The present application claims priority from Japanese Patent Application No. 2012-218362, filed on Sep. 28, 2012, the disclosure of which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a transport apparatus for transporting a medium and a recording apparatus provided with the same.
2. Description of the Related Art
There is known a side registration apparatus including a side guide plate (guide unit) which is parallel to the transport direction, a driving roller (first roller) which transports the recording paper, and an idler roller (second roller) which is opposed to the driving roller with the transport path (passage) of the recording paper intervening therebetween. In this apparatus, a holding member, which supports the idler roller, positions the idler roller at a first position at which a shaft portion (rotational shaft) of the idler roller is inclined with respect to the guide surface of the side guide plate and a second position at which the shaft portion is substantially perpendicular to the guide surface. The holding member is swingable about the center of a coupling rod (connecting bar) separated from the position disposed on the axis of the shaft portion of the idler roller. Further, the holding member is urged by a torsion spring in the direction in which the idler roller is directed from the second position to the first position. When the recording paper arrives at the driving roller and the idler roller, the recording paper is fed obliquely toward the side guide plate by means of the driving roller and the idler roller.
After one forward end corner portion of the recording paper abuts against the guide surface of the side guide plate, the recording paper is rotated so that the recording paper travels along the concerning guide surface. In this situation, the holding member is pivoted so that the idler roller is moved from the first position to the second position against the urging force of the torsion spring in accordance with the rotation of the recording paper. Accordingly, the force to extrude the recording paper to the side guide plate is mitigated, and it is intended to suppress any damage of the recording paper.
In the abovementioned apparatus, the idler roller is returned from the second position to the first position after the passage of the backward end of the recording paper. During this process, the idler roller is returned to the first position while making contact with the driving roller. In this situation, in the abovementioned apparatus, the direction of movement of the idler roller 12 is approximately the same direction as the extending direction of the shaft portion of the idler roller. Therefore, the friction is extremely large between the both rollers, and it is feared that the idler roller is not returned to the first position.
According to an aspect of the present invention, there is provided a transport apparatus including: a guide surface which extends in a transport direction for transporting a medium and which is configured to guide the medium to be transported; a first roller which is a driving roller for transporting the medium; a second roller which is a driven roller arranged to face the first roller; and a roller support member which rotatably supports the second roller and which is configured to be pivotable about a support shaft perpendicular to an axis of a rotational shaft of the second roller between a first position and a second position, wherein in a state that the roller support member is positioned at the first position, an angle formed by a portion of the guide surface, which is disposed on a downstream side in the transport direction from a point of intersection between the axis of the rotational shaft of the second roller and the guide surface, and the axis of the rotational shaft of the second roller is an acute angle, and wherein in a state that the roller support member is positioned at the second position, the angle approaches a right angle as compared with the state that the roller support member is positioned at the first position.
Accordingly, when the medium is transported by the first roller and the second roller, the second roller is moved from the first position to the second position after the medium abuts against the guide surface. After that, the second roller is returned from the second position to the first position after the medium passes through between the first roller and the second roller. In this arrangement, the support shaft of the roller support member for supporting the second roller is arranged on the axis of the rotational shaft of the second roller. Therefore, the direction, in which the second roller moves along with the pivot of the roller support member, is approximately the same direction as the rotating direction of the second roller. Accordingly, the second roller is moved from the second position toward the first position while being rotated. Therefore, the friction is decreased between the second roller and the first roller when the second roller is moved, and thus the second roller is moved with ease.
An embodiment of the present invention will be explained below with reference to the drawings.
At first, an explanation will be made about the overall arrangement of an ink-jet printer 1 as one embodiment of the recording apparatus having the transport apparatus according to the present invention.
The printer 1 has a casing 1a having a rectangular parallelepiped shape. A paper discharge unit 4 is provided at an upper portion of a ceiling plate of the casing 1a. The internal space of the casing 1a can be classified into Spaces A, B in this order from the top. Those formed in Spaces A, B are a recording paper transport path which is directed from a paper feed unit 23 to the paper discharge unit 4, and a recording paper refeed path which is directed from the downstream side to the upstream side of the recording paper transport path. As shown in
For example, a head (recording head) 2 for discharging the black ink, a transport apparatus 3, and a control unit 100 are arranged in Space A. Further, an unillustrated cartridge is installed in Space A. The black ink is stored in the cartridge. The cartridge is connected to the head 2 via a tube and a pump (both are not shown), and the ink is supplied to the head 2.
The head 2 is a line type head having a lengthy substantially rectangular parallelepiped shape in the main scanning direction. The lower surface of the head 2 is a discharge surface 2a on which a large number of discharge ports are open. When the recording is performed, the black ink is discharged from the discharge surface 2a. The head 2 is supported by the casing 1a by the aid of a head holder 2b. The head holder 2b holds the head 2 so that a predetermined gap, which is suitable for the recording, is formed between the discharge surface 2a and a platen 3d (described later on).
The transport apparatus 3 has an upstream guide unit 3a, a downstream guide unit 3b, a refeed guide unit 3c, and the platen 3d. The platen 3d is arranged at a position opposed to the discharge surface 2a of the head 2. The platen 3d has a flat upper surface. The platen 3d supports the recording paper P from the lower position, and the platen 3d constitutes the recording area (part of the recording paper transport path) between the discharge surface 2a and the platen 3d. The upstream guide unit 3a and the downstream guide unit 3b are arranged with the platen 3d intervening therebetween. The upstream guide unit 3a has two guides 31, 32 and two transport roller pairs 41, 42, and the upstream guide unit 3a connects the recording area (space between the platen 3d and the head 2) and the paper feed unit 23. The downstream guide unit 3b has two guides 33, 34 and three transport roller pairs 43 to 45, and the downstream guide unit 3b connects the recording area and the paper discharge unit 4. The recording paper transport path is defined by the four guides 31 to 34, the platen 3d, and the head 2.
The refeed guide unit 3c has three guides 35 to 37, three transport roller pairs 46 to 48, and a positioning mechanism 50, and the refeed guide unit 3c connects the upstream guide unit 3a and the downstream guide unit 3b while making a detour to avoid the recording area. The guide 35 is connected to an intermediate portion of the guide 33, and the guide 35 connects the refeed guide unit 3c and the downstream guide unit 3b. The guide 37 is connected to an intermediate portion of the guide 31, and the guide 37 connects the refeed guide unit 3c and the upstream guide unit 3a. The recording paper refeed path is defined by the three guides 35 to 37 and the positioning mechanism 50.
As for the transport roller pair 44, the transport direction of the recording paper P is switched in accordance with the control of the control unit 100. In other words, the transport roller pair 44 is rotated so that the recording paper P is transported upwardly when the recording paper P is transported from the recording area to the paper discharge unit 4. On the other hand, when the recording paper P is transported from the recording paper transport path to the recording paper refeed path, the direction of rotation of the transport roller pair 44 is switched so that the recording paper P is transported downwardly while using the backward end of the recording paper P as the forward end when the backward end of the recording paper P is disposed between the transport roller pair 44 and the connecting portion between the guide 33 and the guide 35 and the backward end of the recording paper P is detected or sensed by a recording paper P sensor 27. The recording paper P, which is transported from the recording paper transport path to the recording paper refeed path, is refed to the upstream guide unit 3a. In this situation, the recording paper P, which is subjected to the refeeding, is transported again to the recording area in a state in which the recording paper P is inverted upside down as compared with when the recording paper P passed through the recording area just before. Thus, it is possible to record images on the both surfaces of the recording paper P.
The three transport roller pairs 46 to 48 are arranged in this order, and the positioning mechanism 50 is arranged between the transport roller pairs 47, 48. Further, the positioning mechanism 50 is arranged between the recording area (platen 3d) and the paper feed unit 23 in relation to the vertical direction. The positioning mechanism 50 has an upper guide 51, a lower guide 52, and an oblique feeding roller pair 53. The positioning mechanism 50 transports the recording paper P while allowing one end in the widthwise direction (main scanning direction, i.e., perpendicular direction perpendicular to the transport direction E of the recording paper P) of the recording paper P transported to the space between the both guides 51, 52 to abut against a guide surface 54a (described later on), and thus the positioning mechanism 50 positions the recording paper P in the widthwise direction. Details of the positioning mechanism 50 will be described later on.
The paper feed unit 23 is arranged in Space B. The paper feed unit 23 has a paper feed tray 24 and a paper feed roller 25. In particular, the paper feed tray 24 is installable/removable (detachable) with respect to the casing 1a. The paper feed tray 24 is a box which is open upwardly, and the paper feed tray 24 can accommodate a plurality of sheets of the recording paper P. The paper feed roller 25 feeds a sheet of the recording paper P which is disposed at the uppermost position in the paper feed tray 24.
In this arrangement, the subsidiary scanning direction is the direction parallel to the recording paper transport direction D in which the recording paper P is transported by the transport roller pairs 42, 43 and the recording paper transport direction E in which the recording paper P is transported by the transport roller pairs 47, 48 and the oblique feeding roller pair 53. The main scanning direction is the direction parallel to the horizontal plane and perpendicular to the subsidiary scanning direction.
Next, the control unit 100 will be explained. The control unit 100 controls the operation of respective components of the printer 1, and the control unit 100 manages the operation of the entire printer 1. The control unit 100 controls the recording operation on the basis of the recording command or instruction supplied from any external apparatus (for example, PC connected to the printer 1). Specifically, the control unit 100 controls, for example, the transport operation for the recording paper P and the ink discharge operation in synchronization with the transport of the recording paper P.
For example, when a recording command to perform the recording on one side of the recording paper P is received from the external apparatus, the control unit 100 drives the paper feed unit 23 and the transport roller pairs 41 to 45 on the basis of the concerning recording command. The recording paper P, which is fed from the paper feed tray 24, is guided by the upstream guide unit 3a, and the recording paper P is fed to the recording area (space between the platen 3d and the head 2). When the recording paper P passes just under the head 2, then the head 2 is controlled by the control unit 100, and the ink droplets are discharged from the head 2. Accordingly, a desired image is recorded on the surface of the recording paper P. The ink discharge operation (ink discharge timing) is based on the detection signal supplied from a recording paper sensor 26. The recording paper sensor 26 is arranged upstream in the transport direction from the head 2, and the recording paper sensor 26 detects the forward end of the recording paper P. The recording paper P, on which the image has been recorded, is guided by the downstream guide unit 3b, and the recording paper P is discharged from the upper portion of the casing 1a to the paper discharge unit 4.
Further, for example, when a recording command to perform the recording on both sides of the recording paper P is received from the external apparatus, the control unit 100 drives the paper feed unit 23 and the transport roller pairs 41 to 45 on the basis of the concerning recording command. At first, an image is formed on the surface of the recording paper P in the same manner as in the one side recording, and the recording paper P is transported toward the paper discharge unit 4. As shown in
Next, the positioning mechanism 50 will be explained in detail with reference to
The oblique feeding roller pair 53 is constructed by a driving roller (first roller) 61 and a spur roller (second roller) 71 which is opposed to the driving roller 61. The spur roller 71 is the driven roller which is rotated in accordance with the rotation of the driving roller 61 or the transport of the recording paper P transported by the driving roller 61. As shown in
As shown in
As shown in
As shown in
Three columnar protruding portions 51b, 51c, 51d, which protrude downwardly, are formed on the lower surface of the upper guide 51. The protruding portion (support shaft) 51b is formed to be long in the vertical direction as compared with the protruding portion 51c. The length in the vertical direction of the protruding portion 51b is approximately the same as that of the protruding portion 51d. The rotatable member 82 is supported in a state of being allowed to hang from the upper guide 51 by inserting the protruding portion 51b into the hole 82a2, inserting the protruding portion 51d into the hole 82a2, and fixing the fasters 85, 86 to the forward ends of the protruding portions 51b, 51d. In this situation, the rotatable member 82 is rotatably supported by the upper guide 51 about the center of rotation of the protruding portion 51b. As shown in
Further, as shown in
The rotatable member 82 is supported by the upper guide 51 in a state in which the protruding portion 51b is inserted into the torsion coil spring 84. In this situation, one end of the torsion coil spring 84 is engaged with the protruding portion 51c, and the other end is engaged with the protruding portion 82c. Accordingly, the roller support member 80 is urged in the direction in which the first position is provided. Specifically, the roller support member 80 is urged in the direction of the arrow F (clockwise direction as shown in
Next, an explanation will be made below about the positioning operation for the recording paper P performed by the positioning mechanism 50.
When the recording paper P is transported to the positioning mechanism 50 by the transport roller pair 47, and the forward end of the recording paper P arrives at the oblique feeding roller pair 53, then the recording paper P is interposed by the oblique feeding roller pair 53, and the recording paper P is transported. In this situation, the driving roller 61 intends to transport the recording paper P in the transport direction E. However, the spur roller 71 is arranged so that the roller support member 80 is disposed at the first position. Therefore, the recording paper P is transported in the oblique direction with respect to the transport direction E (direction to make approach to the guide surface 54a).
When the recording paper P is transported obliquely, and the end portion of the forward end side thereof, which is disposed on the side of the guide surface 54a, is brought in contact with the guide surface 54a, then the concerning end portion of the recording paper P cannot advance any more toward the side of the guide surface 54a. Therefore, the rotational force is generated in the recording paper P about the center of the end portion brought in contact. In accordance with the rotational force, the end portion of the backward end side of the recording paper P, which is disposed on the side of the guide surface 54a, approaches the guide surface 54a. In this situation, the force, which is exerted from the recording paper P transported while generating the rotational force, is allowed to act on the spur roller 71, and the roller support member 80 is pivoted against the urging force of the torsion coil spring 84. In other words, the force, which is directed in the direction (counterclockwise direction as shown in
When the backward end side of the recording paper P passes through the oblique feeding roller pair 53, the roller support member 80 is restored from the second position to be disposed at the first position by means of the urging force of the torsion coil spring 54. When the roller support member 80 is disposed at the second position, the lowermost portion of the spur roller 71 is positioned on the axis M of the driving roller 61. Therefore, even when the roller support member 80 is restored to be disposed at the first position, the lowermost portion of the spur roller 71 does not exceed the uppermost portion of the driving roller 61. Therefore, the spur roller 71 is moved with ease. Further, the protruding portion 51b, which is the center of rotation of the roller support member 80, is disposed on the axis L. Therefore, the direction of rotation of the roller support member 80 is approximately the same as the direction of rotation of the spur roller 71 which is the driven roller. Accordingly, the spur roller 71 can be moved from the second position to the first position while being rotated. Therefore, it is possible to relatively decrease the friction between the spur roller 71 and the driving roller 61 when the spur roller 71 is moved. As a result, the spur roller 71 can be moved to the first position with ease.
As described above, according to the transport apparatus 3 concerning the embodiment of the present invention, when the recording paper P is transported by the driving roller 61 and the spur roller 71, the spur roller 71 is moved from the first position to the second position after the recording paper P abuts against the guide surface 54a. After that, the spur roller 71 is returned from the second position to the first position after the recording paper P passes through the space between the driving roller 61 and the spur roller 71. In this arrangement, the protruding portion 51b, which serves as the center of rotation of the roller support member 80 for holding the spur roller 71, is arranged on the axis L of the shaft portion 74 of the spur roller 71. Therefore, the direction, in which the urging force is exerted by the torsion coil spring 84 (direction of rotation of the roller support member 80), is approximately the same as the direction of rotation of the spur roller 71. Accordingly, the spur roller 71 is moved while being rotated from the second position toward the first position. Therefore, the friction between the spur roller 71 and the driving roller 61 is decreased when the spur roller 71 is moved. The spur roller 71 is moved with ease.
The protruding portion 51b is arranged at the position far from the guide surface 54a as compared with the end portion of the spur roller 71 on the side far from the guide surface 54a as well as the center of the spur roller 71, in relation to the extending direction of the axis L. Accordingly, the spur roller 71 is moved more easily from the first position to the second position by utilizing the force received from the recording paper P to be transported.
The spur roller 71 is adopted for the roller to be brought in contact with the surface on which the image is recorded. Therefore, even when the recording paper P, which has the image recorded on the surface, is transported to the recording paper refeed path, it is possible to suppress the deterioration of the image which would be otherwise caused by the spur roller 71. Further, the printer 1 has the positioning mechanism 50 arranged in the recording paper refeed path. Therefore, when the recording is performed on the both surfaces (both sides) of the recording paper P, it is possible to position the recording paper P just before the recording on the back side.
In a modified embodiment, the lowermost portion of the spur roller 71 positioned at the second position may be disposed on the upstream side in the transport direction E from the axis M of the driving roller 61. Also in this arrangement, it is possible to obtain such an effect that the friction between the spur roller 71 and the driving roller 61 is decreased when the spur roller 71 is moved, and the spur roller 71 is moved with ease.
In another modified embodiment, as shown in
In the another modified embodiment described above, the portion of the lowermost portion of the spur roller 71 disposed at the second position, which is positioned farthest from the guide surface 54a, may be disposed on the axis M of the driving roller 61. Also in this case, even when the roller support member 80 is restored to be positioned at the first position from the second position, the lowermost portion of the spur roller 71 does not exceed the uppermost portion of the driving roller 61. Therefore, it is possible to obtain such an effect that the spur roller 71 is moved with ease.
The preferred embodiments of the present invention have been explained above. However, the present invention is not limited to the embodiments described above, for which various changes can be made within a range of definition of claims. For example, the protruding portion 51b, which serves as the axis of rotation of the roller support member 80, may be arranged at a position overlapped with the spur roller 71, provided that the protruding portion 51b is disposed at the position far from the guide surface 54a as compared with the center of the spur roller 71 in relation to the extending direction of the axis L. Also in this case, it is possible to obtain the effect which is the same as or equivalent to that obtained as described above. The compression coil spring 83 and the torsion coil spring 84 are adopted as the urging members. However, the urging member may be composed of any elastic member such as rubber or the like, provided that the urging action can be performed in the same manner as described above. It is also allowable that the compression coil spring 83 is not provided. In this case, the driving roller 61 may be pressed by the self-weight of the spur roller 71 or the like. The spur roller 71 is arranged over or above the driving roller 61. However, the spur roller 71 may be provided under or below the driving roller 61. Alternatively, the spur roller 71 may be arranged while being aligned in any direction including the horizontal direction. In this case, the lowermost portion of the spur roller 71 may be referred to as follows in other words. That is, the lowermost portion of the spur roller 71 is the portion of the outer circumference of the spur roller 71 disposed closest or nearest to the driving roller 61.
In the embodiment and respective modified embodiments described above, the spur roller 71 is adopted as the second roller. However, it is also allowable to adopt a rubber roller or a resin roller having no projection. Further, it is also allowable to adopt a bead roller having a plurality of projections on an outer circumferential side surface. The guide surface 54a described above is the vertical plane (vertical surface) including the subsidiary scanning direction in the in-plane direction. However, the guide surface 54a may be inclined with respect to the vertical plane in relation to the perpendicular direction perpendicular to the transport direction E. Further, the guide surface 54a may be a surface which is curved in the transport direction of the recording paper P.
The present invention can be adopted for any transport apparatus provided that the transport apparatus can transport the medium. Further, the present invention is applicable to any one of the line type and the serial type. Further, the present invention is also applicable to the facsimile, the copying machine or the like, without being limited to the printer. Further, the present invention is applicable to any recording apparatus including, for example, those of the laser type and the thermal type provided that the recording apparatus records the image. The recording medium is not limited to the recording paper P, and the recording medium may be various media capable of performing the recording thereon.
Number | Date | Country | Kind |
---|---|---|---|
2012-218362 | Sep 2012 | JP | national |