorting out the chip and preventing the RFID from transmitting a signal in response to an interrogation signal. Any suitably shaped conductive body may be used instead of the conductive ring 9, provided that the conductive body effectively renders the RFID inoperable when it is in contact with the RFID.
Before the seal 100 is used to lock a container, the RFID is maintained in an inoperable state due to the conductive ring 9 being pressed against the RFID by the spring 7. The RFID is only transformed into an operable state after the bolt 2 has been inserted into the receptacle 5b through the aperture 6a of the movable member 6. As can be seen from
The seal 100 of the present invention therefore maintains an RFID in an inoperable state until the seal 100 has been applied to a container. This controls when the seal 100 can transmit a signal in response to an interrogation signal.
Inserting the bolt 2 into the receptacle 5b through the aperture 6a causes the aperture 6a to align with the receptacle 5b by moving in direction B, against the opposing force of the spring 7. This also moves the ring 9 in direction B, taking it out of the plane occupied by the intersecting parts 50a, 50b of the clamp 50 and allowing an RFID held by the clamp 50 to operate.
Those skilled in the relevant arts will appreciate that there are alternative methods of maintaining a transponder in an inoperable state and then changing the transponder to an operable state. The methods available for a seal of the present invention may be dictated by the particular transponder that is used. For example, different methods may be available for actuating active transponders between an operative and inoperative state than for passive transponders and transponders having different structures and functionality can be actuated between operable and inoperable states by different methods. The operation of the seal to change the state of the transponder may be mechanical in nature, for example by moving a conductive object, or electronic, for example by changing the state of a chip that implements a simple state machine. Whatever method of actuation is used, the seal of the present invention has the advantage of not having to be constantly in an on state and does not need to be switched to an on state by a separate action that is independent from the normal use of the seal of the present invention to seal a value item.
The cover 1 may locate the RFID 200, or at least the antenna structure 202 so as to be spaced apart from the sealing mechanism 5. This spaces the antenna structure 202 away from the bolt 2 and the value item, which may be a metal shipping container. The size of the gap between the RFID 200 (and/or antenna structure 202) and the bolt 2 (and/or the value item) may be selected to obtain improved RFID 200 performance.
To release the seal 100, an operator pushes the button 4 inwards from the position shown in
The seal 100 shown in the accompanying drawings, having a button 4 for destroying a passive transponder, represents the most preferred embodiment of the present invention. However, alternatives exist and may be used depending on the particular requirements for the seal or the preferences of the designers of a seal of the present invention. By way of example only, the chip 201 may be, or may include an electrically erasable programmable read only memory (EEPROM) and depression of the button 4 may be monitored by a controller for the EEPROM, which may cause the chip 201 to erase itself when the button 4 is depressed. Alternatively, a controller may cause the transponder to emit a different signal, for example a different digital sequence after the button 4 has been depressed.
In another embodiment of the invention, the button 4 may be replaced by a lock cylinder that is actuated by a key. Rotation of the lock cylinder by the key may result in the destruction or modification of the transponder, either mechanically or electronically, or even chemically, for example by releasing a chemical that damages the transponder, or by causing a small exothermic reaction or explosion.
In a still further alternative embodiment, the seal 100 may monitor the integrity of the bolt 2 and/or the cover 1, for example by detecting cutting of the bolt, by detecting a change in the electrical properties of the bolt 2, and/or by running a fine wire about the cover and/or bolt and detecting severance of the fine wire. Upon detection of an event that indicates possible removal or tampering of the seal 100, the seal 100 changes the transponder in a detectable way.
In the preferred embodiment described herein, the cover 1 can not be removed without first depressing the button 4 and depressing the button 4 causes the RFID 200 to be damaged. An advantage of this embodiment is that accidental destruction of the RFID 200 will be rare. In an alternative embodiment the button 4 may be omitted and the cover 1 may be removed without first pressing the button 4 or any other actuator. In this alternative embodiment the action of removing the cover 1 may damage or alter the transponder, for example by tearing away a part of an antenna that was secured to the cover 1 and leaving behind a chip of the transponder, or by monitoring the breaking of an electrical circuit that extends over the boundary between the cover 1 and the rest of the seal 100.
Therefore, the seal 100 is tamper evident, in that either no signal will be received from the RFID 200, or if the entire seal 100 is replaced, an incorrect signal will be received. As the bolt 2 is inaccessible through the cover 1, or at least it is difficult to access and cut the bolt 2 without damaging the cover 1, the seal 100 is readily tamper evident and it is difficult to overcome the tamper evident mechanisms in the seal 100.
The movable member 60 may be biased against the RFID 64 by any suitable biasing means, including a spring similar to the spring 7. In addition or instead, the movable member 60 is biased against the RFID 64 by two biasing members 66, which are secured to the cover 65. The weakened portion 61 and the biasing members 66 are formed from suitable materials and in an appropriate shape and dimensions so that the resilience of the weakened portion 61 and the biasing members 66 so that weakened portion 61 severs should the cover 65 be removed from the movable member 60 (which is held in place by a bolt). With the weakened portion 61 severed, the biasing members 66 then push the conductive ring 62 against the RFID 64, rendering the RFID 64 inoperable. The cover 65 is shaped so that removal of the conductive ring 62 from the cover 65 can only be achieved by damaging the cover 65.
Those skilled in the relevant arts will appreciate that alternative biasing devices exist, for example a metal spring, that may be used instead of the biasing members 66. Also, where the RFID 64 is an EEPROM or similar device, the seal may monitor for removal of the cover 65 and erase the EEPROM. This may be achieved by monitoring for the breaking of one or more conductors, in which case the weakened portion 61 may be omitted.
The curved shape of the cover 1, as can be best seen in
As the clamp 50 is curved in shape, this in turn forces a curve in the substrate 204, which results in a curved antenna structure 202. This curvature of the antenna structure 202 results in a transmitted signal covering a segment (formed by the rays extending normal from the antenna structure 202 over the active part of the antenna structure 202. This is in contrast to if the antenna were held flat, when most of the transmitted energy would be directed outwards from the antenna transverse to the plane of the antenna. An advantage of the curved antenna design is that an interrogator could be located towards the side of the cover 1 and still receive a signal at useful distances. This is further enhanced by the dual antenna structure of the RFID 200.
Those skilled in the relevant arts will appreciate that the effective transmit distance for the RFID 200 is reduced in the direction normal to the vertical centre line of the front face 1a of the cover 1 when the antenna is curved. However, this reduced effective transmitting distance is viewed by the applicant as being outweighed by the benefit of having a substantially increased effective transmit distance in other directions. For example, when the seal 100 is used on large shipping containers, it is common practice to place two or more containers in close proximity to each other. This may prevent effective access from the front of the seal 100 by an interrogator of the RFID 200. The curved shape of the RFID 200 in the seal 100 allows the RFID 200 to be interrogated at useful distances from other directions, for example by holding a transponder in the gap between two containers.
Those skilled in the relevant arts will also appreciate that by forming a transponder receptacle having a curved shape along two orthogonal axes, for example by forming a parabolic or spherical surface, the effective area of the transponder may be increased along two orthogonal axes, allowing further flexibility in the location of an interrogator for a passive transponder/a receiver for an active transponder. Furthermore, although the preferred embodiment is a curved transponder receptacle, those skilled in the relevant arts will appreciate that other shapes also allow an effective transmission distance over an increased range of angles relative to a transponder having a planar antenna. For example, the transponder receptacle may define three sides of a trapezoid.
In addition, the curved shape of the cover 1 serves a useful treble purpose of increasing the effective angle of transmission, preventing access to the sealing mechanism 5 and orienting the RFID 200 outwards from a surface next to the seal 100, to which the seal 100 may be mounted. Achieving even two of these purposes with a single structure may result in efficiencies in material and manufacturing costs over alternatives. The advantages of the curved shape of the cover 1 may be achieved whether or not the cover 1 is removable from the sealing mechanism 5 by the use of a button or other actuator. If the cover 1 is not removable from the sealing mechanism 5, then they may be integrally formed, in which case an operator must destruct the cover to access the bolt 2 (or other locking member). Lines of weakness may be formed in the seal 100 to facilitate removal of a cover that has been integrally formed with a sealing mechanism.
The formation of a non-planar antenna structure may have application to any other technologies incorporating transponders and this aspect of the present invention should not be understood as limited to use on electronic seals, although the Applicant believes that it has particular utility when applied to electronic seals.
The cover 1 and sealing mechanism 5 may be constructed from a suitably robust moulded plastic material. The receptacle 5b may need to be constructed from a metal or metal alloy in order to adequately prevent removal of the bolt 2 after it has been engaged with the receptacle 5b. The conductive ring 9 may be aluminium foil and the shaft 6, cap 8 and spring 7 may be polyurethane if they are integrally formed components, or may be separate components, in which case the spring 7 may be a metal spring.
The sealing mechanism 5 of the electronic seal 100 may also have application to other forms of monitoring, either with or without the cover 1. These applications may be realised by replacing the bolt 2 and receptacle 5b with a pin that is readily removed from the sealing mechanism 5. The pin may be secured to a value item, which may including a door of a container, so that if the value item is moved from a particular location the pin is pulled out from the sealing mechanism 5, which results in the conductive ring 9 being pushed against the transponder. Removal of the pin can then be detected without visual inspection by the absence of a response by the RFID 200 to an interrogation signal. Similarly, if the spring 7 is reverse biased, the RFID 200 may become active upon removal of the pin. One example application of a sealing mechanism 5 of this type is on aircraft, where the pin may be secured to the door of a container for a lifejacket or secured to the lifejacket itself, so that removal or tampering with a lifejacket can be readily detected without necessarily having to perform a visual inspection.
An advantage of the present invention is the ability to provide an electronic device that activates when tampering is detected. This may allow very quick identification of value items that have been tampered with, as all the transponders that are not indicating a tamper condition are off. Such a tamper evident device may be suited to applications where a person tampering with the value item is unlikely to also successfully tamper with the electronic device so as to render it inoperable. The cover 1 of the present invention, without the button 4, may assist to protect the device so as to prevent damage to the electronic device that prevents it from activating.
It will be understood that the invention disclosed and defined in this specification extends to all alternative combinations of the individual features mentioned or evident from the text or drawings. All of these different combinations constitute various alternative aspects of the invention.
It will also be understood that the term “comprises” (or its grammatical variants) as used in this specification is equivalent to the term “includes” and should not, unless the context clearly requires otherwise, be taken as necessarily excluding the presence of other elements or features.
Number | Date | Country | Kind |
---|---|---|---|
2005900146 | Jan 2005 | AU | national |
2005901557 | Mar 2005 | AU | national |
2005905259 | Sep 2005 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2006/000038 | 1/13/2006 | WO | 00 | 1/30/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/074518 | 7/20/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5097253 | Eschbach et al. | Mar 1992 | A |
5406263 | Tuttle | Apr 1995 | A |
5507410 | Clark et al. | Apr 1996 | A |
5536471 | Clark et al. | Jul 1996 | A |
5552759 | Stoyka | Sep 1996 | A |
5627522 | Walker et al. | May 1997 | A |
5646592 | Tuttle | Jul 1997 | A |
5762878 | Clark et al. | Jun 1998 | A |
5914671 | Tuttle | Jun 1999 | A |
5960160 | Clark et al. | Sep 1999 | A |
6061589 | Bridges et al. | May 2000 | A |
6069563 | Kadner et al. | May 2000 | A |
6121878 | Brady et al. | Sep 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6219952 | Mossberg et al. | Apr 2001 | B1 |
6226619 | Halperin et al. | May 2001 | B1 |
6265973 | Brammall et al. | Jul 2001 | B1 |
6282829 | Mossberg et al. | Sep 2001 | B1 |
6343429 | Mossberg et al. | Feb 2002 | B1 |
6366260 | Carrender | Apr 2002 | B1 |
6407666 | Debrody et al. | Jun 2002 | B1 |
6412207 | Crye et al. | Jul 2002 | B1 |
6420971 | Leck et al. | Jul 2002 | B1 |
6421013 | Chung | Jul 2002 | B1 |
6509829 | Tuttle | Jan 2003 | B1 |
6554188 | Johnson et al. | Apr 2003 | B1 |
6603400 | Shoobridge | Aug 2003 | B1 |
6644771 | Silverbrook | Nov 2003 | B1 |
6699188 | Wessel | Mar 2004 | B2 |
6717154 | Black et al. | Apr 2004 | B2 |
6747558 | Thorne et al. | Jun 2004 | B1 |
6750771 | Brand | Jun 2004 | B1 |
6753775 | Auerbach et al. | Jun 2004 | B2 |
6753782 | Power | Jun 2004 | B2 |
6794000 | Adams et al. | Sep 2004 | B2 |
6819244 | Dukler et al. | Nov 2004 | B2 |
6879257 | Hisano et al. | Apr 2005 | B2 |
6883710 | Chung | Apr 2005 | B2 |
6888502 | Beigel et al. | May 2005 | B2 |
6888509 | Atherton | May 2005 | B2 |
6891474 | Fletcher | May 2005 | B1 |
6909366 | Marsh et al. | Jun 2005 | B1 |
6919803 | Breed | Jul 2005 | B2 |
20020036237 | Atherton et al. | Mar 2002 | A1 |
20020060630 | Power | May 2002 | A1 |
20020067264 | Soehnlen | Jun 2002 | A1 |
20020080032 | Smith et al. | Jun 2002 | A1 |
20020135481 | Conwell et al. | Sep 2002 | A1 |
20020140557 | Dukler et al. | Oct 2002 | A1 |
20020183882 | Dearing et al. | Dec 2002 | A1 |
20030004005 | Ainsworth et al. | Jan 2003 | A1 |
20030031819 | Adams et al. | Feb 2003 | A1 |
20030036425 | Kaminkow et al. | Feb 2003 | A1 |
20030050537 | Wessel | Mar 2003 | A1 |
20030075608 | Atherton | Apr 2003 | A1 |
20030132893 | Forster et al. | Jul 2003 | A1 |
20030169207 | Beigel | Sep 2003 | A1 |
20030189491 | Ng | Oct 2003 | A1 |
20030204739 | Ng et al. | Oct 2003 | A1 |
20040003683 | Rudduck | Jan 2004 | A1 |
20040066296 | Atherton | Apr 2004 | A1 |
20040119593 | Kuhns | Jun 2004 | A1 |
20040215350 | Roesner | Oct 2004 | A1 |
20050012616 | Forster et al. | Jan 2005 | A1 |
20050030178 | Meijer | Feb 2005 | A1 |
20050051624 | Kipp et al. | Mar 2005 | A1 |
20050151699 | Eastin | Jul 2005 | A1 |
20050155213 | Eastin | Jul 2005 | A1 |
20050156806 | Ohta et al. | Jul 2005 | A1 |
20050162277 | Teplitxky et al. | Jul 2005 | A1 |
20050179548 | Kittel et al. | Aug 2005 | A1 |
20050194437 | Dearing et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
242937 | Oct 2002 | CA |
029221 | Aug 1998 | EP |
0863489 | Mar 2003 | EP |
1445406 | Aug 2004 | EP |
1487126 | Dec 2004 | EP |
0831197 | Mar 2005 | EP |
1512944 | Mar 2005 | EP |
1559278 | Aug 2005 | EP |
1063627 | Dec 2005 | EP |
2003056224 | Feb 2003 | JP |
9936297 | Jul 1999 | WO |
9945512 | Sep 1999 | WO |
0203994 | Apr 2000 | WO |
0049360 | Aug 2000 | WO |
0063052 | Oct 2000 | WO |
0167413 | Sep 2001 | WO |
0204174 | Jan 2002 | WO |
0211094 | Feb 2002 | WO |
02077939 | Oct 2002 | WO |
02095655 | Nov 2002 | WO |
03002209 | Jan 2003 | WO |
03013678 | Feb 2003 | WO |
03073201 | Sep 2003 | WO |
03077361 | Sep 2003 | WO |
2004013820 | Feb 2004 | WO |
2004021299 | Mar 2004 | WO |
2004052742 | Jun 2004 | WO |
2004061762 | Jul 2004 | WO |
2004059563 | Sep 2004 | WO |
2004088571 | Oct 2004 | WO |
2004101370 | Nov 2004 | WO |
2004102327 | Nov 2004 | WO |
2004102330 | Nov 2004 | WO |
2005022443 | Mar 2005 | WO |
2005074681 | Aug 2005 | WO |
2005079223 | Sep 2005 | WO |
2006004484 | Jan 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090121877 A1 | May 2009 | US |