1. Field of the Invention
The present invention relates generally to wireless communication systems, and in particular relates to transponders and transponder systems and methods used in optical-fiber-based wireless picocellular systems for radio-over-fiber (RoF) communication.
2. Technical Background
Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (coffee shops, airports, libraries, etc.). Wireless communication systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with the access point device.
One approach to deploying a wireless communication system involves the use of “picocells,” which are radio-frequency (RF) coverage areas having a radius in the range from about a few meters up to about 20 meters. Because a picocell covers a small area, there are typically only a few users (clients) per picocell. Picocells also allow for selective wireless coverage in small regions that otherwise would have poor signal strength when covered by larger cells created by conventional base stations.
In conventional wireless systems, picocells are created by and centered on a wireless access point device connected to a head-end controller. The wireless access point device includes digital information processing electronics, a RF transmitter/receiver, and an antenna operably connected to the RF transmitter/receiver. The size of a given picocell is determined by the amount of RF power transmitted by the access point device, the receiver sensitivity, antenna gain, and the RF environment, as well as by the RF transmitter/receiver sensitivity of the wireless client device. Client devices usually have a fixed RF receiver sensitivity, so that the above-mentioned properties of the access point device mainly determine the picocell size. Combining a number of access point devices connected to the head-end controller creates an array of picocells that cover an area called a “picocellular coverage area.” A closely packed picocellular array provides high per-user data-throughput over the picocellular coverage area.
Prior art wireless systems and networks are wire-based signal distribution systems where the access point devices are treated as separate processing units linked to a central location. This makes the wireless system/network relatively complex and difficult to scale, particularly when many picocells need to cover a large region. Further, the digital information processing performed at the access point devices requires that these devices be activated and controlled by the head-end controller, which further complicates the distribution and use of numerous access point devices to produce a large picocellular coverage area.
While RoF wireless picocellular systems are generally robust, there are some limitations. One limitation relates to the radiation pattern from the transponder antenna. Though microstrip antennas have a directional radiation pattern, they are generally more expensive and more complicated to integrate into a RoF cable than the simpler and less expensive dipole antennas. However, dipole antennas in the form of wires radiate omnidirectionally in a plane perpendicular to the RoF cable. This wastes energy and also interferes with other picocells, such as those formed in the floor above the ceiling in which the RoF cable is deployed.
Another limitation relates to the need for having a transponder for each picocell. The typical RoF transponder includes a mechanical housing, a laser, a photodetector, a printed circuit board with RF electronics, optical connectors, and electrical connectors. The relatively small size of picocells typically requires that the transponders be spaced apart by between 5 to 10 meters or so. A RoF wireless picocellular system would be easier to deploy and be less expensive if the number of transponders could be reduced.
A further limitation relates to locating RoF transponders after they are deployed. The typical RoF wireless picocellular system includes one or more RoF cables that are hidden in a building's infrastructure, such as above a suspended ceiling. This makes it difficult for service personnel to locate a problematic transponder.
Another limitation relates to deploying the RoF transponders. One way of deploying transponders is to tether them to respective access points in the RoF cable using a tether cable. However, the position of each transponder relative to the RoF cable tends to be different, requiring different lengths of tether cable. This requires that the slack in some of the tether cables be addressed by coiling the tether or otherwise storing the excess tether cable. In addition, tether cabling needs to be packaged for shipping in a manner that lends itself to ease of installation since quicker system installation translates into cost savings.
One aspect of the invention is a transponder system with enhanced antenna directivity, for use in a RoF wireless picocellular system. The system includes a transponder having a converter pair unit adapted to convert radio-frequency (RF) electrical signals into optical signals and vice versa, and an antenna system having at least one antenna element operably coupled to the converter pair unit. The system also includes at least one radiation-reflecting member arranged relative to the at least one antenna element so as to provide enhanced antenna directivity as compared to not having the at least one radiation-reflecting member.
Another aspect of the invention is a transponder node assembly for a RoF wireless picocellular system. The system includes two or more converter pairs, with each converter pair adapted to convert RF electrical signals into RF optical signals and vice versa. The system also includes corresponding two or more antenna systems electrically connected to the corresponding two or more converter pairs. The system also includes a protective housing that houses the two or more converter pairs.
Another aspect of the invention is a transponder radio-frequency identification (RFID) system that includes a radio-over-fiber (RoF) transponder adapted to convert radio-frequency (RF) electrical signals to RF optical signals and vice versa. The system also includes a RFID tag positioned relative to the transponder and adapted to produce a RFID-tag signal. In one case, the RFID-tag signal contains RFID tag data that includes at least one property of the transponder. In another case, the RFID-tag signal contains no RFID tag data and acts as a ping signal to locate the RFID tag. The system also includes a RFID tag reader adapted to cause the RFID tag to emit the RFID-tag signal and to detect and process the RFID tag signal.
Another aspect of the invention is a tether cable assembly for a RoF wireless picocellular system having an optical fiber cable. The assembly includes a tether cable having at least one optical fiber, at least one electrical wire, and proximal and distal ends. The assembly also includes a spool around which the tether cable can be coiled and uncoiled. The assembly further includes a housing surrounding the spool and having a first slot sized to pass the tether cable. The assembly also has a RoF transponder connected to the tether cable proximate end. The tether cable distal end is adapted to operably couple to the optical fiber cable.
Additional features and advantages of the invention are set forth in the detailed description that follows, and will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, the claims, and the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention and, together with the description, serve to explain the principles and operations of the invention.
Accordingly, various basic electronic circuit elements and signal-conditioning components, such as bias tees, RF filters, amplifiers, power dividers, etc., are not all shown in the drawings for ease of explanation and illustration. The application of such basic electronic circuit elements and components to the systems of the present invention will be apparent to one skilled in the art.
Reference is now made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same or analogous reference numbers are used throughout the drawings to refer to the same or like parts.
Generalized Optical-Fiber-Based RoF Wireless Picocellular System
Service unit 50 is electrically coupled to an electrical-to-optical (E/O) converter 60 that receives an electrical RF service signal from the service unit and converts it to corresponding optical signal. In an example embodiment, E/O converter 60 includes a laser suitable for delivering sufficient dynamic range for the RF-over-fiber applications of the present invention, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for E/O converter 60 include laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).
Head-end unit 20 also includes an optical-to-electrical (O/E) converter 62 electrically coupled to service unit 50. O/E converter 62 receives an optical RF service signal and converts it to a corresponding electrical signal. In an example embodiment, O/E converter is a photodetector, or a photodetector electrically coupled to a linear amplifier. E/O converter 60 and O/E converter 62 constitute a “converter pair unit” 66.
In an example embodiment, service unit 50 includes a RF signal modulator/demodulator unit 70 that generates an RF carrier of a given frequency and then modulates RF signals onto the carrier, and that also demodulates received RF signals. Service unit 50 also includes a digital signal processing unit (“digital signal processor”) 72, a central processing unit (CPU) 74 for processing data and otherwise performing logic and computing operations, and a memory unit 76 for storing data, such as RFID tag information or data to be transmitted over the WLAN. In an example embodiment, the different frequencies associated with the different signal channels are created by modulator/demodulator unit 70 generating different RF carrier frequencies based on instructions from CPU 74. Also, as described below, the common frequencies associated with a particular combined picocell are created by modulator/demodulator unit 70 generating the same RF carrier frequency.
With continuing reference to
Transponders 30 of the present invention differ from the typical access point device associated with wireless communication systems in that the preferred embodiment of the transponder has just a few signal-conditioning elements and no digital information processing capability. Rather, the information processing capability is located remotely in head-end unit 20, and in a particular example, in service unit 50. This allows transponder 30 to be very compact and virtually maintenance free. In addition, the preferred example embodiment of transponder 30 consumes very little power, is transparent to RF signals, and does not require a local power source, as described below.
With reference again to
In an example embodiment, the optical-fiber-based wireless picocellular system 10 of the present invention employs a known telecommunications wavelength, such as 850 nm, 1300 nm, or 1550 nm. In another example embodiment, system 10 employs other less common but suitable wavelengths such as 980 nm.
Example embodiments of system 10 include either single-mode optical fiber or multimode optical fiber for downlink and uplink optical fibers 136D and 136U. The particular type of optical fiber depends on the application of system 10. For many in-building deployment applications, maximum transmission distances typically do not exceed 300 meters. The maximum length for the intended RF-over-fiber transmission needs to be taken into account when considering using multi-mode optical fibers for downlink and uplink optical fibers 136D and 136U. For example, it has been shown that a 1400 MHz·km multi-mode fiber bandwidth-distance product is sufficient for 5.2 GHz transmission up to 300 m.
In an example embodiment, the present invention employs 50 μm multi-mode optical fiber for the downlink and uplink optical fibers 136D and 136U, and E/O converters 60 that operate at 850 nm using commercially available VCSELs specified for 10 Gb/s data transmission. In a more specific example embodiment, OM3 50 μm multi-mode optical fiber is used for the downlink and uplink optical fibers 136D and 136U.
Wireless system 10 also includes a power supply 160 that generates an electrical power signal 162. Power supply 160 is electrically coupled to head-end unit 20 for powering the power-consuming elements therein. In an example embodiment, an electrical power line 168 runs through the head-end unit and over to transponder 30 to power E/O converter 60 and O/E converter 62 in converter pair 66, the optional RF signal-directing element 106 (unless element 106 is a passive device such as a circulator), and any other power-consuming elements (not shown). In an example embodiment, electrical power line 168 includes two wires 170 and 172 that carry a single voltage and that are electrically coupled to a DC power converter 180 at transponder 30. DC power converter 180 is electrically coupled to E/O converter 60 and O/E converter 62, and changes the voltage or levels of electrical power signal 162 to the power level(s) required by the power-consuming components in transponder 30. In an example embodiment, DC power converter 180 is either a DC/DC power converter, or an AC/DC power converter, depending on the type of power signal 162 carried by electrical power line 168. In an example embodiment, electrical power line 168 includes standard electrical-power-carrying electrical wire(s), e.g., 18-26 AWG (American Wire Gauge) used in standard telecommunications and other applications. In another example embodiment, electrical power line 168 (dashed line) runs directly from power supply 160 to transponder 30 rather than from or through head-end unit 20. In another example embodiment, electrical power line 168 includes more than two wires and carries multiple voltages.
In an example embodiment, head-end unit 20 is operably coupled to an outside network 52 via a network link 224.
General Method of Operation
With reference to the optical-fiber-based wireless picocellular system 10 of
Electrical signal SD is received by E/O converter 60, which converts this electrical signal into a corresponding optical downlink RF signal SD′ (“optical signal SD′”), which is then coupled into downlink optical fiber 136D at input end 138. It is noted here that in an example embodiment optical signal SD′ is tailored to have a given modulation index. Further, in an example embodiment the modulation power of E/O converter 60 is controlled (e.g., by one or more gain-control amplifiers, not shown) to vary the transmission power from antenna system 100. In an example embodiment, the amount of power provided to antenna system 100 is varied to define the size of the associated picocell 40, which in example embodiments range anywhere from about a meter across to about twenty meters across.
Optical signal SD′ travels over downlink optical fiber 136 to output end 140, where it is received by O/E converter 62 in transponder 30. O/E converter 62 converts optical signal SD′ back into electrical signal SD, which then travels to signal-directing element 106. Signal-directing element 106 then directs electrical signal SD to antenna 100. Electrical signal SD is fed to antenna system 100, causing it to radiate a corresponding electromagnetic downlink RF signal SD″ (“electromagnetic signal SD″ ”).
Because client device 45 is within picocell 40, electromagnetic signal SD″ is received by client device antenna 46, which may be part of a wireless card, or a cell phone antenna, for example. Antenna 46 converts electromagnetic signal SD″ into electrical signal SD in the client device (signal SD is not shown therein). Client device 45 then processes electrical signal SD, e.g., stores the signal information in memory, displays the information as an e-mail or text message, etc.
In an example embodiment, client device 45 generates an electrical uplink RF signal SU (not shown in the client device), which is converted into an electromagnetic uplink RF signal SU″ (“electromagnetic signal SU″ ”) by antenna 46.
Because client device 45 is located within picocell 40, electromagnetic signal SU″ is detected by transponder antenna system 100, which converts this signal back into electrical signal SU. Electrical signal SU is directed by signal-directing element 106 to E/O converter 60, which converts this electrical signal into a corresponding optical uplink RF signal SU′ (“optical signal SU′ ”), which is then coupled into input end 142 of uplink optical fiber 136U. Optical signal SU′ travels over uplink optical fiber 136U to output end 144, where it is received by O/E converter 62 at head-end unit 20. O/E converter 62 converts optical signal SU′ back into electrical signal SU, which is then directed to service unit 50. Service unit 50 receives and processes signal SU, which in an example embodiment includes one or more of the following: storing the signal information; digitally processing or conditioning the signals; sending the signals on to one or more outside networks 52 via network links 224; and sending the signals to one or more client devices 45 in picocellular coverage area 44. In an example embodiment, the processing of signal SU includes demodulating this electrical signal in RF signal modulator/demodulator unit 70, and then processing the demodulated signal in digital signal processor 72.
System with Central Head-End Station and Optical Fiber Cable
In an example embodiment, system 200 further includes a main controller 250 operably coupled to service units 50 and adapted to control and coordinate the operation of the service units in communicating with transponders 30. In an example embodiment, controller 250 includes a central processing unit (CPU) 252 and a memory unit 254 for storing data. CPU 252 is adapted (e.g., is programmed) to process information provided to controller 250 by one or more of service units 50. In an example embodiment, controller 250 is or includes a programmable computer adapted to carry out instructions (programs) provided to it or otherwise encoded therein on a computer-readable medium.
Central head-end station 210 further includes a downlink RF signal multiplexer (“downlink multiplexer”) 270 operably coupled to controller 250. Downlink multiplexer unit 270 has an input side 272 and an output side 274. Transmission lines 230 are electrically connected to downlink multiplexer 270 at input side 272.
In an example embodiment, downlink multiplexer 270 includes a RF signal-directing element 280 (e.g., a RF switch) that allows for selective communication between service units 50 and transponders 30, as described below. In an example, the selective communication involves sequentially addressing transponders 30 for polling corresponding picocells 40. Such sequential polling can be used, for example, when one of service units 50 is a RFID reader searching for RFID tags 290 in picocells 40 (
Central head-end station 210 also includes an uplink RF signal multiplexer (“uplink multiplexer”) 320 operably coupled to controller 250 and having an input side 322 and an output side 324. Receiving lines 232 are electrically connected to uplink multiplexer 320 at output side 324. In an example embodiment, uplink multiplexer 320 includes a RF signal-directing element 328.
Central head-end station 210 also includes a number of E/O converters 60 that make up an E/O converter array 360, and a corresponding number of O/E converters 62 that make up an O/E converter array 362. E/O converters 60 are electrically coupled to output side 274 of downlink multiplexer 270 via electrical lines 330, and are optically coupled to input ends 138 of corresponding downlink optical fibers 136D. O/E converters 62 are electrically coupled to input side 322 of uplink multiplexer 320 via electrical lines 332, and are optically coupled to output ends 144 of corresponding uplink optical fiber 136U. Downlink optical fibers 136D constitute a downlink optical fiber cable 378 and uplink optical fibers 136U constitute an uplink optical fiber cable 380.
Method of Operation
With reference to
Thus, one, some or all of E/O converters 60 in E/O converter array 360 receive electrical signals SD from downlink multiplexer 270. The addressed E/O converters 60 in E/O converter array 360 convert electrical signals SD into corresponding optical signals SD′, which are transmitted over the corresponding downlink optical fibers 136D to the corresponding transponders 30. The addressed transponders 30 convert optical signals SD′ back into electrical signals SD, which are then converted into electromagnetic signals SD″ that correspond to the particular service unit application.
In an example embodiment, uplink multiplexer 320 and RF signal-directing element 328 therein are controlled by controller 250 via a control signal S2 to direct electrical signals SU to the service unit(s) 50 that require(s) receiving electrical signals SU.
In an example embodiment, the different services from some or all of service units 50 (i.e. cellular phone service, WiFi for data communication, RFID monitoring, etc.) are combined at the RF signal level by frequency multiplexing.
In an example embodiment, a single electrical power line 168 from power supply 160 at central control station 210 is incorporated into optical fiber cable 220 and is adapted to power each transponder 30, as shown in
Transponder System with Enhanced Antenna Directivity
Radiation-reflector assembly 310A is shown mounted atop optical fiber cable 220 so as to be above and parallel to antenna element 300A, with support member 314A engaged with a mounting member 320A fixed to optical fiber cable 220. The distance between antenna element 300A and radiation reflecting member 312A is DA. In general, radiation-reflecting member 312A is arranged relative to antenna element 300A so as to provide enhanced antenna directivity as compared to not having the radiation-reflecting member so arranged.
In an example embodiment, distance DA is equal to or is about λRA/4, where λRA is the center wavelength of the operating band of antenna element 300A and thus the downlink and uplink electromagnetic radiation signals SD″ and SU″ transmitted therefrom and received thereby. This allows the reflected signals to be in phase with the non-reflected signals by accumulating a total phase of λRA/2 by traveling to and from radiation-reflecting member 312A as well as another phase accumulation of λRA/2 upon reflection.
In an example embodiment, radiation-reflecting member 312A is made of metal, such as copper. Also in an example embodiment, support member 314A is made of a dielectric material such as plastic, and is adapted to snap-engage mounting member 320A.
In operation, electromagnetic downlink signals SD″ are emitted from antenna element 300A in both the +Y and −Y directions, as illustrated in the close-up schematic diagram of
In an example embodiment, distance DC is at or about λR/4 of one of the wavelengths from either antenna element 300A or 300B. In another example embodiment, distance DC is given by (λRA/4+λRB/4)/2, wherein λRA and λRB are the aforementioned center wavelengths of the frequency bands of antenna elements 300A and 300B, respectively. In another example embodiment, distance DC is set to be at or about λRA/4 or λRB/4.
While the single radiation-reflector assembly 310C does not typically provide the same degree of efficiency as an arrangement where each antenna element has its own radiation-reflector assembly, it still is able to provide an effective degree of radiation directivity and isolation, and thus enhanced transponder performance.
In general, at least one radiation-reflecting member is arranged relative to either a corresponding at least one antenna element or to one or more antenna elements, so as to provide enhanced antenna directivity as compared to not having the at least one radiation-reflecting member so arranged.
A transponder 30 having enhanced directionality has a number of important advantages over a transponder that does not have an associated radiation-reflector assembly. One advantage is reduced interference with other transponders by substantially reducing the amount of radiation that travels in an unwanted direction or to an unwanted location. For example, as described above in connection with
Enhanced antenna directivity also decreases the amount of cross-talk between picocells 40 that use the same subcarrier frequency. Thus, one can achieve small picocell size without an increase in the cross-talk penalty.
The enhanced directivity of transponder 30 of the present invention also improves communication efficiency by redirecting otherwise wasted radiation back into the picocell associated with the transponder. This also has the effect of improved wireless security by blocking unwanted leakage of the picocell to unwanted areas, such as outside of a building or other offices or common areas of a building, as described above in connection with
The enhanced directivity of transponder 30 of the present invention also facilitates the formation of wireless-free zones. Such zones may be desired in certain locations, such as laboratories where very sensitive measuring equipment is located, or in hospitals where RF wireless signals might interfere with patient care.
Also, as discussed above, the enhanced directivity of transponder 30 of the present invention can be used to optimize wireless performance in particular regions of a building. For example, transponders located next to a wall are likely to have a large portion of its energy absorbed by or transmitted through the wall. By orienting the radiation patterns of such transponders using one or more radiation-reflector assemblies (see, e.g.,
The radiation-reflector assembly of the present invention is also preferably adapted for quick deployment, using for example so-called snap-engagement of the different parts of the assembly. This allows for quick and efficient installation of the associated RF wireless picocellular system.
Transponder Node Assembly
Conventional ROF wireless picocellular systems have a single transponder 30 associated with each picocell 40, as shown in
By way of example, for a transponder node assembly 500 having the capability of five transponders and for a node (picocell) spacing of 5 meters, the longest length of coaxial cable 302 for antenna elements 300 is 10 meters. Using commercially available coaxial cable such as Astrolab 3205 cable (available from www.astrolab.com), the RF loss over the 10 meters is only about 5 dB, which is acceptably low for RoF wireless picocellular systems.
The transponder node assembly of the present invention thus enables a method of forming picocells in a radio-over-fiber (RoF) wireless picocellular system. This method includes forming transponder node assembly 500 as described above, e.g., by combining two or more converter units 66 into housing 102 and connecting respective two or more antenna systems 100 to the corresponding two or more converter units. The method also includes distributing the two or more antenna systems 100 to corresponding two or more locations, e.g., throughout optical fiber cable 220 so as to form two or more corresponding picocells 40 (such as formed in
Transponder RFID System
A typical cable installation scenario associated with deploying a RoF wireless picocellular system involves placing optical fiber cable 220 and the transponders 30 either incorporated therein or operably coupled thereto atop ceiling tiles in a building.
While such hidden installation is preferred for aesthetic reasons, it is often difficult to locate transponders after installation, either for maintenance, repair or other adjustments such as position adjustment to adjust the location or coverage of the corresponding picocell. Since optical fiber cable 220 is hidden by drop ceiling 410, quick location of a given transponder 30 is a difficult and time-consuming task.
Accordingly, an aspect of the present invention involves providing at least one transponder 30 (and preferably most if not all of the transponders in a RoF wireless picocellular system) with a RFID tag.
RFID reader 650 includes a receive/transmit antenna 662, a signal processing circuit 664 electrically connected thereto, and a memory unit 666 electrically connected to the signal processing circuit. RFID tag reader 650 also includes other electronic components that are not essential to the present invention and so are not shown. In an example embodiment, RFID tag reader 650 includes a GPS unit 668 adapted to provide GPS data to signal processing circuit 664 and/or to memory unit 666.
With continuing reference to
Microcircuit 644 in RFID tag 640 is adapted to receive at antenna 642 interrogation signal SI″ and to process this signal. The processing includes, for example, comparing the received interrogation signal SI″ to a corresponding bit sequence stored in memory unit 646. In an example embodiment, microcircuit 644 is adapted to use the energy in interrogation signal SI″ to power itself. If the proper content of the received interrogation signal SI″ is confirmed, then microcircuit 644 is adapted to generate a RFID tag signal ST representative of the stored RFID tag data and to transmit this signal via antenna 642 to RFID reader 650 as an electromagnetic tag signal ST″ to be read by the RFID tag reader. In an example embodiment, RFID tag reader 650 is adapted to generate a “ping” interrogation signal SI″ that simply elicits a “ping” electromagnetic tag signal ST″ from RFID tag 640, wherein the ping form of signal ST″ is used located the RFID tag.
In an example embodiment, at least some of the RFID tags 640 are adapted to generate RFID tag signals ST″ at a frequency suitable for long-range RFID-tag reading, such at the 915 MHz band or the 2.45 GHz band. Such RFID tags are best suited for aerial or aboveground applications, or more generally for RFID-tag locations that are not buried or otherwise obstructed by an intervening RF-frequency-absorbing medium. Suitable RFID tags for the present invention are available from Alien Technologies, Inc., as Model Nos. ALL-9440 and ALL-9350.
In an example embodiment, RFID tag reader 650 and one or more of RFID tags 640 are adapted with encryption capability so that the interrogation signal SI and the RFID tag signal ST can be encrypted to prevent third parties from reading or overwriting RFID tag data.
RFID tag reader 650 is also adapted to receive electromagnetic RFID tag signal ST″ via antenna 662, which converts this signal back into electrical RFID tag signal ST. Signal processing circuit 664 is further adapted to extract the RFID tag data from this signal and store this data in memory unit 666.
In an example embodiment, transponder RFID system 700 includes a database unit 710 operably coupled to RFID reader 650 so that information can be transmitted to and receive from the database unit. In an example embodiment, database unit 710 includes a transmit/receive antenna 712 used to wirelessly communicate with RFID tag reader 650, through a WiFi network or through the cellular phone network, as examples. In another example embodiment, database unit 710 is operably coupled to RFID tag reader 650 via a non-wireless (e.g., an electrical or optical) communication link 720, such as an Ethernet link.
Database unit 710 includes a microprocessor 730 operably connected thereto, a memory unit 734 operably coupled to the microprocessor, and a display 740 operably coupled to the microprocessor. In an example embodiment, database unit 710 is or otherwise includes a computer, such as a laptop computer, personal computer or workstation. In an example embodiment, database unit 710 is mobile (e.g., as a laptop computer or hand-held device) and is brought out to the field to be accessible to those working in the field to deploy or maintain the RoF wireless picocellular system. Also in an example embodiment, database unit 710 supports a graphical user interface (GUI) so that a database-unit user can view graphical images and interact with interactive graphical images on display 740.
In an example embodiment, RFID tag reader 650 transmits RFID tag data to database unit 710 either non-wirelessly via a non-wireless data signal S1 sent over communication link 720, or wirelessly via electromagnetic data signal S1″. Database unit 710 then stores and processes the RFID tag data, such as described below.
Also in an example embodiment, database unit 710 either wirelessly and/or non-wirelessly transmits write information in respective write signals SW and/or (electromagnetic) signal SW″ to RFID tag reader 650. The write signals are then sent by RFID tag reader 650 as an electromagnetic write signal SW″ to one or more write-able RFID tags 640 and stored therein as RFID tag data.
Microprocessor 730 in database unit 710 is adapted to process the RFID tag data in RFID tag signals ST to glean useful information about the corresponding transponders 30. In an example embodiment, this information is displayed on display 740. In an example embodiment, the information is represented as graphics, and further is presented by database unit 710 in the form of one or more interactive maps of the RoF wireless picocellular system that include the location of one or more transponders 30. In an example embodiment, the location information includes GPS coordinates supplied by GPS unit 668.
Transponder Mode Selection Via the RFID Tag
In an example embodiment of the present invention, when transponders 30 are not in use, they are adapted to transition from a “fully operational” mode to a “stand-by” power-saving mode by turning off main energy consuming elements therein. One approach to returning transponder 30 to the fully operational mode or placing the transponder directly into the stand-by mode is to do so via RFID tag 650.
This example embodiment is particularly effective if RFID tag 640 is of the chargeable type, which tends to have a longer read range. When RFID tag 640 is chargeable, then in an example embodiment, power from transponder 30 is sent over electrical connection 780 in the form of power signal SP to the RFID tag to charge the RFID tag.
Tether Cable Assembly
After optical fiber cable 220 is deployed, the usual procedure is to then connect the tether cable ends 606 and 608 to transponder 30 and to optical fiber cable 220, respectively, and then place the transponder in its final position according to the desired picocell location for that transponder. In the usual case where tether cables 602 are all of a fixed length, there is typically some amount of slack that requires a portion 603 of the tether cable to be coiled and neatly stored. Also, conventional tether cables 602 are usually coiled for packaging and shipping and then uncoiled when the transponders are deployed.
With reference again to
In an example embodiment, lower flange 868 and/or central post 870 is/are operably connected to a retracting unit 872 so that tether cable 602 can be either automatically or selectively retracted (coiled). In an example embodiment, retracting unit 872 is or includes a spring.
In an example embodiment having such a retracting unit, tether cable assembly 850 also preferably includes a locking mechanism 874 that selectively engages and disengages (e.g., via manual operation) tether cable 602 so that a select amount of the tether cable can be dispensed and remain dispensed if not otherwise held in place.
Most optical fibers are strongly affected by small-radius bends. For example, standard single-mode fiber such as SMF-28 from Corning, Inc., has a high attenuation at small bending radii. Accordingly, assembly 850 is adapted to control the amount of bending of ribbon-type tether cable 602.
With continuing reference to
In an example embodiment illustrated in
In an example embodiment, curved wall portion 880 has radius of curvature ˜RB<5 mm. For certain, bending-loss-resistant optical fibers such as those developed by Corning, Inc., a quarter-turn bend at 5 mm causes about a 0.025 dB power loss. Ten additional bends of such optical fiber at 10 mm would add about another 0.10 dB power loss.
Tether cable assembly 850 can be constructed to store various lengths of tether cable 602. By way of example, a tether cable assembly having a central post outer radius RO of 10.2 mm and a housing radius RH of 27.5 mm would have an extractable tether-cable length of about 500 mm for a cable thickness of 0.9 mm and 10 loops of the tether cable around spool 860. Tether cable assembly 850 has an extended tether-cable length of 1000 mm when housing radius RH is extended to 35 mm. Thus, a tether cable assembly 850 with a housing 854 having a diameter of just over 3 inches could store about a meter of tether cable 602.
The number of fibers or conductors carried by tether cable 602 may also be varied. In an example embodiment, a short length of spring steel (not shown) is included with or attached to tether cable 602 as the retracting element to provide sufficient tether-cable stiffness to deploy and retract the tether cable. The spring action required for the retraction of the tether could be provided by using copper clad steel wire, in which case the steel would be a spring steel such as silicon-manganese steel or chrome-vanadium steel.
In an example embodiment such as that shown in
Tether cable assembly 850 has the advantage of being self-contained, compact, and is preferably constructed to be rugged. In an example application of tether cable assembly 850, after optical fiber cable 220 has been installed, the tether cables are attached to optical fiber cable 220 (and to transponder 30 if one is not included in the tether cable assembly). The tether cable is then dispensed (and locked, if necessary via locking mechanism 874) and the transponder and assembly placed in their desired final position. In the event that transponders 30 of a deployed RoF wireless picocellular system need to be upgraded with new transponders, the existing tether assemblies and transponders can be removed and replaced with new tether assemblies and transponders. The tether cable is adjusted to the desired length and any slack tether cable is neatly stored by coiling it around spool 860 within the assembly rather than atop the drop ceiling or other location where it might present a hazard or inconvenience.
Various embodiments of the present invention are adapted to include bend performance optical fibers. One example of bend performance optical fiber is a microstructured optical fiber having a core region and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of non-periodically disposed holes such that the optical fiber is capable of single mode transmission at one or more wavelengths in one or more operating wavelength ranges. The core region and cladding region provide improved bend resistance, and single mode operation at wavelengths preferably greater than or equal to 1500 nm, in some embodiments also greater than about 1310 nm, in other embodiments also greater than 1260 nm. The optical fibers provide a mode field at a wavelength of 1310 nm preferably greater than 8.0 microns, more preferably between about 8.0 and 10.0 microns. In preferred embodiments, optical fiber disclosed herein is thus single-mode transmission optical fiber.
In some embodiments of the present invention, the microstructured optical fibers disclosed herein comprises a core region disposed about a longitudinal centerline and a cladding region surrounding the core region, the cladding region comprising an annular hole-containing region comprised of non-periodically disposed holes, wherein the annular hole-containing region has a maximum radial width of less than 12 microns, the annular hole-containing region has a regional void area percent of less than about 30 percent, and the non-periodically disposed holes have a mean diameter of less than 1550 nm.
By “non-periodically disposed” or “non-periodic distribution”, it is meant that when one takes a cross-section (such as a cross-section perpendicular to the longitudinal axis) of the optical fiber, the non-periodically disposed holes are randomly or non-periodically distributed across a portion of the fiber. Similar cross sections taken at different points along the length of the fiber will reveal different cross-sectional hole patterns, i.e., various cross-sections will have different hole patterns, wherein the distributions of holes and sizes of holes do not match. That is, the holes are non-periodic, i.e., they are not periodically disposed within the fiber structure. These holes are stretched (elongated) along the length (i.e. in a direction generally parallel to the longitudinal axis) of the optical fiber, but do not extend the entire length of the entire fiber for typical lengths of transmission fiber.
For a variety of applications, it is desirable for the holes to be formed such that greater than about 95% of and preferably all of the holes exhibit a mean hole size in the cladding for the optical fiber which is less than 1550 nm, more preferably less than 775 nm, most preferably less than 390 nm. Likewise, it is preferable that the maximum diameter of the holes in the fiber be less than 7000 nm, more preferably less than 2000 nm, and even more preferably less than 1550 nm, and most preferably less than 775 nm. In some embodiments, the fibers disclosed herein have fewer than 5000 holes, in some embodiments also fewer than 1000 holes, and in other embodiments the total number of holes is fewer than 500 holes in a given optical fiber perpendicular cross-section. Of course, the most preferred fibers will exhibit combinations of these characteristics. Thus, for example, one particularly preferred embodiment of optical fiber would exhibit fewer than 200 holes in the optical fiber, the holes having a maximum diameter less than 1550 nm and a mean diameter less than 775 nm, although useful and bend resistant optical fibers can be achieved using larger and greater numbers of holes. The hole number, mean diameter, max diameter, and total void area percent of holes can all be calculated with the help of a scanning electron microscope at a magnification of about 800× and image analysis software, such as ImagePro, which is available from Media Cybernetics, Inc. of Silver Spring, Md., USA.
The optical fibers disclosed herein may or may not include germania or fluorine to also adjust the refractive index of the core and or cladding of the optical fiber, but these dopants can also be avoided in the intermediate annular region and instead, the holes (in combination with any gas or gases that may be disposed within the holes) can be used to adjust the manner in which light is guided down the core of the fiber. The hole-containing region may consist of undoped (pure) silica, thereby completely avoiding the use of any dopants in the hole-containing region, to achieve a decreased refractive index, or the hole-containing region may comprise doped silica, e.g. fluorine-doped silica having a plurality of holes.
In one set of embodiments, the core region includes doped silica to provide a positive refractive index relative to pure silica, e.g. germania doped silica. The core region is preferably hole-free. In some embodiments, the core region comprises a single core segment having a positive maximum refractive index relative to pure silica Δ1 in %, and the single core segment extends from the centerline to a radius R1. In one set of embodiments, 0.30%<Δ1<0.40%, and 3.0 μm<R1<5.0 μm. In some embodiments, the single core segment has a refractive index profile with an alpha shape, where alpha is 6 or more, and in some embodiments alpha is 8 or more. In some embodiments, the inner annular hole-free region extends from the core region to a radius R2, wherein the inner annular hole-free region has a radial width W12, equal to R2−R1, and W12 is greater than 1 μm. Radius R2 is preferably greater than 5 μm, more preferably greater than 6 μm. The intermediate annular hole-containing region extends radially outward from R2 to radius R3 and has a radial width W23, equal to R3−R2. The outer annular region 186 extends radially outward from R3 to radius R4. Radius R4 is the outermost radius of the silica portion of the optical fiber. One or more coatings may be applied to the external surface of the silica portion of the optical fiber, starting at R4, the outermost diameter or outermost periphery of the glass part of the fiber. The core region and the cladding region are preferably comprised of silica. The core region is preferably silica doped with one or more dopants. Preferably, the core region is hole-free. The hole-containing region has an inner radius R2 which is not more than 20 μm. In some embodiments, R2 is not less than 10 μm and not greater than 20 μm. In other embodiments, R2 is not less than 10 μm and not greater than 18 μm. In other embodiments, R2 is not less than 10 μm and not greater than 14 μm. Again, while not being limited to any particular width, the hole-containing region has a radial width W23 which is not less than 0.5 μm. In some embodiments, W23 is not less than 0.5 μm and not greater than 20 μm. In other embodiments, W23 is not less than 2 μm and not greater than 12 μm. In other embodiments, W23 is not less than 2 μm and not greater than 10 μm.
Such fiber can be made to exhibit a fiber cutoff of less than 1400 nm, more preferably less than 1310 nm, a 20 mm macrobend induced loss at 1550 nm of less than 1 dB/turn, preferably less than 0.5 dB/turn, even more preferably less than 0.1 dB/turn, still more preferably less than 0.05 dB/turn, yet more preferably less than 0.03 dB/turn, and even still more preferably less than 0.02 dB/turn, a 12 mm macrobend induced loss at 1550 nm of less than 5 dB/turn, preferably less than 1 dB/turn, more preferably less than 0.5 dB/turn, even more preferably less than 0.2 dB/turn, still more preferably less than 0.01 dB/turn, still even more preferably less than 0.05 dB/turn, and a 8 mm macrobend induced loss at 1550 nm of less than 5 dB/turn, preferably less than 1 dB/turn, more preferably less than 0.5 dB/turn, and even more preferably less than 0.2 dB-turn, and still even more preferably less than 0.1 dB/turn.
The fiber of some embodiments of the present invention comprises a core region that is surrounded by a cladding region that comprises randomly disposed voids which are contained within an annular region spaced from the core and positioned to be effective to guide light along the core region. Other optical fibers and microstructured fibers may be used in the present invention. Additional features of the microstructured optical fibers of additional embodiments of the present invention are described more fully in pending U.S. patent application Ser. No. 11/583,098 filed Oct. 18, 2006, and provisional U.S. patent application Ser. Nos. 60/817,863 filed Jun. 30, 2006; 60/817,721 filed Jun. 30, 2006; 60/841,458 filed Aug. 31, 2006; and 60/841,490 filed Aug. 31, 2006; all of which are assigned to Corning Incorporated and the disclosures of which are incorporated by reference herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4365865 | Stiles | Dec 1982 | A |
4867527 | Dotti et al. | Sep 1989 | A |
4889977 | Haydon | Dec 1989 | A |
4896939 | O'Brien | Jan 1990 | A |
4916460 | Powell | Apr 1990 | A |
5039195 | Jenkins et al. | Aug 1991 | A |
5042086 | Cole et al. | Aug 1991 | A |
5125060 | Edmundson | Jun 1992 | A |
5189718 | Barrett et al. | Feb 1993 | A |
5189719 | Coleman et al. | Feb 1993 | A |
5210812 | Nilsson et al. | May 1993 | A |
5260957 | Hakimi et al. | Nov 1993 | A |
5268971 | Nilsson et al. | Dec 1993 | A |
5301056 | O'Neill | Apr 1994 | A |
5339058 | Lique | Aug 1994 | A |
5339184 | Tang | Aug 1994 | A |
5377035 | Wang et al. | Dec 1994 | A |
5379455 | Koschek | Jan 1995 | A |
5400391 | Emura et al. | Mar 1995 | A |
5424864 | Emura | Jun 1995 | A |
5444564 | Newberg | Aug 1995 | A |
5457557 | Zarem et al. | Oct 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5469523 | Blew et al. | Nov 1995 | A |
5539393 | Barfod | Jul 1996 | A |
5543000 | Lique | Aug 1996 | A |
5546443 | Raith | Aug 1996 | A |
5557698 | Gareis et al. | Sep 1996 | A |
5574815 | Kneeland | Nov 1996 | A |
5598288 | Collar | Jan 1997 | A |
5615034 | Hori | Mar 1997 | A |
5627879 | Russell et al. | May 1997 | A |
5640678 | Ishikawa et al. | Jun 1997 | A |
5642405 | Fischer et al. | Jun 1997 | A |
5644622 | Russell et al. | Jul 1997 | A |
5648961 | Ebihara | Jul 1997 | A |
5651081 | Blew et al. | Jul 1997 | A |
5668562 | Cutrer et al. | Sep 1997 | A |
5677974 | Elms et al. | Oct 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5703602 | Casebolt | Dec 1997 | A |
5790606 | Dent | Aug 1998 | A |
5802473 | Rutledge et al. | Sep 1998 | A |
5805983 | Naidu et al. | Sep 1998 | A |
5812296 | Tarusawa et al. | Sep 1998 | A |
5818619 | Medved et al. | Oct 1998 | A |
5821510 | Cohen et al. | Oct 1998 | A |
5825651 | Gupta et al. | Oct 1998 | A |
5838474 | Stilling | Nov 1998 | A |
5852651 | Fischer et al. | Dec 1998 | A |
5854986 | Dorren et al. | Dec 1998 | A |
5867485 | Chambers et al. | Feb 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5880867 | Ronald | Mar 1999 | A |
5881200 | Burt | Mar 1999 | A |
5883882 | Schwartz | Mar 1999 | A |
5896568 | Tseng et al. | Apr 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5910776 | Black | Jun 1999 | A |
5913003 | Arroyo et al. | Jun 1999 | A |
5917636 | Wake et al. | Jun 1999 | A |
5930682 | Schwartz et al. | Jul 1999 | A |
5936754 | Ariyavisitakul et al. | Aug 1999 | A |
5943372 | Gans et al. | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949564 | Wake | Sep 1999 | A |
5959531 | Gallagher, III et al. | Sep 1999 | A |
5960344 | Mahany | Sep 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5983070 | Georges et al. | Nov 1999 | A |
5987303 | Dutta et al. | Nov 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6006105 | Rostoker et al. | Dec 1999 | A |
6014546 | Georges et al. | Jan 2000 | A |
6016426 | Bodell | Jan 2000 | A |
6023625 | Myers, Jr. | Feb 2000 | A |
6049312 | Lord et al. | Apr 2000 | A |
6088381 | Myers, Jr. | Jul 2000 | A |
6127917 | Tuttle | Oct 2000 | A |
6128470 | Naidu et al. | Oct 2000 | A |
6148041 | Dent | Nov 2000 | A |
6150921 | Werb et al. | Nov 2000 | A |
6157810 | Georges et al. | Dec 2000 | A |
6232870 | Garber et al. | May 2001 | B1 |
6236789 | Fitz | May 2001 | B1 |
6240274 | Izadpanah | May 2001 | B1 |
6268946 | Larkin et al. | Jul 2001 | B1 |
6292673 | Maeda et al. | Sep 2001 | B1 |
6314163 | Acampora | Nov 2001 | B1 |
6323980 | Bloom | Nov 2001 | B1 |
6324391 | Bodell | Nov 2001 | B1 |
6337754 | Imajo | Jan 2002 | B1 |
6353406 | Lanzl et al. | Mar 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6359714 | Imajo | Mar 2002 | B1 |
6374078 | Williams et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6405058 | Bobier | Jun 2002 | B2 |
6405308 | Gupta et al. | Jun 2002 | B1 |
6438301 | Johnson et al. | Aug 2002 | B1 |
6438371 | Fujise et al. | Aug 2002 | B1 |
6477154 | Cheong et al. | Nov 2002 | B1 |
6486907 | Farber et al. | Nov 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6501965 | Lucidarme | Dec 2002 | B1 |
6504636 | Seto et al. | Jan 2003 | B1 |
6512478 | Chien | Jan 2003 | B1 |
6519395 | Bevan | Feb 2003 | B1 |
6525855 | Westbrook et al. | Feb 2003 | B1 |
6556551 | Schwartz | Apr 2003 | B1 |
6577794 | Currie et al. | Jun 2003 | B1 |
6577801 | Broderick et al. | Jun 2003 | B2 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6580918 | Leickel et al. | Jun 2003 | B1 |
6583763 | Judd | Jun 2003 | B2 |
6594496 | Schwartz | Jul 2003 | B2 |
6597325 | Judd et al. | Jul 2003 | B2 |
6606430 | Bartur et al. | Aug 2003 | B2 |
6634811 | Gertel et al. | Oct 2003 | B1 |
6636747 | Harada et al. | Oct 2003 | B2 |
6640103 | Inman et al. | Oct 2003 | B1 |
6643437 | Park | Nov 2003 | B1 |
6652158 | Bartur et al. | Nov 2003 | B2 |
6654616 | Pope, Jr. et al. | Nov 2003 | B1 |
6675294 | Gupta et al. | Jan 2004 | B1 |
6687437 | Starnes et al. | Feb 2004 | B1 |
6690328 | Judd | Feb 2004 | B2 |
6704545 | Wala | Mar 2004 | B1 |
6710366 | Lee et al. | Mar 2004 | B1 |
6731880 | Westbrook et al. | May 2004 | B2 |
6768913 | Molnar et al. | Jul 2004 | B1 |
6771862 | Karnik et al. | Aug 2004 | B2 |
6771933 | Eng et al. | Aug 2004 | B1 |
6784802 | Stanescu | Aug 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6788666 | Linebarger et al. | Sep 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6807374 | Imajo et al. | Oct 2004 | B1 |
6812824 | Goldinger et al. | Nov 2004 | B1 |
6812905 | Thomas et al. | Nov 2004 | B2 |
6826337 | Linnell | Nov 2004 | B2 |
6847856 | Bohannon | Jan 2005 | B1 |
6865390 | Goss et al. | Mar 2005 | B2 |
6873823 | Hasarchi et al. | Mar 2005 | B2 |
6879290 | Toutain et al. | Apr 2005 | B1 |
6883710 | Chung | Apr 2005 | B2 |
6885846 | Panasik et al. | Apr 2005 | B1 |
6889060 | Fernando et al. | May 2005 | B2 |
6895185 | Chung et al. | May 2005 | B1 |
6909399 | Zegelin et al. | Jun 2005 | B1 |
6915058 | Pons | Jul 2005 | B2 |
6920330 | Caronni et al. | Jul 2005 | B2 |
6924997 | Chen et al. | Aug 2005 | B2 |
6930987 | Fukuda et al. | Aug 2005 | B1 |
6931183 | Panak et al. | Aug 2005 | B2 |
6933849 | Sawyer | Aug 2005 | B2 |
6963289 | Aljadeff et al. | Nov 2005 | B2 |
6963552 | Sabat, Jr. et al. | Nov 2005 | B2 |
6965718 | Koertel | Nov 2005 | B2 |
6968107 | Belardi et al. | Nov 2005 | B2 |
6970652 | Zhang et al. | Nov 2005 | B2 |
6973243 | Koyasu et al. | Dec 2005 | B2 |
6974262 | Rickenbach | Dec 2005 | B1 |
7006465 | Toshimitsu et al. | Feb 2006 | B2 |
7013087 | Suzuki et al. | Mar 2006 | B2 |
7020473 | Splett | Mar 2006 | B2 |
7035512 | Van Bijsterveld | Apr 2006 | B2 |
7039399 | Fischer | May 2006 | B2 |
7047028 | Cagenius | May 2006 | B2 |
7053838 | Judd | May 2006 | B2 |
7054513 | Herz et al. | May 2006 | B2 |
7072586 | Aburakawa et al. | Jul 2006 | B2 |
7082320 | Kattukaran et al. | Jul 2006 | B2 |
7084769 | Bauer et al. | Aug 2006 | B2 |
7106931 | Sutehall et al. | Sep 2006 | B2 |
7127176 | Sasaki | Oct 2006 | B2 |
7142503 | Grant et al. | Nov 2006 | B1 |
7200305 | Dion et al. | Apr 2007 | B2 |
7200391 | Chung et al. | Apr 2007 | B2 |
7228072 | Mickelsson et al. | Jun 2007 | B2 |
7263293 | Ommodt et al. | Aug 2007 | B2 |
7269311 | Kim et al. | Sep 2007 | B2 |
7286843 | Scheck | Oct 2007 | B2 |
7286854 | Ferrato et al. | Oct 2007 | B2 |
7295119 | Rappaport et al. | Nov 2007 | B2 |
7310430 | Mallya et al. | Dec 2007 | B1 |
7313415 | Wake et al. | Dec 2007 | B2 |
7324730 | Varkey et al. | Jan 2008 | B2 |
7343164 | Kallstenius | Mar 2008 | B2 |
7349633 | Lee et al. | Mar 2008 | B2 |
7359408 | Kim | Apr 2008 | B2 |
7359647 | Faria et al. | Apr 2008 | B1 |
7366150 | Lee et al. | Apr 2008 | B2 |
7379669 | Kim | May 2008 | B2 |
7392029 | Pronkine | Jun 2008 | B2 |
7394883 | Funakubo et al. | Jul 2008 | B2 |
7403156 | Coppi et al. | Jul 2008 | B2 |
7409159 | Izadpanah | Aug 2008 | B2 |
7424228 | Williams et al. | Sep 2008 | B1 |
7444051 | Tatat et al. | Oct 2008 | B2 |
7450853 | Kim et al. | Nov 2008 | B2 |
7450854 | Lee et al. | Nov 2008 | B2 |
7460829 | Utsumi et al. | Dec 2008 | B2 |
7460831 | Hasarchi | Dec 2008 | B2 |
7466925 | Iannelli | Dec 2008 | B2 |
7469105 | Wake et al. | Dec 2008 | B2 |
7477597 | Segel | Jan 2009 | B2 |
7483504 | Shapira et al. | Jan 2009 | B2 |
7496070 | Vesuna | Feb 2009 | B2 |
7496384 | Seto et al. | Feb 2009 | B2 |
7522552 | Fein et al. | Apr 2009 | B2 |
7548695 | Wake | Jun 2009 | B2 |
7565170 | Buscaglia et al. | Jul 2009 | B2 |
7590354 | Sauer et al. | Sep 2009 | B2 |
20020003645 | Kim et al. | Jan 2002 | A1 |
20020048071 | Suzuki et al. | Apr 2002 | A1 |
20020075906 | Cole et al. | Jun 2002 | A1 |
20020092347 | Niekerk et al. | Jul 2002 | A1 |
20020111192 | Thomas et al. | Aug 2002 | A1 |
20020114038 | Arnon et al. | Aug 2002 | A1 |
20020126967 | Panak et al. | Sep 2002 | A1 |
20020130778 | Nicholson | Sep 2002 | A1 |
20020141020 | Doucet et al. | Oct 2002 | A1 |
20020181668 | Masoian et al. | Dec 2002 | A1 |
20020190845 | Moore | Dec 2002 | A1 |
20030007214 | Aburakawa et al. | Jan 2003 | A1 |
20030016418 | Westbrook et al. | Jan 2003 | A1 |
20030034963 | Moon et al. | Feb 2003 | A1 |
20030045284 | Copley et al. | Mar 2003 | A1 |
20030078074 | Sesay et al. | Apr 2003 | A1 |
20030141962 | Barink | Jul 2003 | A1 |
20030161637 | Yamamoto et al. | Aug 2003 | A1 |
20030165287 | Krill et al. | Sep 2003 | A1 |
20030174099 | Bauer et al. | Sep 2003 | A1 |
20030179077 | Hartmann et al. | Sep 2003 | A1 |
20030202794 | Izadpanah et al. | Oct 2003 | A1 |
20030209601 | Chung | Nov 2003 | A1 |
20040001719 | Sasaki | Jan 2004 | A1 |
20040008114 | Sawyer | Jan 2004 | A1 |
20040017785 | Zelst | Jan 2004 | A1 |
20040041714 | Forster | Mar 2004 | A1 |
20040043764 | Bigham et al. | Mar 2004 | A1 |
20040047313 | Rumpf et al. | Mar 2004 | A1 |
20040078151 | Aljadeff et al. | Apr 2004 | A1 |
20040100930 | Shapira et al. | May 2004 | A1 |
20040110469 | Judd et al. | Jun 2004 | A1 |
20040149736 | Clothier | Aug 2004 | A1 |
20040151503 | Kashima et al. | Aug 2004 | A1 |
20040157623 | Splett | Aug 2004 | A1 |
20040162115 | Smith et al. | Aug 2004 | A1 |
20040162116 | Han et al. | Aug 2004 | A1 |
20040202257 | Mehta et al. | Oct 2004 | A1 |
20040203704 | Ommodt et al. | Oct 2004 | A1 |
20040203846 | Caronni et al. | Oct 2004 | A1 |
20040204109 | Hoppenstein | Oct 2004 | A1 |
20040208526 | Mibu | Oct 2004 | A1 |
20040218873 | Nagashima et al. | Nov 2004 | A1 |
20040224644 | Wu et al. | Nov 2004 | A1 |
20040233877 | Lee et al. | Nov 2004 | A1 |
20040258105 | Spathas et al. | Dec 2004 | A1 |
20040264683 | Bye | Dec 2004 | A1 |
20050052287 | Whitesmith et al. | Mar 2005 | A1 |
20050058451 | Ross | Mar 2005 | A1 |
20050068179 | Roesner | Mar 2005 | A1 |
20050068251 | Ebling et al. | Mar 2005 | A1 |
20050076982 | Metcalf et al. | Apr 2005 | A1 |
20050078006 | Hutchins et al. | Apr 2005 | A1 |
20050093679 | Zai et al. | May 2005 | A1 |
20050099343 | Asrani et al. | May 2005 | A1 |
20050116821 | Wilsey et al. | Jun 2005 | A1 |
20050141545 | Fein et al. | Jun 2005 | A1 |
20050143077 | Charbonneau | Jun 2005 | A1 |
20050148306 | Hiddink | Jul 2005 | A1 |
20050159108 | Fletcher et al. | Jul 2005 | A1 |
20050174236 | Brookner | Aug 2005 | A1 |
20050201761 | Bartur et al. | Sep 2005 | A1 |
20050219050 | Martin | Oct 2005 | A1 |
20050224585 | Durrant et al. | Oct 2005 | A1 |
20050226625 | Wake et al. | Oct 2005 | A1 |
20050232636 | Durrant et al. | Oct 2005 | A1 |
20050242188 | Vesuna | Nov 2005 | A1 |
20050252971 | Howarth et al. | Nov 2005 | A1 |
20050259930 | Elkins, II et al. | Nov 2005 | A1 |
20050266797 | Utsumi et al. | Dec 2005 | A1 |
20050266854 | Niiho et al. | Dec 2005 | A1 |
20050271396 | Iannelli | Dec 2005 | A1 |
20060002326 | Vesuna | Jan 2006 | A1 |
20060014548 | Bolin et al. | Jan 2006 | A1 |
20060017633 | Pronkine | Jan 2006 | A1 |
20060045054 | Utsumi et al. | Mar 2006 | A1 |
20060062579 | Kim et al. | Mar 2006 | A1 |
20060094470 | Wake et al. | May 2006 | A1 |
20060104643 | Lee et al. | May 2006 | A1 |
20060182446 | Kim et al. | Aug 2006 | A1 |
20060182449 | Iannelli et al. | Aug 2006 | A1 |
20060189354 | Lee et al. | Aug 2006 | A1 |
20060233506 | Noonan et al. | Oct 2006 | A1 |
20060239630 | Hase et al. | Oct 2006 | A1 |
20060279460 | Yun et al. | Dec 2006 | A1 |
20070009266 | Bothwell et al. | Jan 2007 | A1 |
20070019679 | Scheck et al. | Jan 2007 | A1 |
20070058978 | Lee et al. | Mar 2007 | A1 |
20070093273 | Cair | Apr 2007 | A1 |
20070122155 | Hillis et al. | May 2007 | A1 |
20070149250 | Crozzoli et al. | Jun 2007 | A1 |
20070166042 | Seeds et al. | Jul 2007 | A1 |
20070253714 | Seeds et al. | Nov 2007 | A1 |
20070274279 | Wood et al. | Nov 2007 | A1 |
20080007453 | Vassilakis et al. | Jan 2008 | A1 |
20080013909 | Kostet et al. | Jan 2008 | A1 |
20080013956 | Ware et al. | Jan 2008 | A1 |
20080013957 | Akers et al. | Jan 2008 | A1 |
20080014948 | Scheinert | Jan 2008 | A1 |
20080026765 | Charbonneau | Jan 2008 | A1 |
20080031628 | Dragas et al. | Feb 2008 | A1 |
20080056167 | Kim et al. | Mar 2008 | A1 |
20080058018 | Scheinert | Mar 2008 | A1 |
20080119198 | Hettstedt et al. | May 2008 | A1 |
20080124086 | Matthews | May 2008 | A1 |
20080124087 | Hartmann et al. | May 2008 | A1 |
20080137635 | Pan et al. | Jun 2008 | A1 |
20080145061 | Lee et al. | Jun 2008 | A1 |
20080150514 | Codreanu et al. | Jun 2008 | A1 |
20080194226 | Rivas et al. | Aug 2008 | A1 |
20080212969 | Fasshauer et al. | Sep 2008 | A1 |
20080219670 | Kim et al. | Sep 2008 | A1 |
20080232799 | Kim | Sep 2008 | A1 |
20080247716 | Thomas et al. | Oct 2008 | A1 |
20080253773 | Zheng | Oct 2008 | A1 |
20080260388 | Kim et al. | Oct 2008 | A1 |
20080273844 | Kewitsch | Nov 2008 | A1 |
20080298813 | Song et al. | Dec 2008 | A1 |
20080304831 | Miller, II et al. | Dec 2008 | A1 |
20080310848 | Yasuda et al. | Dec 2008 | A1 |
20090041413 | Hurley | Feb 2009 | A1 |
20090047023 | Pescod et al. | Feb 2009 | A1 |
20090061939 | Andersson et al. | Mar 2009 | A1 |
20090103919 | Mickelsson et al. | Apr 2009 | A1 |
20090135078 | Lindmark et al. | May 2009 | A1 |
20090154621 | Shapira et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
645192 | Oct 1992 | AU |
731180 | Mar 1998 | AU |
2065090 | Apr 1992 | CA |
2242707 | Jan 1999 | CA |
20104862 | Aug 2001 | DE |
10249414 | May 2004 | DE |
0477952 | Apr 1992 | EP |
0461583 | Mar 1997 | EP |
0687400 | Nov 1998 | EP |
0993124 | Apr 2000 | EP |
1267447 | Jan 2001 | EP |
1173034 | Apr 2001 | EP |
1202475 | May 2002 | EP |
1363352 | Nov 2003 | EP |
1455550 | Mar 2004 | EP |
1443687 | Aug 2004 | EP |
1501206 | Jan 2005 | EP |
1391897 | Feb 2005 | EP |
1503451 | Feb 2005 | EP |
1530316 | May 2005 | EP |
1511203 | Mar 2006 | EP |
1693974 | Aug 2006 | EP |
1742388 | Jan 2007 | EP |
1227605 | Jan 2008 | EP |
1968250 | Sep 2008 | EP |
1056226 | Apr 2009 | EP |
1357683 | May 2009 | EP |
2323252 | Sep 1998 | GB |
2399963 | Sep 2004 | GB |
2428149 | Jan 2007 | GB |
05-260018 | Aug 1993 | JP |
09-083450 | Mar 1997 | JP |
09-162810 | Jun 1997 | JP |
09-200840 | Jul 1997 | JP |
11-68675 | Mar 1999 | JP |
2000-152300 | May 2000 | JP |
2000-341744 | Dec 2000 | JP |
2002-264617 | Sep 2002 | JP |
2003-148653 | May 2003 | JP |
2003-172827 | Jun 2003 | JP |
2004-172734 | Jun 2004 | JP |
2004-245963 | Sep 2004 | JP |
2004-247090 | Sep 2004 | JP |
2004-264901 | Sep 2004 | JP |
2004-265624 | Sep 2004 | JP |
2004-317737 | Nov 2004 | JP |
2004-349184 | Dec 2004 | JP |
2005-018175 | Jan 2005 | JP |
2005-087135 | Apr 2005 | JP |
2005-134125 | May 2005 | JP |
2007-228603 | Sep 2007 | JP |
2008-172597 | Jul 2008 | JP |
0178434 | Apr 2000 | WO |
0042721 | Jul 2000 | WO |
0184760 | Nov 2001 | WO |
0221183 | Mar 2002 | WO |
WO 0230141 | Apr 2002 | WO |
WO0230141 | Apr 2002 | WO |
WO02102102 | Dec 2002 | WO |
2004086795 | Mar 2003 | WO |
2004086795 | Mar 2003 | WO |
03024027 | Mar 2003 | WO |
03098175 | Nov 2003 | WO |
2004030154 | Apr 2004 | WO |
2004047472 | Jun 2004 | WO |
2004059934 | Jul 2004 | WO |
WO2004056019 | Jul 2004 | WO |
WO2004056019 | Jul 2004 | WO |
WO2004093471 | Oct 2004 | WO |
WO 2004093471 | Oct 2004 | WO |
2005069203 | Jul 2005 | WO |
2005069203 | Jul 2005 | WO |
WO2005062505 | Jul 2005 | WO |
WO2005073897 | Aug 2005 | WO |
WO2005079386 | Sep 2005 | WO |
2005101701 | Oct 2005 | WO |
2005101701 | Oct 2005 | WO |
WO2005111959 | Nov 2005 | WO |
WO2006011778 | Feb 2006 | WO |
WO2006018592 | Feb 2006 | WO |
WO2006018592 | Feb 2006 | WO |
WO2006019392 | Feb 2006 | WO |
2006039941 | Apr 2006 | WO |
2006046088 | May 2006 | WO |
2006051262 | May 2006 | WO |
2006133609 | Dec 2006 | WO |
WO2006136811 | Dec 2006 | WO |
2007048427 | May 2007 | WO |
WO2007077451 | Jul 2007 | WO |
2007088561 | Aug 2007 | WO |
WO2007091026 | Aug 2007 | WO |
2008008249 | Jan 2008 | WO |
WO2008021442 | Feb 2008 | WO |
2008027213 | Mar 2008 | WO |
WO2008033298 | Mar 2008 | WO |
2008039830 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080186143 A1 | Aug 2008 | US |