Transponder for remote keyless entry systems

Information

  • Patent Grant
  • 6323566
  • Patent Number
    6,323,566
  • Date Filed
    Thursday, October 10, 1996
    28 years ago
  • Date Issued
    Tuesday, November 27, 2001
    23 years ago
Abstract
A road vehicle keyless entry system (10) having an in-vehicle communication processor (11) and a remote transponder (15) is provided. The communication processor (10) has a radio frequency receiver (12), a low frequency transmitter/receiver (13) and a controller (14) capable of encrypting and reading the signals sent and received by the low frequency transmitter/receiver (13). The transponder (15) has a radio frequency transmitter (16) that transmits a signal to the communication processor (11) upon receipt of a manual stimulus and a low frequency transmitter/receiver (17) capable of reading and responding to encrypted signals received from the communication processor (11).
Description




BACKGROUND OF THE INVENTION




This invention relates to the field of compact, radio frequency (RF) transponders of the type known to be useful in systems for security and information storage, access control, entry validation and identification, and in other comparable systems. Such a system requires an interrogator circuit built into a road vehicle or building, for example, and a remote transponder which incorporates transmitting and receiving circuits in a compact case that may be carried by a person in a key, a key fob, a badge, a tag or in any similar miniaturized housing. More particularly this invention relates to a transponder in a road vehicle or automotive remote keyless entry and immobilization system which is functional over an increased range in active and passive modes of operation. This invention further relates to a transponder which utilizes a secure challenge-response encryption technique to provide greater security for the user.




Compact passive low frequency transponders, using a frequency of 134.2 kilohertz (134.2 kHz), for example, for passive entry and immobilizer functions and radio frequency remote control transmitters, using a frequency of 433 megahertz (433 MHz), for example, for use in remote keyless entry and security systems for automobiles are generally known. These systems allow access to the automobile without the use of battery power, if the transponder is used in close proximity to the interrogator, and allow the operator to transmit commands such as locking and unlocking doors, hood and trunk, controlling vehicle lighting and ignition, and arming and disarming the anti-theft security system to the vehicle over greater distances. The transponders used may employ an interrogator-responder arrangement with an EEPROM data storage device and a small capacitor that serves as an energy accumulator, charged by the energy provided by the radio frequency interrogation, to provide power for the transponder. The transponder is, thus, sufficiently small to supplement or replace a conventional vehicle door and ignition key. Such a transponder is disclosed in Schuermann et al., U.S. Pat. No. 5,053,774, which is incorporated herein by reference.




However, the transponder systems in current use generally have a limited operating range. Current remote control transponder systems require battery power for proper operation and are not functional, in a passive mode, that is, when operated without a battery.




SUMMARY OF THE INVENTION




The present invention provides a road vehicle remote keyless entry system which is functional over an increased range in the active and passive modes of operation while increasing security by the use of a secure challenge-response encryption technique. A road vehicle keyless entry system having an in-vehicle communication processor and a remote, miniaturized transponder is provided. The communication processor has a radio frequency receiver, a low frequency transmitter/receiver and a controller capable of sending and receiving signals via the low frequency transmitter/receiver and receiving signals via the radio frequency receiver. The transponder has a radio frequency transmitter that transmits a signal to the communication processor upon receipt of a manual stimulus and a low frequency transmitter/receiver capable of reading the signals received from the communication processor and preparing an encrypted response for transmission to the communication processor. When the transponder provides an encrypted response containing the correct vehicle code to the communication processor, the communication processor authorizes the desired operation such as, for example, locking or unlocking the car, arming or disarming the anti-theft alarm system or the performance of vehicle related initialization functions such as seat, seat belt and vehicle mirror adjustments and lighting the vehicle interior lights.




The present invention further provides a secure road vehicle keyless entry system comprising an in-vehicle communication processor and a remote transponder. The communication processor and transponder communicate in parallel paths, a first path being a radio frequency transmission from the transponder to the communication processor and a second path being a low frequency, encrypted two way transmission between the transponder and the communication processor. The radio frequency transmission and the low frequency, encrypted transmission can be compared by the communication processor for authentication of the transmitted data or command before the communication processor authorizes the desired operation and, if one communication channel is affected by interference, the second communication channel may be used as a backup.




It is further contemplated that the radio frequency receiver in the communication processor and the radio frequency transmitter in the transponder may be transmitter/receivers, each capable of performing both the receiving and transmitting functions. When radio frequency transmitter/receivers are used, both the radio frequency communication and the low frequency communication between the communication processor and the transponder will be two way transmissions used to transmit data between the two devices.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a block schematic illustrating the functional elements and data paths of one embodiment of the road vehicle keyless entry system of the present invention.





FIG. 2

is a block schematic illustrating the functional elements and data paths of the remote transponder of this embodiment of the invention.





FIG. 3

is a block schematic illustrating the low frequency transmitter/receiver of the remote transponder of this embodiment of the invention.





FIG. 4

is a block schematic illustrating modifications to the remote transponder of the road vehicle keyless entry system of FIG.


1


.





FIG. 5

is a block schematic illustrating modifications to the remote transponder of the road vehicle keyless entry system of FIG.


4


.





FIG. 6

is a block schematic illustrating the functional elements and data paths of one embodiment of the write distance expander of the remote transponder of FIG.


5


.





FIG. 7

is a block schematic illustrating the functional elements and data paths of a second embodiment of the write distance expander of the remote transponder of FIG.


5


.





FIG. 8

is a block schematic illustrating a write distance expander.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENT




In the road vehicle keyless entry system of the present invention the immobilization function, which locks the vehicle and initiates operation of the alarm system, is separate from the remote keyless entry function, which, for example, resets the alarm system and authorizes unlocking the vehicle and performance of vehicle related initialization functions such as seat, seat belt and vehicle mirror adjustments and lighting the vehicle interior lights.




Turning to the drawings,

FIG. 1

illustrates the functional elements and data paths of one embodiment of the road vehicle keyless entry system of the present invention. In this disclosure, the term road vehicle means all of the various types of vehicles that are operated upon the highway system including, but not limited to, automobiles, trucks, vans, motorcycles, buses and motorhomes. It is intended that the arrangement shown in

FIG. 1

, and in the following figures, shall be interpreted as an illustrative system configuration and that other possible configurations, more adapted to the specific user needs, exist within the scope of the disclosure herein. Further, the use of like reference numbers to identify components within the various figures indicates the presence of similar elements within each of the different figures.




The road vehicle keyless entry system, generally designated as


10


, includes a communication processor


11


that is located within the vehicle and a remote, miniaturized transponder


15


. Communication processor


11


may also be named an interrogator or called by other names indicating its function as a unit which requests and receives information from the remote transponder


15


. Communication processor


11


has a radio frequency receiver


12


, a low frequency transmitter/receiver


13


and a controller


14


which is capable of sending and receiving signals via the low frequency transmitter/receiver


13


and receiving signals via the radio frequency receiver


12


. Controller


14


combined with low frequency transmitter/receiver


13


is preferably, and may be referred to as, a TIRIS reader, the term TIRIS being an acronym known to those skilled in the art as denoting certain types of devices or equipment utilizing the transponder arrangement and TIRIS reader disclosed in Schuermann et al., U.S. Pat. No. 5,053,774. The transponder


15


has a radio frequency transmitter


16


that transmits a signal to communication processor


11


upon receipt of a stimulus manually produced by an operator's actuation of one of a plurality of push buttons


18


. While push buttons


18


are shown for convenience, any manually operatable, pulse creating switch such as, for example, a toggle switch or a rotary switch may be used. Transponder


15


also has a low frequency transmitter/receiver


17


capable of reading signals received from communication processor


11


, preparing an encrypted response and transmitting the encrypted response to communication processor


11


.




In the present embodiment of the invention, communication processor


11


located within the vehicle and remote transponder


15


communicate with one another to permit a flow of information to initiate operations at the vehicle. Communication between the two devices is initiated by the vehicle operator who pushes a button


18


on transponder


15


which responds by transmitting a radio frequency (RF) signal to communication processor


11


and a signal to low frequency transmitter/receiver


17


to prepare it for interrogation by communication processor


11


. The signal transmission, using a rolling code for security, is a one way communication or data transfer from transponder


15


to communication processor


11


using a radio frequency signal of 433 megahertz (433 MHz), for example, or another suitable frequency. In response to the initial signal from transponder


15


, communication processor


11


transmits a low frequency interrogation to transponder


15


requesting identification and verification of the original radio frequency signal. Thus, the low frequency communication between the devices, using a low frequency signal such as, for example, 134.2 kilohertz (134.2 kHz), is a two way data exchange using the challenge-response principle for authentication or verification of identity. Security of the low frequency signal is maintained by using an encryption key which is known only to communication processor


11


in the vehicle and remote transponder


15


. When transponder


15


provides an encrypted response containing the correct vehicle code to communication processor


11


in repose to the interrogation, communication processor


11


authorizes the desired operation within the vehicle. This use of encryption logic and interrogation and response via the low frequency data transmission, in addition to the rolling code used for security with the radio frequency signal, greatly increases the security of the road vehicle keyless entry system.




In the description above, a radio frequency transmitter and a receiver are used. It is further contemplated that radio frequency receiver


12


in communication processor


11


and radio frequency transmitter


16


in transponder


15


may be transmitter/receivers, each capable of performing both the receiving and transmitting functions. When radio frequency transmitter/receivers are used, both the radio frequency communication and the low frequency communication between communication processor


11


and transponder


15


will be two way transmissions used to transmit data between the two devices. This use of two way radio frequency communication is illustrated by the solid and dotted signal lines between radio frequency receiver


12


and radio frequency transmitter


16


.





FIG. 2

is a block schematic of the functional elements and data paths of remote transponder


15


of this embodiment of the invention showing radio frequency transmitter


16


and low frequency transmitter/receiver


17


. For remote security functions such as, for example, turning on the interior vehicle lights or arming or disarming the security system a functional range of greater than 10 meters is desired. For this purpose, transponder


15


includes radio frequency transmitter


16


which operates at a frequency of 433 megahertz (433 MHz) using a rolling code for security. The present transponder


15


further includes low frequency transmitter/receiver


17


which provides a two way exchange of data with the communication processor


11


in the vehicle using an encrypted signal having a frequency of 134.2 kilohertz (134.2 kHz). Use of low frequency transmitter/receiver


17


allows access to, or enables, additional features such as, for example, programming, the exchange and verification of identification and the use of encryption logic and the transmission of various desired commands to the vehicle, all of which can significantly increase the security of the road vehicle remote keyless entry system.




A vehicle operator provides a manual stimulus at the remote transponder


15


to initiate a command—the operator pushes one of the plurality of switches or push buttons


18


to indicate the action desired at the vehicle. Transponder


15


includes radio frequency transmitter


16


which includes control logic module


29


, radio frequency modulator/driver


28


and random number generator


30


. In response to the operator's action, radio frequency transmitter


16


transmits a signal, the desired command, to radio frequency receiver


12


in communication processor


11


at the vehicle and simultaneously transfers the command to low frequency transmitter/receiver


17


via the serial interface. For receipt of this command signal, power to passive, low frequency transmitter/receiver


17


is provided by battery at terminal ACT on the control logic module


21


and data are received using clock and data input ports, terminals SC and SI. In addition to the control logic module


21


, low frequency transmitter/receiver


17


includes encryption logic module


22


, memory


23


, radio frequency circuitry


24


, shift register


25


, tuned antenna, a parallel resonant circuit,


26


and charge or power capacitor


27


. Low frequency transmitter/receiver


17


transmits the remote command to low frequency transmitter/receiver


13


which was switched to the receive mode by controller


14


when radio frequency receiver


12


detected the carrier and command signal from radio frequency transmitter


16


. Thus, even if external influences create interference with the radio frequency transmission of the desired command, the command may be received by communication processor


11


through the use of low frequency transmission signals although the transmission range for the low frequency signal is reduced. Authentication of the command may be confirmed by control processor


11


transmitting a challenge to the transponder


15


using low frequency transmitter/receiver


13


. When the challenge is received by low frequency transmitter/receiver


17


, the encryption logic module


22


encrypts the challenge using the encryption key stored within memory


23


(not readable) and transfers the encrypted challenge and a serial number, which is also stored within memory


23


, to the radio frequency transmitter


16


. The encrypted challenge and serial number, together with the repeated command, are transmitted in parallel to communication processor


11


by both radio frequency transmitter


16


and low frequency transmitter/receiver


17


as a complete response to the challenge to authenticate the first command transmission. Controller


14


executes the command, or authorizes other devices to execute the command, if the correct vehicle code or signature is received in response to the challenge. With bidirectional communication using the low frequency transmitter/receivers


13


and


17


, the challenge-response feature provides greatly increased security over the rolling code system. It is now also possible to transmit additional data or programming information between the remote transponder


15


and the communication processor


11


using the low frequency transmitter/receiver


17


.




As discussed above, it is further contemplated that the radio frequency receiver


12


in communication processor


11


and radio frequency transmitter


16


in transponder


15


may be transmitter/receivers, each capable of performing both the receiving and transmitting functions. When radio frequency transmitter/receivers are used, both the radio frequency communication and the low frequency communication between communication processor


11


and transponder


15


will be two way transmissions used to transmit data between the two devices.




For remote keyless entry, a function or transmission range of at least approximately one meter (1 m) is necessary. However, this range is difficult to reach with passive transponders, even when the transponder has an antenna the size of a credit card. Therefore, an active function may be provided by the inclusion of a battery as shown in

FIG. 3

, a block schematic of a low frequency transmitter/receiver


50


, another embodiment of the low frequency transmitter/receiver


17


for remote transponder


15


.




Low frequency transmitter/receiver


50


includes logic control module


51


, receiver control module


52


, transmitter control module


53


, the end of burst detector


54


, the adaptive pluck logic module


55


, signal level converter


56


, clock regenerator


57


, divider


58


, threshold detector


59


, resonant circuit


60


, charge capacitor


61


and diodes


62


,


63


and


64


connected as shown in FIG.


3


. Resonate circuit


60


has a capacitor connected in parallel with an inductor with the value of each component selected to provide a resonant circuit that is resonant at a radio frequency of 134.2 kilo hertz (134.2 kHz). The size of charge capacitor


61


is selected so that the fully charged capacitor will have sufficient charge to provide the power necessary to enable the low frequency transmitter/receiver


50


to function properly. A capacitor sufficiently large would be, for example, a capacitor of approximately 0.12 microfarads (0.12 μf). Diodes


62


,


63


and


64


are symbols for the necessary one way function, that is, the signal is conducted in only one direction. Diodes


62


,


63


and


64


are preferably Schottky diodes with low feed through voltage, if possible in the selected semiconductor process, although they may be normal semiconductor diodes such as 1N4148 diodes or field effect transistor (FET) circuits using switched gates.




The vehicle operator initiates a command by providing a manual stimulus at the door handle of the vehicle or with remote transponder


15


—the operator operates the door handle or pushes one of the plurality of switches or push buttons


18


to indicate the action desired at the vehicle. After receipt of a radio frequency signal from transponder


15


, the communication processor


11


or interrogator transmits a low frequency signal (134.2 kHz) to low frequency transmitter/receiver


50


which, when received by resonant circuit


60


, provides electrical energy to charge charge capacitor


61


in addition to asking transponder


15


for confirmation of the command or action request. The low frequency voltage is rectified by diode


62


and charges charge capacitor


61


. The voltage level reached on charge capacitor


61


depends upon the distance between the communication processor


11


and the transponder


15


antennas which are typically resonance circuits having a high quality factor such as, for example, resonant circuit


60


. If sufficient energy is accumulated so that the voltage on charge capacitor


61


exceeds a certain limit such as one volt, for example, the threshold detector


59


switches the battery supply voltage from battery


65


, provided at terminal VBAT, to connect the battery voltage through connections VCC to the logic circuitry of low frequency transmitter/receiver


50


. The threshold detector


59


prevents discharge of battery


65


when transponder


15


is in the presence of electromagnetic interference such as, for example, if the transponder is placed upon a television set. If the voltage limit on charge capacitor


61


is low, the influence of the interference will increase, but the sensitivity (the signal detection range) will also increase. As explaned hereinafter, the threshold detector


59


may be an active or a passive device. Increasing the sensitivity requires more stand-by current from battery


65


, with a resulting decrease in battery life. The threshold detector may also be located at the radio frequency signal input where higher signal amplitudes are normally available. If battery


65


is not available, voltage is still provided to the logic circuitry by charge capacitor


61


through diodes


63


and


64


. The resonant circuit


60


is separated from the integrated circuit power supply during the reception of data, the write phase, from the communication processor


11


. The signal received by transponder


15


and the level of oscillation of the resonant circuit


60


is usually low when the distance between the communication processor


11


and the transponder


15


is great. The use of battery


65


to provide voltage to the circuit enables the low frequency transmitter/receiver


50


circuit to receive and react to transmitted signals having lower amplitudes than would be possible in the passive mode of operation, that is, without battery power. Voltage is monitored by the end of burst detector


54


. When the amplitude of the voltage signal drops and the resonant circuit


60


resonates with its own frequency instead of being enhanced by the signal from communication processor


11


, the end of burst detector


54


activates clock regenerator


57


and the pluck logic module


55


which preferably provides peak pluck and slope control. The pluck logic module


55


enhances oscillation whenever a voltage amplitude drop caused by the resonant circuit loss factor is detected. Pluck logic, the pluck logic module


55


and the peak detector used in pluck logic are described in U.S. Pat. Nos. 5,283,529, 5,227,740 and 5,126,745, the disclosures of which are hereby incorporated herein by reference.




The provision of battery power enables the circuit to operate properly with the reception of a lower signal amplitude than would be possible in the passive mode. Voltage amplitude drops during and after the write phase are detected by the end of burst detector


54


over greater distances because internal current sources and digital circuits of low frequency transmitter/receiver


50


are already fully functional as battery


65


provides the necessary power rather than relying upon the signal received by charge capacitor


61


to provide power, as would be required in the passive mode of operation. The low frequency transmitter/receiver


50


is able to regenerate even small signal amplitudes which helps pluck circuit


55


enhance the oscillation during the free running times, during the reception of write signals and during the transmission of response data. Thus, the distance over which data may be received by transponder


15


using pulse width modulation is significantly enhanced when compared to the distance possible when a transponder operating in the passive mode is used.




After a period for the charging of charge capacitor


61


, communication processor


11


transmits a challenge such as, for example, a random number to transponder


15


. This challenge is received by low frequency transmitter/receiver


50


and is encrypted, using the encryption key stored in its memory, to become the signature of the transponder


15


. This generated signature, the encrypted random number, and the serial number of transponder


15


are transmitted to the communication processor


11


by the low frequency transmitter/receiver


50


and, at the same time, transferred to radio frequency transmitter


16


of transponder


15


using the internal serial input/output interface circuitry. When the internal serial input/output interface circuitry is used without low frequency transmitter/receiver


13


being involved so that no voltage is charged in capacitor


61


, the activate signal on terminal ACT of low frequency transmitter/receiver


50


switches the battery 65 voltage, provided at terminal VBAT, to connect through connections VCC to the level converter


56


which maintains the correct input and output signal voltage levels under all voltage supply levels.




When the end of burst, the end of the transmission from communication processor


11


, measured by end of burst detector


54


lasts for a certain time such as, for example, a period of 1.9 milliseconds (1.9 ms), a “timeout” or response signal is generated in accordance with the disclosure above for transmission to communication processor


11


. Divider


58


counts the radio frequency oscillations regenerated by clock regenerator


57


during the end of burst period to determine when the response or “timeout” signal is to be generated and switches the battery voltage, terminal VBAT, to the resonant circuit


60


to increase the transmission frequency amplitude and, therefore, to increase the transmission reading distance and the signal robustness against noise or other interference. Thus, similar to the enhanced reception distance, the distance over which data may be transmitted by transponder


15


of this invention using frequency shift keying (FSK) is enhanced when compared to the distance possible when a transponder operating in the passive mode is used. The radio frequency transmitter


16


transmits the signature and serial number with a command that the communication processor


11


accept the parallel low frequency response as a backup and as a security check. This dual signal, the parallel transmission of a radio frequency signal and a low frequency signal, enhances the security against noise and manipulation of the command signals.




Operation may also be enhanced by using transmitter/receivers as the radio frequency receiver


12


in communication processor


11


and radio frequency transmitter


16


in transponder


15


. When radio frequency transmitter/receivers are used, both the radio frequency communication and the low frequency communication between communication processor


11


and transponder


15


will be two way transmissions, further enhancing the security against noise and manipulation of the command signals.




The road vehicle keyless entry system


10


may also be used to replace the ignition key of the vehicle. When the vehicle operator has entered the vehicle and wishes to start the engine, the operator will initiate a new command process with a manual stimulus of a push button on or near the vehicle dash board, for example. This stimulus initiates a new challenge/response phase via the low frequency transmitter/receivers. Operation of the keyless entry system


10


after receipt of the low frequency signal is as described above.




Turning now to

FIG. 4

, a block schematic illustrates modifications to the remote transponder


15


of the road vehicle keyless entry system


10


of FIG.


1


. Communication processor


11


is located within the vehicle and miniaturized transponder


15


is a remote unit which may be carried by the vehicle operator. The apparatus and operation of communication processor


11


and transponder


15


are as described in regard to

FIG. 1

above except that the serial input/output interface circuitry between radio frequency transmitter


16


and low frequency transmitter/receiver


17


is replaced by driver/demodulator circuit


19


and coupling coil


20


to provide for the contactless transfer of data between the two circuits. In this embodiment, battery voltage is provided to radio frequency transmitter


16


and voltage is transferred to low frequency transmitter/receiver


17


by signal transmission through coupling coil


20


. Commands are initiated by the manual stimulation of one of the plurality of push buttons


18


on radio frequency transmitter


16


which transmits the command to communication processor


11


and at the same time transfers the command data to low frequency transmitter/receiver


17


. As described above, it is contemplated that radio frequency receiver


12


and radio frequency transmitter


16


may be transmitter/receivers allowing two way radio frequency communication in addition to the two way low frequency communication. It is, thus, possible to initiate commands by manual stimulation of push buttons, similar to push buttons


18


, located on communication processor


11


. Communication processor


11


would transmit the command to radio frequency transmitter


16


, which would then be a transmitter/receiver, and it would request data from low frequency transmitter/receiver


17


to respond to the command from communication processor


11


. Solid and dotted lines are shown in

FIG. 4

to illustrate the two way flow of information by the use of radio frequency transmitter/receivers. The commands and data are transferred to low frequency transmitter/receiver


17


via coupling coil


20


which is driven by driver/demodulator circuit


19


. The response, also via coupling coil


20


, from low frequency transmitter/receiver


17


, the signature, serial number and status, are demodulated by driver/demodulator circuit


19


for reading by radio frequency transmitter


16


. Operation of communication processor


11


and transponder


15


are otherwise as described in regard to

FIG. 1

above. This embodiment of the invention may be especially useful if it is desired to separate the command function provided by radio frequency transmitter


16


, which initiates all commands by operation of one of the push buttons


18


, from the communication function provided by low frequency transmitter/receiver


17


, which provides two way communication for the transfer and verification of data between transponder


15


and communication processor


11


. Radio frequency transmitter


16


and low frequency transmitter/receiver


17


may, thus, be in separate compact cases, allowing separate use of a passive transponder for operation over short distances, separate use of an active, battery powered radio frequency transponder for remote control functions over greater distances and combined use of the passive and active transponder functions over the full desired operating range, thus allowing adaption of the transponder size to the size the vehicle operator is willing to carry.





FIG. 5

is a block schematic illustrating modifications to the remote transponder of the road vehicle keyless entry system of FIG.


4


. In

FIG. 5

the driver/demodulator circuit


19


interface of

FIG. 4

is replaced or complimented by a write distance expander interface circuit


19




a


which cooperates with radio frequency transmitter


16


and low frequency transmitter/receiver


17


to provide a transponder


15


that is operable at an increased distance between transponder


15


and communication processor


11


with low frequency transmitter/receiver


17


operating in the passive mode, that is without a voltage directly supplied by a battery.




Road vehicle keyless entry system


10


has communication processor


11


and transponder


15


. The functional elements and operation of communication processor


11


are described above. Transponder


15


has a low frequency transmitter/receiver


17


that operates on a low frequency such as, for example, 134.2 kilohertz (134.2 kHz) to provide two way communication, a challenge and encrypted response, with communication processor


11


. Transponder


15


also has a radio frequency transmitter


16


that operates on a radio frequency such as, for example, 433 megahertz (433 MHz). Radio frequency transmitter


16


is equipped with a battery and the range in which transponder


15


can receive the low frequency signal is increased by write distance expander interface circuit


19




a


. The radio frequency transmitter


16


and low frequency transmitter/receiver


17


must be in a common housing for operation over extended distances, but may be separated from one another while providing basic operations at shorter operating ranges.




The radio frequency transmitter


16


is typically used to provide security functions such as, for example, light switching, alarm arming and disarming and similar functions. The low frequency transmitter/receiver


17


is typically used in the passive operating mode to provide keyless entry and immobilization functions at short range, for example at distances less than one meter (1 m). When a request or command is made by the manual operation of one of a plurality of push buttons


18


on transponder


15


or by a mechanical switch such as the vehicle door handle, a challenge or interrogation, a random number, is transmitted from communication processor


11


using a ferrite or air coil antenna and pulse pause modulation at a frequency of, for example, 134.2 kilohertz (134.2 kHz) to the low frequency transmitter/receiver


17


of transponder


15


. Low frequency transmitter/receiver


17


encrypts the challenge using a secret encryption key held in its memory (not readable) to produce a signature and responds by transmitting the encrypted challenge, its signature, and the transponder serial number to the communication processor


11


using a frequency shift keying (FSK), frequency modulation, signal at a frequency of, for example, 134.2 kilohertz (134.2 kHz). If the distance between communication processor


11


and transponder


15


is too far, this communication will fail. To achieve a greater functional range, the write distance expander


19




a


interface circuit is provided.




One embodiment of the write distance expander


19




a


is shown in

FIG. 6

in a block schematic illustrating the expander's functional elements and data paths. A block schematic is used in

FIG. 7

to illustrate the functional elements and data paths of a second embodiment of the write distance expander


19




a.






Write distance expander


19




a


interface circuit includes resonant circuit


80


which consists of coil


81


, which also serves as a coupling coil, and a capacitor tuned to a frequency of 134.2 kilohertz (134.2 kHz); radio frequency voltage limiter


82


with a battery charge circuit; diode


83


connected to charge capacitor


84


; threshold detector


85


; clock regenerator


86


, an operational amplifier used as a comparator; envelope rectifier


87


; end of burst detector


88


; and a 134.2 kilohertz (134.2 kHz) clock generator module


89


which may, for example, be a pluck logic module or a separate oscillator with a divider gated by activation signal TXCT.




Coil


81


, which is, for example, a small ferrite or air coil, is located proximate the antenna of low frequency transmitter/receiver


17


at a position in which the coil


81


can receive the radio frequency signals from communication processor


11


and the resonant circuit of low frequency transmitter/receiver


17


. The write distance expander


19




a


resonant circuit


80


has a high quality factor to achieve a radio frequency voltage amplitude of at least about 1 to 2 volts at the desired maximum reading distance between the transponder


15


and communication processor


11


. When communication processor


11


transmits a challenge to transponder


15


and the distance between the two devices is too great, the low frequency transmitter/receiver


17


will not function properly because the challenge is not received or the signal is too weak. If the challenge is not properly received by low frequency transmitter/receiver


17


, encryption of the challenge is not started and no response will be transmitted to the communication processor


11


. The write distance expander


19




a


circuit has a threshold detector


85


which detects the radio frequency voltage increase during the charge phase, the period in which the radio frequency signal from communication processor


11


is used to charge charge capacitor


84


. The threshold detector


85


activates the supply voltage for the active devices and turns on the controller within the radio frequency transmitter


16


. The threshold detector


85


may be an N-channel FET with low gate source-voltage, a circuit that does not consume power as long as the FET is not in the conductive state. The threshold detector


85


can also be an active device which consumes a certain amount of standby current from the battery. The pulses of the FET, or of the active device, can be used to trigger a retriggerable monoflop or can be used directly to turn on the controller within radio frequency transmitter


16


which activates the power supply to the write distance expander


19




a


. The oscillation of the write distance expander is rectified by diode


83


and filtered by charge capacitor


84


to provide a reference voltage for the comparators, clock regenerator


86


and end of burst detector


88


.




During transmission of the command and the challenge to the low frequency transmitter/receiver


17


, the radio frequency signal is pulsed and the length of the pulse pauses are the indication for a low or a high bit. The envelope rectifier


87


detects the pulse pauses by rectifying the output of the clock regenerator


86


. The envelope rectifier


87


output signal is compared to the voltage reference level by the end of burst detector


88


and this signal is conducted to the controller of radio frequency transmitter


16


. The controller monitors the output from end of burst detector


88


, detects the length of the pulse pauses and determines whether a low bit or a high bit is received. Threshold detector


85


, envelope rectifier


87


and comparator


88


may be combined in the simplest case using a field effect transistor (FET) with low gate/source voltage as shown in

FIG. 8

, an illustration of a simple write distance expander. When an encryption command is received, the challenge is received and stored in controller memory. The controller of radio frequency transmitter


16


switches the voltage provided by battery


90


to the clock regenerator


86


when the response from the low frequency transmitter/receiver


17


is expected and clock regenerator


86


amplifies and limits the radio frequency signal oscillation and generates a digital clock signal. This clock signal is conducted directly to the controller of radio frequency transmitter


16


or to the controller through a digital or analog demodulator circuit


91


if the controller is not capable of demodulating the signal. The controller checks the frequency shift keying (FSK) modulated response from the low frequency transmitter/receiver


17


to determine whether it is valid and complete. The encrypted response to the challenge from the communication processor


11


is transmitted by the low frequency transmitter/receiver


17


and the response, the signature, status and other desired information, may be sent in parallel by the radio frequency transmitter


16


to confirm and authenticate the response. When only the challenge, but no response from the low frequency transmitter/receiver


17


, is detected by the controller of radio frequency transmitter


16


, the controller transfers the challenge stored in memory to the low frequency transmitter/receiver


17


using the 134.2 kilohertz (134.2 kHz) clock generator


89


which may be a pluck logic circuit or a gated oscillator with divider as shown in the demodulator circuit


91


. When low frequency transmitter/receiver


17


receives the challenge, it will generate an encrypted signature from the challenge and will transmit the encrypted signature at a frequency of 134.2 kilohertz (134.2 kHz) as the response to communication processor


11


. This response will also be transferred to radio frequency transmitter


16


and will be transmitted at a radio frequency of 433 megahertz (433 MHz) to communication processor


11


in parallel with the low frequency transmission of the response. The radio frequency voltage limiter circuit


82


necessary to protect the components can be used to charge battery


90


. If the threshold detector


85


, and the controller of radio frequency transmitter


16


, detects a continuous radio frequency signal for a long period of time, then radio frequency voltage limiter


82


will switch the voltage to a higher level for use to charge battery


90


. Depending upon the low frequency voltage initiated in the write distance expander


19




a


resonant circuit


81


(antenna size) and the threshold detector level sensitivity, distances of from about 1 meter (1 m) to about 2 meters (2 m) between transponder


15


and communication processor


11


can be bridged for remote keyless entry communications. This greater or expanded signal reception distance combined with the greater transmission distance for radio frequency remote control transmitter


16


, greater than 10 meters (>10 m) allows the operator to gain access to the vehicle or authorize other vehicle actions from a greater distance or without removing the transponder


15


from the pocket.




In addition to the described function, write distance expander


19




a


may also be used as a low cost radio frequency module with receive and transmit capabilities. Such modules could be used in transponders useful over short distances.




In view of the foregoing description, it will be seen that several advantages are attained by the present invention.




Although the foregoing includes a description of the best mode contemplated for carrying out the invention, various modifications could be made in the constructions herein described and illustrated without departing from the scope of the invention. It is intended that all material contained in the foregoing description or shown in the accompanying drawing should be interpreted as illustrative rather than limiting and that the invention should be defined only in accordance with the following claims.



Claims
  • 1. A road vehicle keyless entry system comprising an in-vehicle communication processor and a remote, miniaturized transponder;the communication processor having a radio frequency receiver, a low frequency transmitter/receiver for transmitting low frequency signals and a controller for reading the signals sent and received by the low frequency transmitter/receiver; and the transponder having a radio frequency transmitter that transmits a signal to the radio frequency receiver of said communication processor upon receipt of a manual stimulus thereat and a low frequency transmitter/receiver for reading low frequency signals received from the communication processor and transmitting an encrypted response to the communication processor.
  • 2. The road vehicle keyless entry system of claim 1 wherein the radio frequency transmitter of the transponder and the radio frequency receiver of the communication processor send and receive a signal having a frequency of 433 megahertz.
  • 3. The road vehicle keyless entry system of claim 1 wherein the low frequency transmitter/receivers of the transponder and the communication processor send and receive a signal having a frequency of 134.2 kilohertz.
  • 4. The road vehicle keyless entry system of claim 3 wherein the low frequency transmitter/receiver of the transponder operates in a passive mode.
  • 5. The road vehicle keyless entry system of claim 1 wherein the transponder supplements or replaces the vehicle door and ignition keys, signals from the transponder being received by the communication processor that, after reception and verification of access codes, authorizes unlocking the vehicle and performance of vehicle related initialization functions such as seat, seat belt and vehicle mirror adjustments.
  • 6. The road vehicle keyless entry system of claim 1 wherein the transponder further includes an interface circuit and a coupling coil to provide contactless transfer of data between the radio frequency transmitter and the low frequency transmitter/receiver.
  • 7. The road vehicle keyless entry system of claim 6 wherein the transponder radio frequency transmitter and low frequency transmitter/receiver are in separate cases.
  • 8. The road vehicle keyless entry system of claim 1 wherein the communication processor radio frequency receiver and the transponder radio frequency transmitter are radio frequency transmitter/receivers capable of two way transmissions between the communication processor and the transponder.
  • 9. A road vehicle keyless entry system comprising an in-vehicle communication processor and a remote transponder;the communication processor having a radio frequency receiver, a low frequency transmitter/receiver and a controller capable of reading the signals sent and received by the low frequency transmitter/receiver; and the transponder having a radio frequency transmitter that transmits a signal to the radio frequency receiver of said communication processor upon receipt of a manual stimulus, a low frequency transmitter/receiver capable of reading signals received from the communication processor and transmitting an encrypted response to the communication processor and an interface circuit and coupling coil to provide contactless transfer of data between the radio frequency transmitter and the low frequency transmitter/receiver.
  • 10. The road vehicle keyless entry system of claim 9 wherein the radio frequency transmitter of the transponder and the radio frequency receiver of the communication processor send and receive a signal having a frequency of 433 megahertz.
  • 11. The road vehicle keyless entry system of claim 9 wherein the low frequency transmitter/receivers of the transponder and the communication processor send and receive a signal having a frequency of 134.2 kilohertz.
  • 12. The road vehicle keyless entry system of claim 9 wherein the manual stimulus is the manual actuation of one of a plurality of push buttons.
  • 13. The road vehicle keyless entry system of claim 9 wherein the communication processor radio frequency receiver and the transponder radio frequency transmitter are radio frequency transmitter/receivers capable of two way transmissions between the communication processor and the transponder.
  • 14. A secure road vehicle keyless entry system comprising an in-vehicle communication processor and a remote transponder, the communication processor and transponder communicating in parallel paths, a first path being a radio frequency transmission from the transponder to the communication processor and a second path being a low frequency, encrypted two way transmission between the transponder and the communication processor.
  • 15. The secure road vehicle keyless entry system of claim 14 wherein the radio frequency transmission and the low frequency transmission are compared for authentication of the transmitted data.
  • 16. The secure road vehicle keyless entry system of claim 14 wherein the radio frequency transmission is a two way transmission between the transponder and the communication processor.
  • 17. A method of vehicle keyless entry comprising the steps of:providing an in-vehicle communication processor and a remote, miniaturized transponder, the communication processor having a radio frequency receiver, a low frequency transmitter/receiver for transmitting low frequency signals and a controller for reading the signals sent and received by the low frequency transmitter/receiver and the transponder having a radio frequency transmitter that transmits a signal to the communication processor upon receipt of a manual stimulus thereat and a low frequency transmitter/receiver for reading low frequency signals received from the communication processor and transmitting an encrypted response to the communication processor; providing said manual stimulus to cause said transponder to send an RF signal to said communication processor and sending a low frequency signal to said low frequency transmitter/receiver at said communication processor in response to said manual stimulus; then sending a low frequency signal from said low frequency transmitter/receiver at said communication processor to said transmitter/receiver at said transponder in response to at least one of said signals from said transponder to said communication processor; and then sending a signal from said transponder to said communication processor in response to said signal from said communication processor to said transponder.
  • 18. The method of claim 17 wherein said signal from said low frequency transmitter/receiver at said communication processor to said low frequency transmitter/receiver at said transponder is an encoded signal.
  • 19. The method of claim 18 wherein said encoded signal is a rolling coded signal.
  • 20. The method of claim 17 wherein said signal from said low frequency transmitter/receiver at said transponder to said low frequency transmitter/receiver at said communication processor is an encoded signal.
  • 21. The method of claim 18 wherein said signal from said low frequency transmitter/receiver at said transponder to said low frequency transmitter/receiver at said communication processor is an encoded signal.
  • 22. The method of claim 20 wherein said encoded signal is a rolling coded signal.
  • 23. The method of claim 21 wherein said encoded signal is a rolling coded signal.
US Referenced Citations (4)
Number Name Date Kind
5523746 Gallagher Jun 1996
5583486 Kersten Dec 1996
5744874 Yoshida et al. Apr 1998
5757086 Nagashima May 1998
Foreign Referenced Citations (5)
Number Date Country
44 09 559 Jun 1995 DE
43 29 697 A Jan 1996 DE
0 659 963 A Jun 1995 EP
0 690 190 A Jan 1996 EP
767 286 A Apr 1997 EP