This application is the United States national phase of International Application No. PCT/EP2017/059720 filed Apr. 25, 2017, and claims priority to Switzerland Patent Application No. 00560/16 filed Apr. 28, 2016, the disclosures of which are hereby incorporated in their entirety by reference.
The present invention relates to a transport apparatus for transferring workpieces in a processing device comprising at least two stations, especially in a forming device, and to a processing device, especially a forming device, equipped with a corresponding transport apparatus.
In mass-forming and also in other forming operations or processing operations generally workpieces often pass through a number of stations of a processing device in succession, the workpieces being transported on from station to station. In a forming device, the stations are typically a loading station and various forming stations. To transport the workpieces from station to station there are usually used transport apparatuses which are equipped with tongs-like gripping tools and which operate in time with the rhythm of the processing device, the gripping tools simultaneously grasping the workpieces, withdrawing them from a station and supplying them to the respective next station, where they release them.
In the case of the known processing devices, especially forming devices, the transport movements and the operation of the gripping tools are coupled to the power train of the processing device—see, for example, CH 595 155 A.
U.S. Pat. No. 6,371,544 B1 discloses transport apparatuses for transferring workpieces in forging machines having a plurality of gripping tools, each for gripping one workpiece, which are arranged on a gripping tool support. The gripping tool support is pivotally mounted by means of a plurality of rotatable coupling elements and is movable back and forth by means of a drive mechanism. The drive mechanism is not described in detail.
A generic transport apparatus for transferring workpieces in a forming device is described in EP 1 048 372 B1. In this known transport apparatus, a plurality of gripping tools configured as gripping tongs, each with a dedicated gripping tool drive which is decoupled from the power train of the forming device, are arranged on a common tong support which is movable in the longitudinal direction and transversely thereto and by means of which all the gripping tongs are jointly transported back and forth in each case between two adjacent stations of a forming device. The gripping tongs comprise two pivot arms which are driven by a servo motor via kinematic coupling members so as to be pivotable towards one another and away from one another. EP 1 048 372 B1 relates essentially to the configuration of the gripping tongs and the drives thereof; the drive of the tong support for carrying out the transfer movements of the gripping tongs is not specifically described.
In forming devices, especially hot forming devices, the raw material is usually supplied in the form of bars from which pieces of the required length are then cut off. The beginnings and ends of the bars are not permitted to enter the forming process and have to be discarded. Those discarded portions are missing from the forming process and create individual empty forming stations in the forming device. On account of the absence of forming force at those locations, the deformation of the machine body is altered, which has an adverse effect on the geometry of the formed parts. Depending upon the requirements, such parts cannot then be used and have to be manually sorted out from the finished parts or separated out by means of suitable separating devices. Since mechanical separation is not so accurate, it may happen that good formed parts are also separated out. In addition, an empty forming station undergoes greater cooling by cooling water, which has an adverse effect on the wear to the forming tools. This problem is described in detail, for example, in EP 1 848 556 B1.
A further problem of conventional transport apparatuses is that in the event of process disturbances, which are caused, for example, by empty gripping tools or by workpieces incorrectly inserted into the gripping tools or by damaged parts, such as, for example, broken-off gripping tools or fractured punches etc., it is not possible to react immediately and so workpieces are not shaped as desired or often even considerable consequent damage can be caused to the transport apparatus or to the processing device.
Against this background, a problem underlying the invention is to improve a transport apparatus of the kind mentioned at the beginning and a processing device equipped with such a transport apparatus, especially a forming device, to the effect that, on the one hand, individual empty processing stations can be avoided and, on the other hand, it is easy to react to process disturbances.
That problem is solved by the transport apparatus according to the invention and by the processing device according to the invention respectively.
In respect of the transport apparatus, the core of the invention lies in the following: a transport apparatus for transferring workpieces in a processing device comprising at least two stations, especially in a forming device, comprises at least two gripping tools, each for gripping one workpiece, which gripping tools are arranged on a gripping tool support which is movable back and forth between the stations of the processing device. The gripping tool support is on the one hand movably mounted so as to be linearly guided and on the other hand mounted so as to be displaceable transversely with respect to its linearly guided movability. For the linearly guided movement and transverse displacement of the gripping tool support, the transport apparatus comprises a gripping tool support drive having at least one gripping tool support drive motor.
By virtue of the at least one dedicated gripping tool support drive motor, the transport apparatus is decoupled from the power train of the processing device. The decoupling and the displaceability of the gripping tool support transversely with respect to its linear back and forth movement enables the gripping tool support to be quickly moved into a safe position in the event of a disturbance.
Preferably the transport apparatus has a parallelogram guide arrangement for the displacement of the gripping tool support transversely with respect to its linearly guided movability. As a result, on being displaced, the gripping tool support performs only a small movement perpendicular to the displacement direction.
According to an advantageous embodiment, the gripping tool support drive comprises two crank gear arrangements each having an associated gripping tool support drive motor, wherein each crank gear arrangement has a crank, which is drivable in rotation by the associated gripping tool support drive motor, and a drive rod which is articulatedly connected on the one hand to the crank and on the other hand to the gripping tool support.
The kinematic coupling of the gripping tool support to the gripping tool support drive motors via two crank gear arrangements allows simple control of the movement sequences solely by corresponding actuation of the gripping tool support drive motors.
Advantageously the gripping tool support drive motor or the gripping tool support drive motors is/are servo motors having rotary encoders. This allows simple control of the movement sequences.
According to an advantageous embodiment, the gripping tool support with the gripping tools is movable by means of the gripping tool support drive in a forward movement along a first linear path of movement and in a return movement along a second linear path of movement parallel to the first linear path of movement. As a result of the spacing between the two linear paths of movement, at least during one of the movements the gripping tools can in a simple way be kept out of the operating range of processing tools in the stations of the processing device.
The gripping tool support is advantageously slidably mounted on at least two guide rods. This represents an especially simple realisation of the linearly guided movability of the gripping tool support.
Advantageously the parallelogram guide arrangement comprises at least two link rods which on the one hand are each mounted on a respective one of the guide rods so as to be pivotable about that guide rod and slidable in the longitudinal direction thereof and which on the other hand are articulatedly connected to the gripping tool support. As a result of this measure, the gripping tool support is movable both linearly and transversely thereto in a structurally simple way.
The transport apparatus advantageously has a support controller for the gripping tool support drive motors which is configured to control the movement of the gripping tool support. The movement sequences of the gripping tool support can thereby be implemented and, if necessary, adapted in a simple way.
Advantageously the support controller is configured, especially as a result of a control command supplied thereto, to move the gripping tool support with the gripping tools into a waiting position and to suspend the transport of the workpieces. In this way the workpiece transport can be suspended automatically in the event of a process disturbance and the gripping tool support with the gripping tools moved into a safe position.
According to an advantageous development, the gripping tools are each assigned a gripping tool drive, which is preferably arranged on the gripping tool support, for individual operation of the gripping tools for gripping or releasing a workpiece. Each gripping tool can thereby be adjusted and operated individually.
Very especially advantageously, the gripping tools are configured as gripping tongs, and the gripping tongs each have two tong arms which are movable linearly towards one another and away from one another. It is thereby possible to avoid errors during gripping of the workpieces.
The tong arms are advantageously each arranged on a respective tong carriage which is slidably mounted in a tong body, wherein the tong carriages are each kinematically connected to a respective toothed rod and wherein the toothed rods are in engagement with a motor-drivable drive pinion, the tong carriages and accordingly the tong arms being movable in opposite directions by means of the drive pinion. This represents a structurally simple realisation of the linear movability of the tong arms.
Advantageously the tong arms are arranged on the tong carriages so as to be adjustable relative thereto. The tong arms can thereby be simply adapted to workpieces.
The gripping tool drives are advantageously assigned a gripping tool controller which is configured to control the opening and closing movements and preferably also the clamping force of the individual gripping tools individually. This allows optimum adaptation to the particular requirements.
Especially advantageously, the gripping tool controller is configured to recognise a process disturbance caused, for example, by an empty gripping tool or by a workpiece incorrectly inserted into the gripping tool and to signal that disturbance to the support controller so that the latter can, for example, move the gripping tool support into a waiting position. Such a configuration enables process disturbances to be recognised at an early stage and any resulting consequent damage or undesirably shaped workpieces can thereby be largely avoided.
In respect of the processing device, the core of the invention lies in the following: a processing device, especially a forming device, comprises at least two successive stations and a transport apparatus of the kind described above for transferring work-pieces between the stations of the processing device.
Advantageously the processing device has a support controller for the gripping tool support drive motors which is configured to control the movement of the gripping tool support and, especially as a result of a control command supplied thereto, to move the gripping tool support with the gripping tools into a waiting position in which the gripping tools are located outside the operating range of processing tools of the stations of the processing device and to suspend the transport of the workpieces. In this way the transport of the workpieces can be suspended automatically in the event of a process disturbance and the gripping tool support with the gripping tools moved into a safe position.
The first station of the successive stations of the processing device is advantageously a loading station, and the support controller is configured to move the gripping tool support with the gripping tools into the waiting position in the event of a process disturbance caused by an unprocessable or missing workpiece in the loading station. In this way, empty stations of the processing device can be avoided.
Advantageously the processing device has a sensor device, which co-operates with the support controller for the gripping tool support drive motors, for recognising the process disturbance and for signalling that disturbance to the support controller. This allows automatic movement of the gripping tool support into the waiting position in the event of a process disturbance caused by an unprocessable or missing workpiece in the loading station.
The support controller is advantageously configured to move the gripping tool support with the gripping tools out of the waiting position once the process disturbance has been eliminated and to resume the transport of the workpieces.
The invention is described in greater detail below with reference to an exemplary embodiment shown in the drawings, wherein:
The following observations apply in respect of the description which follows: where, for the purpose of clarity of the drawings, reference signs are included in a Figure but are not mentioned in the directly associated part of the description, reference should be made to the explanation of those reference signs in the preceding or subsequent parts of the description. Conversely, to avoid overcomplication of the drawings, reference signs that are less relevant for immediate understanding are not included in all Figures. In that case, reference should be made to the other Figures.
The diagrammatic overviews of
In the exemplary embodiment shown, the forming device, indicated as a whole by reference symbol M, comprises five stations 110, 120, 130, 140, 150, arranged one next to the other, of which a first station 110 is a loading station and the other stations 120, 130, 140 and 150 are forming stations. The forming stations 120, 130, 140 and 150 comprise four forming dies 121, 131, 141 and 151 arranged in a common die holder 101, four forming tools in the form of punches 122, 132, 142 and 152 and four ejection elements 123, 133, 143 and 153, with which workpieces W that have been shaped in the forming dies by means of the punches can be ejected from the forming dies. The loading station 110 comprises a shearing device 112 for shearing off a workpiece W from a bar material (not shown, supplied by means of a bar material feed device, likewise not shown) and an ejection element 113, with which a workpiece W can be ejected from the shearing device 112. A transport apparatus, indicated as a whole by reference sign T, serves for transferring the workpieces from one station to the respective next station of the forming device M. Of the transport apparatus T,
During operation of the forming device, in a starting position the tongs-like gripping tools of the transport apparatus T, which are formed by the pairs of tong arms 32a and 32b, each pick up a workpiece W which is held in readiness in the loading station 110 or has been ejected from the forming dies 121, 131, 141 and 151 of the forming stations 120, 130, 140 and 150 (
It is clear from the above brief description of the transfer operation that in each transfer cycle each gripping tool transports a different workpiece and each pair of adjacent stations of the processing device is served by a different gripping tool. In the context of the present invention the transfer of workpieces from station to station of the processing device by means of a plurality of gripping tools is to be understood in this sense.
Thus far the processing or forming device M shown corresponds in structure and mode of operation to conventional processing or forming devices of this kind, so that the person skilled in the art requires no further explanation in this regard.
The transport apparatus of the processing or forming device M is explained in detail below with reference to
In the frame 10 there are arranged two parallel guide rods 11 and 12 (
Each of the drive rods (connecting rods) 53 and 54 is rotatably articulated by one end on the crank 51 and 52, respectively, and by its other end on the gripping tool support 20. By corresponding rotation of the two cranks 51 and 52 by means of the two gripping tool support drive motors 55 and 56, the gripping tool support 20 can be moved as desired (within predetermined limits) in the direction of the double-headed arrow 26 and/or the double-headed arrow 25.
An advantage of the parallelogram guidance is that the gripping tool support 20, during its transverse displacement (pivoting movement about the guide rods), performs only a small movement perpendicular to its displacement movement, that is to say perpendicular to the reference plane E.
The gripping tool units 30 arranged one next to the other on the gripping tool support 20 are all identically constructed. Their structure will be apparent from
Each gripping tool unit 30 comprises a tong body 31, a pair of movable tong arms 32a and 32b forming gripping tongs, and a gripping tool drive in the form of an (electric) servo motor 33 having a rotary encoder and gearing, the servo motor being shown only in
In the tong body 31, two tong carriages 35a and 35b are displaceably mounted on three guide rods 34a, 34b and 34c. The tong carriages 35a and 35b are each kinematically connected to a respective toothed rod 37a and 37b via a drive rod 36a and 36b, respectively, so that a movement of the toothed rods brings about a concomitant movement of the tong carriages and vice versa. The two toothed rods 37a and 37b are in engagement with a drive pinion 38 on diagonally opposite sides thereof, which drive pinion is drivable in rotation by the servo motor 33 (via the gearing thereof), so that on rotation of the drive pinion 38 the two toothed rods 37a and 37b move in opposite directions and accordingly the two tong arms 32a and 32b are moved towards one another or away from one another. The opening and closing movement of the gripping tongs formed by the tong arms 32a and 32b is therefore effected by the servo motor 33 or the drive pinion 38 driven thereby.
The gripping tool drive can alternatively also be in the form of a servo-controlled (having servo valves) hydraulic drive. What is important in that case is that, on the one hand, the movement of the gripping tongs can be effected very quickly and, especially, with position control and, on the other hand, the clamping force of the two tong arms can be precisely adjusted or controlled and fed back, as is also true in the case of the above-described gripping tool drive having the electric servo motor.
At the free ends of the two tong arms 32a and 32b there are arranged tong shoes 39a and 39b which serve for gripping the workpieces and are exchangeably attached, so that the gripping tongs can easily be matched to the shape of the workpieces being gripped (
The tong arms 32a and 32b are each releasably connected to the tong carriages 35a and 35b via a pair of serrated plates 40a and 40b, respectively (
It will be understood that in the transport apparatus according to the invention, instead of gripping tongs it is also possible to use gripping tools of some other configuration. For example, the gripping tools could also be in the form of vacuum grippers. For use in a forming device, however, gripping tools in the form of gripping tongs are customary and proven.
As shown diagrammatically in
The sensor device 65, which is indicated only symbolically in
The support controller 60 and the gripping tool controller 70 co-operate with a higher-level controller 80 which inter alia also makes the connection to the processing device and specifies at which position of the path of movement the gripping tool support or the gripping tools thereof should be located. By means of the higher-level controller 80, an operator can also input or modify settings, for example relating to the movement of the gripping tool support or to opening and closing movements of the gripping tongs. It will be understood that the functions of the support controller 60, the gripping tool controller 70 and the higher-level controller 80 can also be realised in some other configuration, for example they can be combined in a single controller.
As already mentioned at the beginning, in forming devices, especially hot forming devices, the raw material is usually supplied in the form of bars from which pieces of suitable length are then sheared off. The beginnings and ends of the bars are not permitted to enter the forming process and have to be discarded. Those discarded portions are missing from the forming process and create empty forming stations in the forming device, which should be avoided for the reasons explained at the beginning.
Because the drive of the gripping tool support 20, or of the gripping tools 32a, 32b arranged thereon, is independent and decoupled from the power train of the forming device, the above-described transport apparatus according to the invention makes it possible to avoid empty forming stations in a forming device.
If, for example, the mentioned sensor device 65 detects a process disturbance caused by a missing workpiece or by a workpiece W′ that is unsuitable for further processing and is to be discarded (
As soon as the sensor device 65 reports that a workpiece W suitable for the forming process is to arrive in the loading station 110 again, the support controller 60 causes the gripping tool support 20 to return to its original path of movement, the workpieces being transferred to the respective forming stations and the gripping tool support 20 then following its normal path of movement 21 into its starting position 22 shown in
Decoupling the transport apparatus from the power train of the forming device enables the duration and route for transporting, lifting and gripping to be adjusted and varied independently of the stroke of the forming tools. “Lifting” is to be understood herein as the vertical displacement of the gripping tool support 20, the lifting stroke corresponding to the vertical distance between the two movement path sections 21a and 21c. The adjustment of the lifting and gripping movement decoupled from the stroke of the forming tools allows individual adaptation to the particular workpieces, with the result that wear to the machine is reduced. In addition, in the event of issues in the tool chamber, for example if a formed part has not been fully pushed out of the forming die or a broken punch is stuck in the forming die or a formed part has been lost from a gripping tool, it is thereby also possible to react to the situation and move the gripping tool support 20 with its gripping tool units 30 into a safe position, for example the mentioned waiting position 27, and to stop the forming device until the disturbance has been resolved. It is thereby possible, for example, to prevent gripping tools from being broken off or other consequent damage from being caused to the transport apparatus.
As already mentioned, the gripping tool units 30 are individually controllable by means of the gripping tool controller 70. As a result, the timepoint for opening and closing can be adjusted individually for each gripping tool unit. The opening stroke of the tong arms 32a and 32b and the duration of the movement can also be adapted to the workpiece in question. The same applies to the lifting movement. That movement can also be optimised for each workpiece in respect of stroke and duration, with the aim of keeping acceleration and accordingly load on the structure of the device low. In contrast thereto, known transport apparatuses with control curves must always be designed for the maximum possible stroke, with the result that the components are subjected to maximum loading and accordingly maximum wear in the case of every workpiece or formed part.
In order to compensate for defects in the shape of the blank section or to achieve an off-centre predistribution of material, for example in the production of cams, it is necessary for the first gripping tongs or another gripping tongs to be positioned off-centre. In known transport apparatuses, eccentric adjusting elements are utilised for that purpose or the tong shoes are adjusted by trial and error so that the centre of the workpiece is shifted from the centre by the desired amount. The transport apparatus according to the invention enables the gripping tool support 20 to be moved out of the centre (zero position) by the desired amount by means of the gripping tool support drive motors 55 and 56 simply by inputting the desired values at the higher-level controller 80. The relevant gripping tongs are then aligned with a central adjusting element and then the gripping tool support is moved into its zero position again. In this way it is possible for one or more gripping tongs to be positioned off-centre. The remaining gripping tongs are adjusted when the gripping tool support 20 is central (in the zero position) again.
The clamping or holding force of each gripping tool unit 30 is controlled by means of the gripping tool controller 70 via the torque of the associated servo motor 33 and can in this way be simply adapted to the workpiece being held and optionally also varied over the movement cycle of the gripping tool support. The clamping force can be adjusted so that, for example, it is smaller when the workpieces are being introduced into the gripping tongs than it is for transport. The loading on the mechanical components is therefore only as high as necessary.
Servo motors usually have a rotary encoder for feeding back the current rotated position to its controller. Using the rotary encoder the gripping tool controller 70 can easily establish whether a gripping tool is loaded or empty, for example if a workpiece has been lost from a gripping tool, by comparing the actual rotated position with the desired rotated position, so that if necessary the forming device can be stopped. By suitable configuration of the gripping tool controller 70 it is thus possible also to recognise process disturbances caused, for example, by crookedly positioned workpieces in the gripping tools or by gripping tools tearing open. In that case this is signalled to the support controller 60 by the gripping tool controller 70 in a suitable way, and the support controller 60 then causes the gripping tool support 20 with the gripping tool units 30 to be moved into a safe position, for example the mentioned waiting position 27, where it is stopped until the process disturbance has been resolved. A gripping tool is at risk of tearing open when, for example, a workpiece is incompletely ejected from the die or if the punch breaks and sticks in the workpiece. On attempting to transport the workpiece, the gripping tool would tear open. The gripping tool controller 70 recognises this at an early stage, however, and, via the support controller 60, brings about a return movement of the gripping tool support, so that the gripping tool in question is prevented from tearing open. The gripping tool support 20 with the gripping tool units 30 is then moved into a safe position, for example the mentioned waiting position 27, where it is stopped until the process disturbance has been resolved. The forming device is of course stopped during that time. In this way it is possible to react immediately to a process disturbance before greater damage occurs. The co-operation of the gripping tool controller 70 with the support controller 60 is symbolised by arrow 71 in
The gripping tools or gripping tongs of the described transport apparatus have parallel tong arms 32a and 32b which are moved linearly towards one another and away from one another. Such gripping tongs have the advantage over gripping tongs with pivotable tong arms that the tong shoes reach uniformly into the gripping diameter. If the tong shoes engage the workpiece at the same angle on both sides, on introduction of the workpiece they are pressed against it by the same amount. This reduces the risk of a workpiece being pushed crookedly into the gripping tongs.
Number | Date | Country | Kind |
---|---|---|---|
560/16 | Apr 2016 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/059720 | 4/25/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/186672 | 11/2/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2791786 | Byam | May 1957 | A |
3994403 | Steinhauser | Nov 1976 | A |
4473147 | Bouwman | Sep 1984 | A |
4676540 | Dotti et al. | Jun 1987 | A |
4715773 | Parker et al. | Dec 1987 | A |
5190138 | Strasser | Mar 1993 | A |
5713236 | Genet | Feb 1998 | A |
5775163 | Riedisser | Jul 1998 | A |
6272892 | Ozaki | Aug 2001 | B1 |
6371544 | Wang | Apr 2002 | B1 |
6435336 | Knodler | Aug 2002 | B1 |
6715981 | Harsch et al. | Apr 2004 | B1 |
7574887 | Suter et al. | Aug 2009 | B2 |
7690706 | Wild et al. | Apr 2010 | B2 |
20070261524 | Suter et al. | Nov 2007 | A1 |
20080031717 | Wild | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
595155 | Jan 1978 | CH |
203437581 | Feb 2014 | CN |
203917775 | Nov 2014 | CN |
1069993 | Nov 1959 | DE |
0184079 | Jun 1986 | EP |
0184079 | Jun 1986 | EP |
1038607 | Sep 2000 | EP |
1048372 | Jun 2004 | EP |
1882652 | Jan 2008 | EP |
1882652 | Jan 2008 | EP |
1848556 | Aug 2008 | EP |
2233221 | Sep 2010 | EP |
2169993 | Jul 1986 | GB |
2298637 | Nov 1996 | GB |
6478781 | Mar 1989 | JP |
0054904 | Sep 2000 | WO |
2005011894 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20190134694 A1 | May 2019 | US |