Portable gasoline containers provide readily available quantities of gasoline for small volume needs such as portable power equipment for home and light industrial use. Such containers, nonetheless, dispose volatile liquids in a variety of environments where handling of the containers lends them vulnerable to spillage, puncture, or simply vapor communication with external ignition sources due to loose or missing filler caps.
In the United States, for example, more than 20 million portable gasoline containers (PGC's) are sold annually, with over 46% of U.S. households having at least one. As early as 1973, consumer research organizations demonstrated the potential for a PGC to explode as a result of flame propagation through the pour spout. This same hazard still exists today for consumer gasoline cans, as has been evidenced by continuing reports to the Consumer Product Safety Commission (CPSC), and also as highlighted in recent media reports by various agencies. In addition to the health and safety hazard, these incidents also represent a significant potential liability for gasoline container manufacturers. In 2011 a major gasoline container manufacturer filed for bankruptcy as a direct result of lawsuit settlements from gasoline explosion incidents. Consumer oriented advisory and regulatory groups such as the CPSC or Underwriters Laboratory (UL) may have an interest in improved approaches to PGS safety.
A volatile liquid storage container has combustion resistance properties from a flexible sock or tube constructed of fire resistant fibers coupled to a filling orifice or neck of the storage container to prevent flame flash-back into the storage container, such as a portable gasoline container (PGC). The storage container defines an enclosed volume having an orifice in the container material for pouring and filling the enclosed volume for exchanging the contents therein. The sock or tube is elongated and surrounds a circumference of the orifice for engaging any ignition source entering through the orifice. The flexible nature of the tube or sock allows it to extend into the enclosed volume, and ensures that the tube or sock is encircling any ignition path to the volatile liquid without interfering with an ability to pour or refill the container. The tube or sock therefore employs a mesh or porous surface for permitting fluidic passage to the neck while providing an ignition-arresting structure to prevent flame flash-back into the PGC, and which does not hinder the filling and emptying of gasoline from the PGC.
Configurations herein are based, in part, on the observation that conventional approaches to PGC flame arrestors often employ bulky and/or complicated modifications to a basic vessel for reducing a vapor space above the liquid, or interfere with fluid ingress and egress, thus making the containers cumbersome to pour and refill. Such mechanical manipulations often add to the weight and cost of the containers, as well. Conventional approaches to volatile liquid containment suffer from the shortcoming that flame arrestors are often ineffective, interfere with fluid flow, and/or too expensive for home usage. Accordingly, configurations herein substantially overcome the above-described shortcomings by providing a tubular formation of a continuous, elongated sheet or planar material for sealing engagement with a pouring/fill orifice of the volatile liquid container, such as a PGC (container).
Conventional approaches to PGC design and development suffer from several shortcomings:
i. Cost: Existing in-line flame arrestors tend to be designed for industrial applications such as the protection of large storage vessels and pipelines; accordingly the devices are typically large and expensive.
ii. Liquid flow: Existing in-line flame arrestors are typically designed for gas or gas-vapor applications, rather than the liquid flow required for a PGC. This results in a high resistance to flow—both for in-flow (container filling) and out-flow (container pouring). Additionally, this type of design is susceptible to fouling from suspended solids in the gasoline.
iii. Void-reducing products: Void-reducing products, such as a bladder, inserted into the container headspace above the liquid add additional weight and reduce the usable fuel volume. These products also lead to fuel retention or coating of the headspace material which may make it difficult for a consumer to completely remove gasoline from the container.
A flame arrestor device as disclosed herein includes an enclosed fluidic storage vessel, such as a molded plastic gasoline container having an interior volume defined by an enclosure adapted to contain a stored fluid, and an orifice through the enclosure for communication with the stored fluid. A lid, pour spout, sealing cap, or similar combination is often installed at the orifice to enable normal dispensing and refilling. A continuous, elongated permeable medium is installed in a sealing engagement to the orifice for directing fluids passing through the orifice to the permeable medium for passage there through, such that any fluid ingress or egress must pass through the permeable medium, which therefore provides a flame arresting barrier.
The foregoing and other objects, features and advantages of the invention will be apparent from the following description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
Configurations depicted herein provide a volatile fluid container such as a PGC for containment and dispensing of volatile liquids such as gasoline, which is less bulky and cumbersome than conventional approaches, making the disclosed approach ideal for home and consumer use, such as lawn and garden power equipment. Hazards and resulting accidents from volatile liquids typically result not from the liquid itself, but from a volume of vapor that accumulates above the volatile liquid, and which can become concentrated in an enclosed area such as the void above the liquid in a containment vessel.
Flame arrestors, as are known in the art, operate to prevent passage of a flame, thus preventing the explosive combustion of gases. Flame arrestors operate to quench a traveling flame by absorbing the heat that propagates the flame. For example, conventional flame arrestors on a small gasoline engine may take the form of a metal screen around an enlarged muffler egress for exhausting combusted gases. The exhaust flow may still have an active flame, based on the combustion speed and timing of the engine. The metal screen absorbs heat from the flame, while permitting hot gases to pass through the screen.
A typical PGC employed with configurations herein is a molded plastic containment vessel defining an interior volume for fluid containment. A metal construction of a flame arrestor is undesirable because the differing conductivity of the metal and the plastic increases the risk of a static electrical discharge resulting in a spark. Conventional approaches take the form of a convex surface or pipe extending from a filler neck into the containment area. However, such approaches tend to impede filling and dispensing by physically blocking the fuel flow.
A flame arrestor as defined herein includes an elongated tubular formation of a sheet or planar material or medium adhering a continuous, elongated permeable medium in a sealing engagement to a filling orifice or filler neck for directing fluids passing through the orifice to the permeable medium for passage therethrough, such that the permeable medium is adapted to quench a flame from passage through the medium. The elongated medium appears as a “sock” or tubular, hollow structure sealed at the neck and terminating in a concave, sealed or fused end such that all fluid ingress or egress to or from the can and passing through the orifice must also pass through the permeable medium, thus providing a continuous barrier between an ambient exterior and the interior volume defined by the container enclosure and adapted to contain the stored fluid and any vapors emitted. An ignition source reaching the interior volume would have any resulting flame stopped, or quenched, at the permeable medium, thus preventing an explosive ignition and expansion of gases outside the container.
In the example arrangement shown, the permeable medium 150 takes a closed end tubular shape forming a sealable engagement with the orifice 120, in which the tubular shape 152 includes a distal end 154 having a closure 156 and a proximate end 158 sealing around the orifice 120 for directing the fluid through the permeable medium 150. The tubular shape 152 may be attached via an attachment 160 to the interior volume at the closed distal end 154, such that the attachment 160 maintains the permeable medium 150 in an elongated shape for preventing compression of the permeable medium 150 from impeding fluid flow. An unattached tubular shape 152 might respond to tilting or inverted orientations of the storage vessel 100, such as when filling an equipment fuel tank, and cause the permeable medium 150 to deform in response to gravity and compress or “bunch up” in response to gravity and impede fluid flow at the orifice 120.
The permeable medium 150 may also take the form of a sheet-like or planar material 150-2 having perforations 160 formed, rather than as spaces between fibers of a mesh construction as in 150-1. Any suitable arrangement for providing a perforation 160 size sufficient to quench flame, and sufficient in number such that the aggregate flow rate through the plurality of perforations allows for filling or emptying the container, may be provided. In an example arrangement, the perforations 160 may be between 0.1 mm and 0.2 mm, however other arrangements may provide a minimum quenching distance, or perforation size/diameter, sufficient to prevent flame passage.
In an example arrangement, the permeable medium comprises a flexible material such as “Nomex®” which is formed into the shape of a sock or tube and attached at the neck of the container and also at the base or at the wall of the storage vessel 100 (container). Attachment at the neck or orifice 120 provides that the arrestor cannot be removed during proper usage, and the attachment 156 at the base (bottom surface 102) will ensure that the arrestor does not influence pouring or filling. The distal end 154 may terminate in a convex, spherical shape, or may be tied, molded or fused to terminate the tubular shape 152. Such fusing or tying may also be part of the attachment 156 for ensuring that the tubular shape 152 extends to the bottom 102 or opposed side of the storage vessel 100. Thus, the permeable medium 150 defines a deformable sock of flexible material, such that the flexible material has porosity sufficient to quench a flame from reaching or passing to the interior volume 110 and sufficient to allow fluidic ingress and egress to and from the interior volume 110
The fabric (Nomex®) is resilient to wear and tear. Further, the length ensures easy pour and fill operation. The gap defining the perforations 160 between fibers is smaller than the minimum explosive safe gap (MESG) necessary for gasoline vapor flame mitigation. If necessary, additional layers of fabric may be added to provide additional flame quenching and to improve frictional wear and tear. Other fibers, besides Nomex®, that can be used to make the flexible flame arrestor are ceramic fibers (such as Fiberfrax®), glass micro fibers (such as Micro-Strand™), and carbon fibers (such as carbon PAN fibers and carbon nanofibers). Most of these materials are commercially available as nonwoven mats. All these materials are either noncombustible or are resistant to the short duration flames that could propagate into the PGC. The permeable medium 150 is therefore a continuous sheet material affixed around a circumference of the orifice for directing dispensed fluid through the continuous sheet of mesh, woven, planar and/or layered construction, and may also be rigid for ensuring that sufficient surface area remains unobstructed for passage of the ingress or egress fluid.
Such construction forms a fluid containment to define the interior volume 110 by defining the orifice 120 through the enclosure (storage vessel 100) for communication with the stored fluid 112 for ingress and egress of the stored fluid 112 with the interior volume 110. The permeable medium 150 is attached to the removable rim 170 adapted for selective detachment from the orifice 120, such that the engaged rim 170 provides a sealing engagement with the orifice 120 for directing the fluidic flow to ensure that all fluid flow is through the permeable medium. The perforated material attaches to the rim 170 for providing a continuous surface separating the interior volume 110 at the orifice 120.
The permeable medium 150 may take a variety of forms, such as a graduated diameter tube 150′ that increases in size toward the orifice 120, to provide a larger “base” in an inverted container and ensure that the tubular shape 152 does not collapse and interfere with fluid flow when inverted, such as when turned upside down by a user to empty into a fuel tank. The attachment 156 may also be employed to maintain the elongated shape 152 of the permeable medium 150, and may be a molded or attached tether for connecting the distal end 154 to the bottom surface 102. A rigid shaft or wire 180 may also be inserted into the permeable medium 150 and attached at the distal end 154 for maintaining the elongated, tubular shape 152.
A fuel vent 182 may be provided, to prevent a vacuum build up as fluid is poured which can result in “sloshing” or splashing of fuel due to a sudden burst of air to satisfy the vacuum. Such a fuel vent 182 may be fitted with a similar permeable material 150, or may simply be locked closed when maintaining the flame arrestor properties of the storage vessel 100.
While the system and methods defined herein have been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61,948,162 filed Mar. 5, 2014, entitled “FLUID CONTAINER FOR VOLATILE MATERIALS” incorporated herein by reference in entirety.
Number | Date | Country | |
---|---|---|---|
61948162 | Mar 2014 | US |