The disclosure herein relates to a power architecture for providing energy to a transport climate control system.
A transport climate control system is generally used to control environmental condition(s) (e.g., temperature, humidity, air quality, and the like) within a climate controlled space of a transport unit (e.g., a truck, a container (such as a container on a flat car, an intermodal container, etc.), a box car, a semi-tractor, a bus, or other similar transport unit). The transport climate control system can include, for example, a transport refrigeration system (TRS) and/or a heating, ventilation and air conditioning (HVAC) system. The TRS can control environmental condition(s) within the climate controlled space to maintain cargo (e.g., produce, frozen foods, pharmaceuticals, etc.). The HVAC system can control environmental conditions(s) within the climate controlled space to provide passenger comfort for passengers travelling in the transport unit. In some transport units, the transport climate control system can be installed externally (e.g., on a rooftop of the transport unit, on a front wall of the transport unit, etc.).
The disclosure herein relates to a power architecture for providing energy to a transport climate control system.
In some embodiments, a transport climate control system is provided with a diesel engine as a prime mover driving a motor-generator-rectifier machine via a belt drive to provide a low voltage DC power to drive low voltage DC components such as low voltage DC condenser fan(s) and/or evaporator fan(s).
The embodiments described herein are directed to a transport climate control system that includes condenser fan(s) and/or evaporator fan(s) that are electrically driven variable speed DC fan(s). Accordingly, the embodiments described herein can provide flexibility in the sizing and positioning of the condenser fan(s) and/or the evaporator fan(s). The embodiments described herein can also provide flexibility in the sizing and positioning of the condenser coil and/or the evaporator coil. The embodiments described herein can also facilitate variable condenser fan(s) and/or evaporator fan(s) which can optimize performance of the transport climate control system throughout is full operating range while also allowing a user to control a desired airflow within the climate controlled space of the transport unit. Accordingly, the embodiments described herein can reduce energy consumption and reduced total cost of ownership versus a conventional transport climate control system that has condenser fan(s) and/or evaporator fan(s) powered via a mechanical transmission (e.g. belt drive or gear drive).
In one embodiment, a transport climate control system is disclosed. The transport climate control system includes a compressor, a motor-generator-rectifier machine, a belt drive connected to the motor-generator-rectifier machine and the compressor, at least one condenser fan, at least one evaporator fan, and a DC to DC converter. The motor-generator-rectifier machine connects to the at least one condenser fan, the at least one evaporator fan, and the DC to DC converter. The motor-generator-rectifier machine includes a motor, a low voltage generator connected to the motor, and a rectifier connected to the low voltage generator. The motor-generator-rectifier machine is configured to provide a first low voltage DC power to the at least one condenser fan, the at least one evaporator fan, and the DC to DC converter. The DC to DC converter is configured to convert the first low voltage DC power to a second low voltage DC power that is different from the first low voltage DC power.
In one embodiment, a method for distributing power for a transport climate control system is disclosed. The method includes distributing power to a motor-generator-rectifier machine. The motor-generator-rectifier machine includes a motor, a low voltage generator, and a rectifier. The method also includes the motor-generator-rectifier machine generating a first low voltage DC power to drive at least one condenser fan, at least one evaporator fan, and a DC to DC converter. The method further includes the DC to DC converter converting the first low voltage DC power to a second low voltage DC power that is different from the first low voltage DC power.
References are made to the accompanying drawings that form a part of this disclosure and which illustrate embodiments in which the systems and methods described in this specification can be practiced.
Like reference numbers represent like parts throughout.
The disclosure herein relates to an electrical architecture for a transport climate control system.
In some embodiments, a transport climate control system is provided with a diesel engine as a prime mover driving a motor-generator-rectifier machine via a belt drive to provide a low voltage DC power to drive low voltage DC components such as low voltage DC condenser fan(s) and/or evaporator fan(s).
As defined herein, “low voltage” refers to Class A of the ISO 6469-3 in the automotive environment. In particular, “low voltage” refers to a maximum working voltage of between 0V and 60V DC or between 0V and 30V AC. E.g., a low voltage can be 12 VDC, 24 VDC, 48 VDC, or other suitable DC voltage.
As defined herein, “high voltage” refers to Class B of the ISO 6469-3 in the automotive environment. In particular, “high voltage” refers to a maximum working voltage of between 60V and 1500V DC or between 30V and 1000V AC. E.g., a high voltage can be 350 VDC, 400 VDC, 700 VDC, 800 VDC or other suitable DC voltage.
The transport climate control system 110 also includes a programmable climate controller 125 and one or more sensors (not shown) that are configured to measure one or more parameters of the transport climate control system 110 (e.g., an ambient temperature outside of the van 100, an ambient humidity outside of the van 100, a compressor suction pressure, a compressor discharge pressure, a supply air temperature of air supplied by the CCU 115 into the climate controlled space 105, a return air temperature of air returned from the climate controlled space 105 back to the CCU 115, a humidity within the climate controlled space 105, etc.) and communicate parameter data to the climate controller 125. The climate controller 125 is configured to control operation of the transport climate control system 110 including the components of the climate control circuit. The climate controller unit 115 may comprise a single integrated control unit 126 or may comprise a distributed network of climate controller elements 126, 127. The number of distributed control elements in a given network can depend upon the particular application of the principles described herein.
The transport climate control system 132 also includes a programmable climate controller 135 and one or more sensors (not shown) that are configured to measure one or more parameters of the transport climate control system 132 (e.g., an ambient temperature outside of the truck 130, an ambient humidity outside of the truck 130, a compressor suction pressure, a compressor discharge pressure, a supply air temperature of air supplied by the CCU 133 into the climate controlled space 131, a return air temperature of air returned from the climate controlled space 131 back to the CCU 133, a humidity within the climate controlled space 131, etc.) and communicate parameter data to the climate controller 135. The climate controller 135 is configured to control operation of the transport climate control system 132 including components of the climate control circuit. The climate controller 135 may comprise a single integrated control unit 136 or may comprise a distributed network of climate controller elements 136, 137. The number of distributed control elements in a given network can depend upon the particular application of the principles described herein.
The transport climate control system 145 includes a CCU 152 that provides environmental control (e.g. temperature, humidity, air quality, etc.) within a climate controlled space 154 of the transport unit 150. The CCU 152 is disposed on a front wall 157 of the transport unit 150. In other embodiments, it will be appreciated that the CCU 152 can be disposed, for example, on a rooftop or another wall of the transport unit 150. The CCU 152 includes a climate control circuit (see
The transport climate control system 145 also includes a programmable climate controller 156 and one or more sensors (not shown) that are configured to measure one or more parameters of the transport climate control system 145 (e.g., an ambient temperature outside of the transport unit 150, an ambient humidity outside of the transport unit 150, a compressor suction pressure, a compressor discharge pressure, a supply air temperature of air supplied by the CCU 152 into the climate controlled space 154, a return air temperature of air returned from the climate controlled space 154 back to the CCU 152, a humidity within the climate controlled space 154, etc.) and communicate parameter data to the climate controller 156. The climate controller 156 is configured to control operation of the transport climate control system 145 including components of the climate control circuit. The climate controller 156 may comprise a single integrated control unit 158 or may comprise a distributed network of climate controller elements 158, 159. The number of distributed control elements in a given network can depend upon the particular application of the principles described herein.
The MTCS 162 includes a CCU 166 and a plurality of remote units 168 that provide environmental control (e.g. temperature, humidity, air quality, etc.) within a climate controlled space 170 of the transport unit 164. The climate controlled space 170 can be divided into a plurality of zones 172. The term “zone” means a part of an area of the climate controlled space 170 separated by walls 174. The CCU 166 can operate as a host unit and provide climate control within a first zone 172a of the climate controlled space 166. The remote unit 168a can provide climate control within a second zone 172b of the climate controlled space 170. The remote unit 168b can provide climate control within a third zone 172c of the climate controlled space 170. Accordingly, the MTCS 162 can be used to separately and independently control environmental condition(s) within each of the multiple zones 172 of the climate controlled space 162.
The CCU 166 is disposed on a front wall 167 of the transport unit 160. In other embodiments, it will be appreciated that the CCU 166 can be disposed, for example, on a rooftop or another wall of the transport unit 160. The CCU 166 includes a climate control circuit (see
The MTCS 162 also includes a programmable climate controller 180 and one or more sensors (not shown) that are configured to measure one or more parameters of the MTCS 162 (e.g., an ambient temperature outside of the transport unit 164, an ambient humidity outside of the transport unit 164, a compressor suction pressure, a compressor discharge pressure, supply air temperatures of air supplied by the CCU 166 and the remote units 168 into each of the zones 172, return air temperatures of air returned from each of the zones 172 back to the respective CCU 166 or remote unit 168a or 168b, a humidity within each of the zones 118, etc.) and communicate parameter data to a climate controller 180. The climate controller 180 is configured to control operation of the MTCS 162 including components of the climate control circuit. The climate controller 180 may comprise a single integrated control unit 181 or may comprise a distributed network of climate controller elements 181, 182. The number of distributed control elements in a given network can depend upon the particular application of the principles described herein.
The CCU 192 includes a climate control circuit (see
The climate control circuit 200 can generally be applied in a variety of systems used to control an environmental condition (e.g., temperature, humidity, air quality, or the like) in a space (generally referred to as a conditioned space). Examples of such systems include, but are not limited to, HVAC systems, transport climate control systems, or the like. In one embodiment, an HVAC system can be a rooftop unit or a heat pump air-conditioning unit.
The compressor 220, condenser 240, expansion device 260, and evaporator 280 are fluidly connected. In one embodiment, the climate control circuit 200 can be configured to be a cooling system (e.g., an air conditioning system) capable of operating in a cooling mode. In one embodiment, the climate control circuit 200 can be configured to be a heat pump system that can operate in both a cooling mode and a heating/defrost mode.
The climate control circuit 200 can operate according to generally known principles. The climate control circuit 200 can be configured to heat or cool a liquid process fluid (e.g., a heat transfer fluid or medium (e.g., a liquid such as, but not limited to, water or the like)), in which case the climate control circuit 200 may be generally representative of a liquid chiller system. The climate control circuit 200 can alternatively be configured to heat or cool a gaseous process fluid (e.g., a heat transfer medium or fluid (e.g., a gas such as, but not limited to, air or the like)), in which case the climate control circuit 200 may be generally representative of an air conditioner or heat pump.
In operation, the compressor 220 compresses a working fluid (e.g., a heat transfer fluid (e.g., refrigerant or the like)) from a relatively lower pressure gas to a relatively higher-pressure gas. The relatively higher-pressure gas is also at a relatively higher temperature, which is discharged from the compressor 220 and flows through the condenser 240. In accordance with generally known principles, the working fluid flows through the condenser 200 and rejects heat to the process fluid (e.g., water, air, etc.), thereby cooling the working fluid. The cooled working fluid, which is now in a liquid form, flows to the expansion device 260. The expansion device 260 reduces the pressure of the working fluid. As a result, a portion of the working fluid is converted to a gaseous form. The working fluid, which is now in a mixed liquid and gaseous form flows to the evaporator 280. The working fluid flows through the evaporator 280 and absorbs heat from the process fluid (e.g., a heat transfer medium (e.g., water, air, etc.)), heating the working fluid, and converting it to a gaseous form. The gaseous working fluid then returns to the compressor 220. The above-described process continues while the heat transfer circuit is operating, for example, in a cooling mode.
The climate control power system 300 includes a compressor 307 (e.g., the compressor 220 shown in
The motor-generator-rectifier machine 305 includes a motor 315 (e.g., an AC motor winding), a generator 308 (e.g., a low voltage AC generator winding to generate electrical power when a shaft of the motor-generator-rectifier machine 305 is rotating) connected to the motor 315, and a rectifier 309 (e.g., an AC-DC rectifier) connected to the generator 308.
In one embodiment, when the clutch 320 is engaged (and thus the prime mover 304) with the compressor 307 and the belt drive 306, the motor-generator-rectifier machine 305 can be powered and/or driven by the prime mover 304 via the belt drive 306, to provide power. In such embodiment, the compressor 307 can be directly driven by the prime mover 304 via the clutch 320.
In one embodiment, the motor-generator-rectifier machine 305 can connect to an AC power source 314. In such embodiment, the clutch 320 (and thus the prime mover 304) is disengaged from the compressor 307 and the belt drive 306. The AC power source 314 can be, for example, a shore/utility power source. The AC power source 314 can be a three-phase AC power source. The AC power source 314 can provide power to the motor 315 of the motor-generator-rectifier machine 305 to energize the motor 315. The motor 315 can be an electric motor. In such embodiment, the motor 315 is a standby motor, which serves as an alternate prime mover to provide power to the climate control power system 300, for example, when the prime mover 304 is unavailable to provide power.
When the motor 315 is energized, the motor 315 can rotate a shaft (not shown) of the motor-generator-rectifier machine 305. It will be appreciated that the motor 315 and the generator 308 are on the same shaft. The shaft of the motor-generator-rectifier machine 305 can propel the generator 308 so that the generator 308 can generate AC power. In one embodiment, the generator 308 is a low voltage generator. The AC power generated by the generator 308 is distributed to the rectifier 309. In one embodiment, the rectifier 309 is an active rectifier. The rectifier 309 can convert the AC power generated by the generator 308, to e.g., a low voltage DC power. In one embodiment, the voltage of the converted low voltage DC power is 48 volts. When the motor 315 is energized, the motor 315 can also drive the compressor 307 via the belt drive 306.
The climate control power system 300 includes at least one condenser fan 310, at least one evaporator fan 311, and a DC to DC converter 312. In some embodiments, the at least one condenser fan 310 can be a variable speed fan. In some embodiments, the at least one condenser fan 310 can be a low voltage DC fan. In some embodiments, the at least one evaporator fan 311 can be a variable speed fan. In some embodiments, the at least one evaporator fan 311 can be a low voltage DC fan.
The converted low voltage DC power from the rectifier 309 is distributed to the at least one condenser fan 310, the at least one evaporator fan 311, and the DC to DC converter 312. In one embodiment, the DC to DC converter 312 is a buck converter that lowers the converted low voltage DC power from the rectifier 309, to a second low voltage DC power.
In one embodiment, the second low voltage DC power is distributed to a control system 313 to power and/or charge the control system 313. The control system 313 can include a controller, a rechargeable energy storage system (e.g., a battery), a battery charger, solenoid(s), and/or valve(s), etc. In one embodiment, the voltage of the second low voltage DC power is 12 volts.
In operation, in a running mode of the climate control power system 300, the prime mover 304 is engaged with the compressor 307 and the belt drive 306, via the clutch 320. In such mode, the prime mover 304 directly drives the compressor 307, which is directly mounted to the prime mover 304. The prime mover 304 connects to and drives the motor-generator-rectifier machine 305 via the belt drive 306, such that the generator 308 of the motor-generator-rectifier machine 305 can provide a low voltage AC power to the rectifier 309 of the motor-generator-rectifier machine 305. The rectifier 309 can convert the low voltage AC power to a low voltage DC power to drive the low voltage DC fans (the at least one condenser fan 310 and at least one evaporator fan 311) and to provide power to the DC to DC convertor 312. The DC to DC convertor 312 can convert the low voltage DC power from the rectifier 309 to a second low voltage DC voltage to power and/or charge the control system 313 (e.g., charging the battery of the control system 313, providing DC power to the solenoid(s) and valve(s) of the control system 313, etc.).
In operation, in a standby mode of the climate control power system 300, the prime mover 304 is disengaged with the compressor 307 and the belt drive 306, via the clutch 320. The AC power source 314 can provide power to the climate control circuit 300 when connected to the motor 315 to energize the motor 315. When the motor 315 is energized, the motor 315 can rotate the shaft of the motor-generator-rectifier machine 315, which can propel the generator 308 to provide a low voltage AC power to the rectifier 309 which in turn can convert the low voltage AC power to a low voltage DC power to drive the low voltage DC fans (the at least one condenser fan 310 and at least one evaporator fan 311) and to provide power to the DC to DC convertor 312. The DC to DC convertor 312 can convert the low voltage DC power from the rectifier 309 to a second low voltage DC power to power and/or charge the control system 313 (e.g., charging the battery of the control system 313, providing DC power to the solenoid(s) and valve(s) of the control system 313, etc.). When the motor 315 is energized, the motor 315 can also drive the compressor 307 via the belt drive 306.
Embodiments disclosed herein allow each of the at least one condenser fan 310 and the at least one evaporator fan 311 to be individually and independently powered and controlled (e.g., by the controller). As such, the speed of the at least one condenser fan 310 and/or the speed of the at least one evaporator fan 311 can be controlled independent of the speed of the prime mover 304 and/or the speed of the generator 308.
In one embodiment, the at least one condenser fan 310 and/or the at least one evaporator fan 311 can be fully variable speed fans. In such embodiment, the at least one condenser fan 310 and/or the at least one evaporator fan 311 can have more than two speeds. It will be appreciated that a two-speed fan refers to a fan with a high speed and a low speed corresponding to a two-speed engine/generator that drives the fan. The fans (310 and/or 311) can be configured to run continuously and/or in a cycle-sentry mode. The speed of the fans (310 and/or 311) can be controlled (e.g., by the controller) to optimize at each point around fuel economy. For example, the speed of the fans (310 and/or 311) can be controlled based on a curve fit which is based on e.g., prime mover (e.g., engine) speed, ambient temperature, and/or box temperature (e.g., temperature of the climate controlled space), during operations such as pulldown. In one embodiment, the curve fit of the fan speed (a curve used by the controller to determine the speed of the fan) can be based on the speed of the compressor, ambient temperature, and/or box temperature. In such embodiment, the speed of the fans (310 and/or 311) can be controlled based on the load of the transport climate control system. In one embodiment, the curve fit of the fan speed (a curve used by the controller to determine the speed of the fan) can be used when, e.g., an AC power source (such as utility/shore power) is used and the prime mover is disengaged.
It will be appreciated that in one embodiment, to generate power for the transport climate control system, technology from automotive Hybrid Electric Vehicles can be used. For example, an automotive belt-driven-starter-generator (BSG) can be used in place of the motor-generator-rectifier machine 305 of
It is to be appreciated that any of aspects 1-11 can be combined with any of aspects 12-15.
Aspect 1. A transport climate control system, the transport climate control system comprising:
a compressor;
a motor-generator-rectifier machine;
a belt drive connected to the motor-generator-rectifier machine and the compressor;
at least one condenser fan;
at least one evaporator fan; and
a DC to DC converter,
wherein the motor-generator-rectifier machine connects to the at least one condenser fan, the at least one evaporator fan, and the DC to DC converter,
wherein the motor-generator-rectifier machine includes:
wherein the motor-generator-rectifier machine is configured to provide a first low voltage DC power to the at least one condenser fan, the at least one evaporator fan, and the DC to DC converter, and
the DC to DC converter is configured to convert the first low voltage DC power to a second low voltage DC power that is different from the first low voltage DC power.
Aspect 2. The transport climate control system according to aspect 1, wherein the compressor is configured to be directly driven by a prime mover via a clutch.
Aspect 3. The transport climate control system according to aspect 1 or aspect 2, wherein the motor-generator-rectifier machine is configured to be driven by a prime mover via the belt drive.
Aspect 4. The transport climate control system according to any one of aspects 1-3, wherein the prime mover is a diesel engine.
Aspect 5. The transport climate control system according to any one of aspects 1-4, wherein the compressor is configured to be driven by the motor via the belt drive.
Aspect 6. The transport climate control system according to aspect 1, wherein the motor is configured to be driven by an AC power source.
Aspect 7. The transport climate control system according to aspect 6, wherein the motor is configured to rotate a shaft of the motor-generator-rectifier machine, and the shaft is configured to propel the low voltage generator to provide power.
Aspect 8. The transport climate control system according to any one of aspects 1-7, wherein the DC to DC converter is a buck converter that lowers the first low voltage DC power to the second low voltage DC power.
Aspect 9. The transport climate control system according to any one of aspects 1-8, wherein the at least one condenser fan and/or the at least one evaporator fan are variable speed fans.
Aspect 10. The transport climate control system according to any one of aspects 1-9, wherein a speed of the at least one condenser fan and/or a speed of the at least one evaporator fan are controlled independent of a speed of a prime mover and/or a speed of the low voltage generator.
Aspect 11. The transport climate control system according to any one of aspects 1-10, wherein the first low voltage DC power is 48 volts and the second low voltage DC power is 12 volts.
Aspect 12. A method for distributing power for a transport climate control system, the method comprising:
distributing power to a motor-generator-rectifier machine, the motor-generator-rectifier machine including a motor, a low voltage generator, and a rectifier,
the motor-generator-rectifier machine generating a first low voltage DC power to drive at least one condenser fan, at least one evaporator fan, and a DC to DC converter,
the DC to DC converter converting the first low voltage DC power to a second low voltage DC power that is different from the first low voltage DC power.
Aspect 13. The method according to aspect 12, further comprising:
a prime mover directly driving a compressor of the transport climate control system; and
the prime mover driving the motor-generator-rectifier machine via a belt drive.
Aspect 14. The method according to aspect 12, further comprising:
an AC power source supplying power to the motor of the motor-generator-rectifier machine;
the motor rotating a shaft of the motor-generator-rectifier machine; and
the shaft propelling the low voltage generator to provide power.
Aspect 15. The method of any one of aspects 12-14, further comprising:
controlling a speed of the at least one condenser fan and a speed of the at least one evaporator fan independent of a speed of a prime mover or a speed of the low voltage generator.
The terminology used in this specification is intended to describe particular embodiments and is not intended to be limiting. The terms “a,” “an,” and “the” include the plural forms as well, unless clearly indicated otherwise. The terms “comprises” and/or “comprising,” when used in this specification, specify the presence of the stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, and/or components.
With regard to the preceding description, it is to be understood that changes may be made in detail, especially in matters of the construction materials employed and the shape, size, and arrangement of parts without departing from the scope of the present disclosure. This specification and the embodiments described are exemplary only, with the true scope and spirit of the disclosure being indicated by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3875483 | Farr | Apr 1975 | A |
5104037 | Karg et al. | Apr 1992 | A |
5231849 | Rosenblatt | Aug 1993 | A |
6280320 | Paschke et al. | Aug 2001 | B1 |
6487869 | Sulc et al. | Dec 2002 | B1 |
6518727 | Oomura et al. | Feb 2003 | B2 |
6560980 | Gustafson et al. | May 2003 | B2 |
6600237 | Meissner | Jul 2003 | B1 |
6631080 | Trimble et al. | Oct 2003 | B2 |
6652330 | Wasilewski | Nov 2003 | B1 |
6688125 | Okamoto et al. | Feb 2004 | B2 |
6753692 | Toyomura et al. | Jun 2004 | B2 |
6925826 | Hille et al. | Aug 2005 | B2 |
7011902 | Pearson | Mar 2006 | B2 |
7120539 | Krull et al. | Oct 2006 | B2 |
7122923 | Lafontaine et al. | Oct 2006 | B2 |
7151326 | Jordan | Dec 2006 | B2 |
7176658 | Quazi et al. | Feb 2007 | B2 |
7206692 | Beesley et al. | Apr 2007 | B2 |
7327123 | Faberman et al. | Feb 2008 | B2 |
7424343 | Kates | Sep 2008 | B2 |
7449798 | Suzuki et al. | Nov 2008 | B2 |
7532960 | Kumar | May 2009 | B2 |
7728546 | Tanaka et al. | Jun 2010 | B2 |
7730981 | McCabe et al. | Jun 2010 | B2 |
7745953 | Puccetti et al. | Jun 2010 | B2 |
7806796 | Zhu | Oct 2010 | B2 |
7830117 | Ambrosio et al. | Nov 2010 | B2 |
7898111 | Pistel | Mar 2011 | B1 |
7900462 | Hegar et al. | Mar 2011 | B2 |
8020651 | Zillmer et al. | Sep 2011 | B2 |
8030880 | Alston et al. | Oct 2011 | B2 |
8134339 | Burlak et al. | Mar 2012 | B2 |
8170886 | Luff | May 2012 | B2 |
8214141 | Froeberg | Jul 2012 | B2 |
8295950 | Wordsworth | Oct 2012 | B1 |
8381540 | Alston | Feb 2013 | B2 |
8441228 | Brabec | May 2013 | B2 |
8476872 | Truckenbrod et al. | Jul 2013 | B2 |
8487458 | Steele et al. | Jul 2013 | B2 |
8541905 | Brabec | Sep 2013 | B2 |
8602141 | Yee et al. | Dec 2013 | B2 |
8626367 | Krueger et al. | Jan 2014 | B2 |
8626419 | Mitchell et al. | Jan 2014 | B2 |
8643216 | Lattin | Feb 2014 | B2 |
8643217 | Gietzold et al. | Feb 2014 | B2 |
8670225 | Nunes | Mar 2014 | B2 |
8723344 | Dierickx | May 2014 | B1 |
8742620 | Brennan et al. | Jun 2014 | B1 |
8760115 | Kinser et al. | Jun 2014 | B2 |
8764469 | Lamb | Jul 2014 | B2 |
8767379 | Whitaker | Jul 2014 | B2 |
8818588 | Ambrosio et al. | Aug 2014 | B2 |
8862356 | Miller | Oct 2014 | B2 |
8912683 | Dames et al. | Dec 2014 | B2 |
8924057 | Kinser et al. | Dec 2014 | B2 |
8978798 | Dalum et al. | May 2015 | B2 |
9030336 | Doyle | May 2015 | B2 |
9061680 | Dalum | Jun 2015 | B2 |
9093788 | Lamb | Jul 2015 | B2 |
9102241 | Brabec | Aug 2015 | B2 |
9147335 | Raghunathan et al. | Sep 2015 | B2 |
9199543 | Brabec | Dec 2015 | B2 |
9313616 | Mitchell et al. | Apr 2016 | B2 |
9436853 | Meyers | Sep 2016 | B1 |
9440507 | Giovanardi et al. | Sep 2016 | B2 |
9463681 | Olaleye et al. | Oct 2016 | B2 |
9464839 | Rusignuolo et al. | Oct 2016 | B2 |
9557100 | Chopko et al. | Jan 2017 | B2 |
9562715 | Kandasamy | Feb 2017 | B2 |
9694697 | Brabec | Jul 2017 | B2 |
9738160 | Bae et al. | Aug 2017 | B2 |
9758013 | Steele | Sep 2017 | B2 |
9783024 | Connell et al. | Oct 2017 | B2 |
9784780 | Loftus et al. | Oct 2017 | B2 |
9825549 | Choi et al. | Nov 2017 | B2 |
9846086 | Robinson et al. | Dec 2017 | B1 |
9893545 | Bean | Feb 2018 | B2 |
9931960 | Tabatowski-Bush et al. | Apr 2018 | B2 |
9975403 | Rusignuolo et al. | May 2018 | B2 |
9975446 | Weber et al. | May 2018 | B2 |
9987906 | Kennedy | Jun 2018 | B2 |
10000122 | Wu et al. | Jun 2018 | B2 |
10148212 | Schumacher et al. | Dec 2018 | B2 |
10240847 | Thomas, Jr. | Mar 2019 | B1 |
20020113576 | Oomura et al. | Aug 2002 | A1 |
20030043607 | Vinciarelli et al. | Mar 2003 | A1 |
20030106332 | Okamoto et al. | Jun 2003 | A1 |
20030200017 | Capps et al. | Oct 2003 | A1 |
20030201097 | Zeigler et al. | Oct 2003 | A1 |
20050057210 | Ueda et al. | Mar 2005 | A1 |
20050065684 | Larson et al. | Mar 2005 | A1 |
20060061307 | Donnelly | Mar 2006 | A1 |
20060284601 | Salasoo et al. | Dec 2006 | A1 |
20070052241 | Pacy | Mar 2007 | A1 |
20070130950 | Serkh | Jun 2007 | A1 |
20070192116 | Levitt | Aug 2007 | A1 |
20080177678 | Di Martini et al. | Jul 2008 | A1 |
20080281473 | Pitt | Nov 2008 | A1 |
20090121798 | Levinson | May 2009 | A1 |
20090122901 | Choi et al. | May 2009 | A1 |
20090126901 | Hegar et al. | May 2009 | A1 |
20090178424 | Hwang et al. | Jul 2009 | A1 |
20090195349 | Frader-Thompson et al. | Aug 2009 | A1 |
20090228155 | Slifkin et al. | Sep 2009 | A1 |
20090314019 | Fujimoto et al. | Dec 2009 | A1 |
20090320515 | Bischofberger et al. | Dec 2009 | A1 |
20100045105 | Bovio et al. | Feb 2010 | A1 |
20100230224 | Hindman | Sep 2010 | A1 |
20100312425 | Obayashi et al. | Dec 2010 | A1 |
20100320018 | Gwozdek et al. | Dec 2010 | A1 |
20110000244 | Reason et al. | Jan 2011 | A1 |
20110114398 | Bianco | May 2011 | A1 |
20110118916 | Gullichsen | May 2011 | A1 |
20110162395 | Chakiachvili et al. | Jul 2011 | A1 |
20110208378 | Krueger et al. | Aug 2011 | A1 |
20110224841 | Profitt-Brown et al. | Sep 2011 | A1 |
20110241420 | Hering et al. | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20120000212 | Sanders et al. | Jan 2012 | A1 |
20120116931 | Meyers | May 2012 | A1 |
20120153722 | Nazarian | Jun 2012 | A1 |
20120198866 | Zeidner | Aug 2012 | A1 |
20120310376 | Krumm et al. | Dec 2012 | A1 |
20120310416 | Tepper et al. | Dec 2012 | A1 |
20130000342 | Blasko et al. | Jan 2013 | A1 |
20130073094 | Knapton et al. | Mar 2013 | A1 |
20130088900 | Park | Apr 2013 | A1 |
20130158828 | McAlister | Jun 2013 | A1 |
20130231808 | Flath et al. | Sep 2013 | A1 |
20140018969 | Forbes, Jr. | Jan 2014 | A1 |
20140020414 | Rusignuolo et al. | Jan 2014 | A1 |
20140026599 | Rusignuolo et al. | Jan 2014 | A1 |
20140060097 | Perreault | Mar 2014 | A1 |
20140137590 | Chopko et al. | May 2014 | A1 |
20140230470 | Cook | Aug 2014 | A1 |
20140265560 | Leehey et al. | Sep 2014 | A1 |
20150019132 | Gusikhin et al. | Jan 2015 | A1 |
20150081212 | Mitchell et al. | Mar 2015 | A1 |
20150121923 | Rusignuolo et al. | May 2015 | A1 |
20150168032 | Steele | Jun 2015 | A1 |
20150188360 | Doane et al. | Jul 2015 | A1 |
20150306937 | Kitamura et al. | Oct 2015 | A1 |
20150316301 | Kolda et al. | Nov 2015 | A1 |
20150345958 | Graham | Dec 2015 | A1 |
20150355288 | Yokoyama et al. | Dec 2015 | A1 |
20150360568 | Champagne | Dec 2015 | A1 |
20160011001 | Emory et al. | Jan 2016 | A1 |
20160035152 | Kargupta | Feb 2016 | A1 |
20160089994 | Keller et al. | Mar 2016 | A1 |
20160144764 | Dutta et al. | May 2016 | A1 |
20160252289 | Feng et al. | Sep 2016 | A1 |
20160280040 | Connell et al. | Sep 2016 | A1 |
20160285416 | Tiwari et al. | Sep 2016 | A1 |
20160291622 | Al-Mohssen et al. | Oct 2016 | A1 |
20160327921 | Ribbich et al. | Nov 2016 | A1 |
20160377309 | Abiprojo et al. | Dec 2016 | A1 |
20170030728 | Baglino et al. | Feb 2017 | A1 |
20170057323 | Neu et al. | Mar 2017 | A1 |
20170063248 | Lee et al. | Mar 2017 | A1 |
20170098954 | Ferguson et al. | Apr 2017 | A1 |
20170217280 | Larson et al. | Aug 2017 | A1 |
20170259764 | Da Silva Carvalho et al. | Sep 2017 | A1 |
20170302200 | Marcinkiewicz | Oct 2017 | A1 |
20170349078 | Dziuba et al. | Dec 2017 | A1 |
20180022187 | Connell et al. | Jan 2018 | A1 |
20180029436 | Zaeri et al. | Feb 2018 | A1 |
20180029488 | Sjodin | Feb 2018 | A1 |
20180087813 | Sent, Jr. | Mar 2018 | A1 |
20180111441 | Menard et al. | Apr 2018 | A1 |
20180154723 | Anderson et al. | Jun 2018 | A1 |
20180201092 | Ahuja et al. | Jul 2018 | A1 |
20180203443 | Newman | Jul 2018 | A1 |
20180222278 | Mizuma | Aug 2018 | A1 |
20180306533 | Alahyari et al. | Oct 2018 | A1 |
20180334012 | Geller et al. | Nov 2018 | A1 |
20180342876 | Agnew et al. | Nov 2018 | A1 |
20180342877 | Yoo et al. | Nov 2018 | A1 |
20180356870 | Rusignuolo | Dec 2018 | A1 |
20190047496 | Sufrin-Disler et al. | Feb 2019 | A1 |
20190086138 | Chopko et al. | Mar 2019 | A1 |
20190092122 | Vanous et al. | Mar 2019 | A1 |
20190123544 | Pelegris et al. | Apr 2019 | A1 |
20190184838 | Lee et al. | Jun 2019 | A1 |
20190255914 | Ikeda et al. | Aug 2019 | A1 |
20190283541 | Adetola et al. | Sep 2019 | A1 |
20190308487 | Badger, II et al. | Oct 2019 | A1 |
20200050753 | Davis et al. | Feb 2020 | A1 |
20200076029 | Litz | Mar 2020 | A1 |
20200086744 | Schumacher et al. | Mar 2020 | A1 |
20200101820 | Wenger et al. | Apr 2020 | A1 |
20200130471 | Leasure | Apr 2020 | A1 |
20200130473 | Schumacher et al. | Apr 2020 | A1 |
20200136504 | Schumacher et al. | Apr 2020 | A1 |
20200207184 | Schumacher et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2456117 | Oct 2001 | CN |
1885660 | Dec 2006 | CN |
2912069 | Jun 2007 | CN |
101713577 | May 2010 | CN |
202038315 | Nov 2011 | CN |
104539184 | Apr 2015 | CN |
104734178 | Jun 2015 | CN |
105711376 | Jun 2016 | CN |
106184252 | Dec 2016 | CN |
106766419 | May 2017 | CN |
106774131 | May 2017 | CN |
108074466 | May 2018 | CN |
108931006 | Dec 2018 | CN |
208306320 | Jan 2019 | CN |
208650989 | Mar 2019 | CN |
3817365 | Nov 1989 | DE |
29715576 | Dec 1997 | DE |
10138750 | Feb 2003 | DE |
10200637 | Oct 2003 | DE |
102011050719 | Dec 2012 | DE |
0282051 | Sep 1988 | EP |
1935712 | Jun 2008 | EP |
2365915 | Sep 2011 | EP |
2689944 | Jan 2014 | EP |
2717016 | Sep 2014 | EP |
2942216 | Nov 2015 | EP |
3343728 | Jul 2018 | EP |
536552 | Sep 2019 | EP |
3540340 | Sep 2019 | EP |
2551999 | Jan 2018 | GB |
2000158930 | Jun 2000 | JP |
2007320352 | Dec 2007 | JP |
2009243780 | Oct 2009 | JP |
2019145521 | Aug 2019 | JP |
10-2012-0092834 | Aug 2012 | KR |
03038988 | May 2003 | WO |
2008094148 | Aug 2008 | WO |
2008153518 | Dec 2008 | WO |
2009155941 | Dec 2009 | WO |
2010065476 | Jun 2010 | WO |
2011066468 | Jun 2011 | WO |
2012138500 | Oct 2012 | WO |
2012138497 | Oct 2012 | WO |
2013096084 | Jun 2013 | WO |
2014002244 | Jan 2014 | WO |
2014058610 | Apr 2014 | WO |
2014085672 | Jun 2014 | WO |
2014106060 | Jul 2014 | WO |
2014106068 | Jul 2014 | WO |
2015100398 | Jul 2015 | WO |
2016038838 | Mar 2016 | WO |
2016145107 | Sep 2016 | WO |
2017058660 | Apr 2017 | WO |
2017083333 | May 2017 | WO |
2017083336 | May 2017 | WO |
2017151698 | Sep 2017 | WO |
2017172484 | Oct 2017 | WO |
2017172855 | Oct 2017 | WO |
2017176682 | Oct 2017 | WO |
2017176725 | Oct 2017 | WO |
2017176729 | Oct 2017 | WO |
2017189485 | Nov 2017 | WO |
2017218909 | Dec 2017 | WO |
2017218910 | Dec 2017 | WO |
2017218912 | Dec 2017 | WO |
2018017450 | Jan 2018 | WO |
2018009646 | Jan 2018 | WO |
2018009798 | Jan 2018 | WO |
2018017818 | Jan 2018 | WO |
2018029502 | Feb 2018 | WO |
2018136738 | Jul 2018 | WO |
2018226389 | Dec 2018 | WO |
2018226649 | Dec 2018 | WO |
2018226848 | Dec 2018 | WO |
2018226857 | Dec 2018 | WO |
2018226862 | Dec 2018 | WO |
2018226906 | Dec 2018 | WO |
2018226981 | Dec 2018 | WO |
2018226986 | Dec 2018 | WO |
2019051086 | Mar 2019 | WO |
2019151947 | Aug 2019 | WO |
2020068446 | Apr 2020 | WO |
2020068450 | Apr 2020 | WO |
2020068469 | Apr 2020 | WO |
2020068475 | Apr 2020 | WO |
2020068502 | Apr 2020 | WO |
2020068556 | Apr 2020 | WO |
2020068641 | Apr 2020 | WO |
2020068646 | Apr 2020 | WO |
2020069107 | Apr 2020 | WO |
Entry |
---|
Extended European Search Report, issued in the corresponding European patent application No. 20210695.1, dated May 26, 2021, 7 pages. |
Yang et al., “The Role of Thermal Plume in Person-to-Person Contaminant Cross Transmission”, 2017 Winter Conference, Seminar 36; Modeling and Control of the Personal Microenvironment, 5 pages. |
“Lamberet Smart Reefer on Solutrans”, Zoeken, Jul. 28, 2015, 7 pages, available at: https://iepieleaks.nl/lamberet-smart-reefer-solutrans/. |
U.S. Appl. No. 16/178,067, titled “Methods and Systems for Generation and Utilization of Supplemental Stored Energy for Use in Transport Climate Control”, filed Nov. 1, 2018, 35 pages. |
U.S. Appl. No. 16/565,063, titled “System and Method for Managing Power and Efficiently Sourcing a Variable Voltage for a Transport Climate Control System ”, filed Sep. 9, 2019, 59 pages. |
U.S. Appl. No. 16/574,754, titled “Methods and Systems for Energy Management of a Transport Climate Control System”, filed Sep. 18, 2019, 50 pages. |
U.S. Appl. No. 16/574,775, titled “Methods and Systems for Power and Load Management of a Transport Climate Control System”, filed Sep. 18, 2019, 68 pages. |
European Patent Application No. 18382672.6, titled “Methods and Systems for Energy Management of a Transport Climate Control System”, filed Sep. 19, 2018, 50 pages. |
European Patent Application No. 18382673.4 titled “Methods and Systems for Power and Load Management of a Transport Climate Control System”, filed Sep. 19, 2018, 68 pages. |
U.S. Appl. No. 16/176,802, titled “Methods and Systems for Controlling a Mild Hybrid System That Powers a Transport Climate Control System”, filed Oct. 31, 2018, 31 pages. |
U.S. Appl. No. 16/236,938, titled “Systems and Methods for Smart Load Shedding of a Transport Vehicle While in Transit”, filed Dec. 31, 2018, 39 pages. |
U.S. Appl. No. 16/176,720, titled “Methods and Systems for Augmenting a Vehicle Powered Transport Climate Control System”, filed Oct. 31, 2018, 41 pages. |
U.S. Appl. No. 16/176,602, titled “Reconfigurable Utility Power Input With Passive Voltage Booster”, filed Oct. 31, 2018, 39 pages. |
U.S. Appl. No. 16/147,704, titled “Methods and Systems for Monitoring and Displaying Energy Use and Energy Cost of a Transport Vehicle Climate Control System or a Fleet of Transport Vehicle Climate Control Systems”, filed Sep. 29, 2018, 33 pages. |
U.S. Appl. No. 16/235,865, titled “Methods and Systems for Preserving Autonomous Operation of a Transport Climate Control System”, filed Dec. 28, 2018, 41 pages. |
PCT International Application No. PCT/US2018/068136, titled “Methods and Systems for Providing Predictive Energy Consumption Feedback for Powering a Transport Climate Control System”, filed Dec. 31, 2018, 34 pages. |
PCT International Application No. PCT/US2018/068129, titled “Methods and Systems for Notifying and Mitigating a Suboptimal Event Occurring in a Transport Climate Control System”, filed Dec. 31, 2018, 44 pages. |
PCT International Application No. PCT/US2018/068139, titled “Methods and Systems for Providing Feedback for a Transport Climate Control System”, filed Dec. 31, 2018, 37 pages. |
PCT International Application No. PCT/US2018/068142, titled “Methods and Systems for Providing Predictive Energy Consumption Feedback for Powering a Transport Climate Control System Using External Data”, filed Dec. 31, 2018, 39 pages. |
U.S. Appl. No. 16/911,692, titled “Climate Controlled Vehicle, Transport Climate Control Equipment, Method of Retrofitting a Vehicle and Method of Operation”, filed Jun. 25, 2020, 39 pages. |
U.S. Appl. No. 16/565,110, titled “Transport Climate Control System With a Selfconfiguring Matrix Power Converter”, filed Sep. 9, 2019, 52 pages. |
U.S. Appl. No. 16/565,146, titled “Optimized Power Management for a Transport Climate Control Energy Source”, filed Sep. 9, 2019, 53 pages. |
U.S. Appl. No. 62/897,833, titled “Optimized Power Distribution To Transport Climate Control Systems Amongst One or More Electric Supply Equipment Stations ”, filed Sep. 9, 2019, 41 pages. |
European Patent Application No. 19382776.3, titled “Mprioritized Power Delivery for Facilitating Transport Climate Control”, filed Sep. 9, 2019, 41 pages. |
U.S. Appl. No. 16/565,282, titled “Optimized Power Cord for Transferring Power To a Transport Climate Control System ”, filed Sep. 9, 2019, 43 pages. |
U.S. Appl. No. 16/565,235, titled “Interface System for Connecting a Vehicle and a Transport Climate Control System”, filed Sep. 9, 2019, 64 pages. |
U.S. Appl. No. 16/565,205, titled “Transport Climate Control System With an Accessory Power Distribution Unit for Managing Transport Climate Control Loads”, filed Sep. 9, 2019, 57 pages. |
U.S. Appl. No. 17/015,190, titled “Optimized Power Distribution To Transport Climate Control Systems Amongst One or More Electric Supply Equipment Stations ”, filed Sep. 9, 2020, 43 pages. |
U.S. Appl. No. 16/147,708, titled “Methods and Systems for Autonomous Climate Control Optimization of a Transport Vehicle”, filed Sep. 29, 2018, 41 pages. |
U.S. Appl. No. 16/176,667, titled “Drive Off Protection System and Method for Preventing Drive Off”, filed Oct. 31, 2018, 41 pages. |
U.S. Appl. No. 16/565,252, titled “Demand-Side Power Distribution Management For a Plurality of Transport Climate Control Systems”, filed Sep. 9, 2019, 44 pages. |
U.S. Appl. No. 17/015,194, titled “Prioritized Power Delivery for Facilitating Transport Climate Control”, filed Sep. 9, 2020, 41 pages. |
Number | Date | Country | |
---|---|---|---|
20210203217 A1 | Jul 2021 | US |