Transport device with base plate modules

Information

  • Patent Grant
  • 10520520
  • Patent Number
    10,520,520
  • Date Filed
    Thursday, August 2, 2018
    5 years ago
  • Date Issued
    Tuesday, December 31, 2019
    4 years ago
Abstract
A transport device for a laboratory sample distribution system is presented. The transport device comprises a plurality of actuator modules. Each actuator module comprises a plurality of electro-magnetic actuators. A plurality of base plate modules arranged in a pattern is provided. The base plate modules are coupled to each other and aligned by support elements. The number of base plate modules at least equals the number of actuator modules and each base plate module is configured to support one of the plurality of actuator modules. A laboratory sample distribution system and to a laboratory automation system comprising a laboratory sample distribution system are also presented.
Description
BACKGROUND

The present disclosure generally relates to a transport device for a laboratory sample distribution system as well as to a laboratory sample distribution system and to a laboratory automation system comprising a laboratory sample distribution system.


A laboratory automation system comprises a plurality of pre-analytical, analytical and/or post-analytical stations, in which samples, for example blood, saliva, swab and other specimens taken from the human body, are processed. It is generally known to provide various containers, such as test tubes or vials, containing the samples. The test tubes are also referred to as sample tubes. In the context of the application, containers such as test tubes or vials for containing a sample are referred to as sample containers.


There is a need for a transport device comprising a plurality of actuator modules, each actuator module comprising a plurality of electro-magnetic actuators, which transport device is flexible in design and can be adapted to a large number of different requirements.


SUMMARY

According to the present disclosure a transport device is presented. The transport device can comprise a plurality of actuator modules, each actuator module comprising a plurality of electro-magnetic actuators, and a plurality of base plate modules arranged in a pattern. The base plate modules can be coupled to each other and aligned by support elements. The plurality of base plate modules can at least equal the plurality of actuator modules. Each base plate module can be configured to support one of the plurality of actuator modules.


Accordingly, it is a feature of the embodiments of the present disclosure to provide for a transport device comprising a plurality of actuator modules, each actuator module comprising a plurality of electro-magnetic actuators, which transport device is flexible in design and can be adapted to a large number of different requirements. Other features of the embodiments of the present disclosure will be apparent in light of the description of the disclosure embodied herein.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:



FIG. 1 illustrates a top view of a transport device build from several transport device units according to an embodiment of the present disclosure.



FIG. 2 illustrates an exploded view of a transport device unit according to an embodiment of the present disclosure.



FIG. 3 illustrates a sectional exploded view of the transport device unit of FIG. 2 according to an embodiment of the present disclosure.



FIG. 4 illustrates a top view of a base plate of a base plate module of the transport device unit of FIG. 2 according to an embodiment of the present disclosure.



FIG. 5 illustrates a top view of a rhombic slot nut according to an embodiment of the present disclosure.



FIG. 6 illustrates a top view of a base plate module of the transport device unit of FIG. 2 according to an embodiment of the present disclosure.



FIG. 7 illustrates a side view of a filter element used in the base plate module of FIG. 6 according to an embodiment of the present disclosure.



FIG. 8 illustrates a perspective view of a wiring board used in the base plate module of FIG. 6 according to an embodiment of the present disclosure.



FIG. 9 illustrates a perspective view from above of an actuator module of the transport device unit of FIG. 2 according to an embodiment of the present disclosure.



FIG. 10 illustrates a perspective view from below of the actuator module of FIG. 9 according to an embodiment of the present disclosure.



FIG. 11 illustrates a perspective view from above of the actuator module of FIG. 9 without actuators according to an embodiment of the present disclosure.



FIG. 12 illustrates a perspective view of an actuator of the actuator module of FIG. 9 according to an embodiment of the present disclosure.



FIG. 13 illustrates a perspective view from above of a driving surface module of the transport device unit of FIG. 2 according to an embodiment of the present disclosure.



FIG. 14 illustrates a perspective view from below of the driving surface module of FIG. 13 according to an embodiment of the present disclosure.



FIG. 15 illustrates a perspective view from below showing a detail of two adjacent driving surface modules of FIG. 13 according to an embodiment of the present disclosure.



FIG. 16 illustrates a perspective view of a detail XVI of FIG. 14 according to an embodiment of the present disclosure.



FIG. 17 illustrates a perspective view of a corner support of the transport device unit of FIG. 2 according to an embodiment of the present disclosure.



FIG. 18 illustrates a bottom view of a detail XVIII of FIG. 2 according to an embodiment of the present disclosure.



FIG. 19 illustrates a bottom view showing a detail of two adjacent driving surface modules of FIG. 13 connected by a corner support 5 according to an embodiment of the present disclosure.



FIG. 20 illustrates a schematic sectional view showing two adjacent transfer units coupled by a corner support according to an embodiment of the present disclosure.



FIG. 21 illustrates a transport device upon removal of a transport device unit according to an embodiment of the present disclosure.



FIG. 22 illustrates a perspective of a tool for removing a transport device unit from a transport device according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description of the embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown by way of illustration, and not by way of limitation, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present disclosure.


A transport device with a plurality of actuator modules is provided. Each actuator module can comprise a plurality of electro-magnetic actuators. The transport device can further have a plurality of base plate modules arranged in a pattern. The base plate modules can be coupled to each other and aligned by support elements. The number of base plate modules can at least equal the number of actuator modules and each base plate module can be configured to support one of the plurality of actuator modules.


The number of base plate modules and their arrangement can be matched to the requirements of a laboratory distribution system. The base plate modules can be arranged for example to form a square, rectangular or L-shaped base plate array. Each actuator module can be mounted to one base plate module. In one embodiment, additional base plate modules can be provided for mounting supplementary devices.


The base plate modules can be mountable to a support frame such as, for example, on support bars of a support frame, in a defined pattern. In embodiments, each base plate module can comprise fixation elements configured to adjustably fix the base plate module in position to a support frame. After aligning the base plate modules with each other, at least some of the base plate modules can be fixed to a support frame in order to avoid any undesired relative movement between the base plate modules and the support frame and/or between individual base plate modules.


For fixing the base plate modules to the support frame, in one embodiment, the base plate can have at least one aperture. The at least one aperture can be configured to allow a slot nut to be passed through for mounting the base plate module to a support bar of the support frame by the slot nut. The apertures can allow an insertion of slot nuts into grooves of a support bar after placing the base plate module on the support bar. In one embodiment, rhombic apertures for rhombic slot nuts can be provided. In order to allow a mounting of the base plate module in more than one orientation to a support bar and/or to support bars extending in different directions, in one embodiment, at least two apertures arranged at an angle of about 90° can be provided.


The electro-magnetic actuators can be configured to move a sample container carrier on top of the driving surface in at least two different directions using magnetic forces. It is well known to provide a control device, which can be configured to control the movement of the container carriers on the top of the driving surface by driving the electro-magnetic actuators. For communicating the actuator module with the control device, the base plate module, in one embodiment, can further comprise a wiring board mounted to a base plate of the base plate module. When mounting the wiring board to the base plate, a wiring of the transport device can be completed prior to mounting the actuator module. At this stage of the assembly of the transport device, the wiring boards provided at the base plate modules can be easy to access. In order to avoid a wiring between the wiring board and an actuator module wiring board, a board-to-board connector can be provided.


Base plate modules and associated actuator modules of different basic shapes can be combined for building an arbitrary transport device. To simplify a manufacturing and an assembly, in one embodiment, the base plate modules can have a tessellating basic shape such as, for example, a regular polygonal basic shape. Hence, basic frameworks of different designs can be built by suitable combinations of base plate modules.


In some embodiments of the transport device, the base plate modules can have a regular polygonal basic shape with three, four or six corners, wherein the support elements can be designed as corner supports arranged to couple neighboring base plate modules at adjacent corner regions. When using such corner supports, the number of support elements can be minimized.


In order to couple neighboring base plate modules at their adjacent corners, in one embodiment, angled connection brackets extending in an at least substantially vertical direction can be provided at each corner of the base plate modules. The angle of the connecting bracket can be configured to the basic shape of the base plate module so that each leg of the connection bracket can extend in substantially parallel with one side adjoining the associated corner. The corner support elements can be provided with slits adapted to receive two adjacent legs of two brackets of neighboring base plate modules. In one embodiment, legs of the angled connection brackets can be provided with longitudinal grooves configured to receive a pair of ribs provided at the corner supports. Hence, adjacent legs of two brackets of neighboring base plate modules can be coupled by inserting two ribs extending in substantially parallel in the two grooves, respectively.


For securing the support elements such as, for example, the corner supports, to the base plate module, in one embodiment, the support elements can have with snap-fit elements. The support elements can by detachably fixed in position in a vertical direction on the base plate modules by the snap-fit elements.


The transport device can further comprise a driving surface configured to carry sample container carriers. The driving surface, in one embodiment, can be detachably coupled with the actuator module to allow access to the actuators. For this purpose, in one embodiment, the support elements can be configured to support a driving surface arranged above the actuators.


In one embodiment, the driving surface can be tiled and can comprise a plurality of driving surface modules with driving surface elements. Each driving surface module can be detachably mounted to a subset of the support elements. The tiling of the driving surface using driving surface modules can allow detachment of the individual driving surface modules to access actuators arranged below the driving surface module, for example, in case of a malfunction or defect of an actuator. The driving surface module, in one embodiment, can be smaller in height than the actuators. The height can be chosen in some embodiments such that a tilting of the driving surface module for mounting or dismounting a driving surface module to the support elements can be possible. In one embodiment, the driving surface module can comprise a sensor board arranged at a bottom side of the driving surface element. The sensor board can at least form part of a device for sensing a presence or position of a sample container carrier moved across the upper side of the driving surface element. In one embodiment, the driving surface element can be transparent to IR light. The sensor board can be equipped with multiple IR based reflection light barriers arranged in a grid, and the sample container carriers can be adapted to reflect IR radiation emitted by the light barriers.


The actuator module can be mounted to the base plate module. For this purpose, in one embodiment, the base plate module and the actuator module can be provided with cooperating male and female coupling elements. The male and female coupling elements can assume shapes and/or can be arranged for a mechanical coding not having rotational symmetry for ensuring a correct alignment of the base plate module and the actuator module. In one embodiment, the base plate module and the actuator module can both have a regular polygonal basic shape with at least three sides and at least three corners, wherein male or female coupling elements can be provided at each side of the base plate module and the actuator module, respectively. In one embodiment, the shapes of all coupling elements can differ. Alternatively, or in addition, coupling elements provided at different sides can differ in position with respect to the associated side. A suitable keying system can be chosen by the person skilled in the art.


In one embodiment, the actuator module can have stands protruding from a bottom surface and serving as male coupling elements for coupling the actuator module to the base plate module. The stands can be used for placing the actuator module on a surface when not mounted to the base plate module, for example, during transport, assembly or storage.


A laboratory sample distribution system can be provided having a transport device and a plurality of sample container carriers. The sample container carriers can each comprise at least one magnetically active device such as, for example, at least one permanent magnet, and can be configured to carry a sample container containing a sample. The magnetic actuators of the transport device units of the transport device can be suitably driven for generating a magnetic field such that a driving force can be applied to each of the sample container carriers for transporting the sample container carriers on the surface pieced together of driving surface modules of the units. The distribution system, in addition, in one embodiment, can comprise additional conveyor devices for moving a sample container carrier along a defined path.


A laboratory automation system with a plurality of pre-analytical, analytical and/or post-analytical stations and with a distribution system having a transport device and number of sample container carriers can also be provided.


Referring initially to FIG. 1, FIG. 1 schematically shows a top view of an embodiment of a transport device 10 build from several, in the embodiment shown, twenty transport device units 1. The transport device units 1 can be fixed to a support frame comprising support bars 12. Each of the transport device units 1 shown has a square basic shape allowing building of transport devices 10 of various designs by adding additional transport device units 1 at either side of already existing units 1 and/or removing transport device units 1 from the device 10 shown in FIG. 1. In other embodiments, the transport device units can have a different basic shape, for example, a triangular basic shape or a hexagonal basic shape. Preferably, all transport device units 1 can have the same basic shape, wherein the shape is a tessellating shape. However, in specific embodiments, a transport device can be composed of transport device units 1 having different basic shapes.



FIG. 2 shows a transport device unit 1 for building a transport device 10 of FIG. 1 in an exploded view. FIG. 3 shows the unit 1 of FIG. 2 in an exploded sectional view. The transport device unit 1 can comprise three modules, namely a base plate module 2 for fixing the transport device unit 1 to the support frame, an actuator module 3 with a plurality of electro-magnetic actuators 30 mounted to a carrier element 31, and a driving surface module 4. Adjacent transport device units 1 can be connected by corner supports 5.


The base plate module 2 shown comprises a base plate 20 having a substantially square basic shape with four sides and four corners. In the center area of the base plate 20, a recess 21 surrounded by walls 22 can be provided for accommodating a fan 32 mounted at the actuator module 3 and protruding from a bottom side of the carrier element 31. At the inside of the walls 22, filter elements 230 can be mounted.


A wiring board 6 can be mounted to the base plate 20 at one corner region thereof. In the embodiment shown, the wiring board 6 can have a substantially L-shaped basic shape and can be arranged directly adjacent to the recess 21.


Neighboring base plate modules 2 can be coupled to each other. For this purpose, in the embodiment shown, at each corner of the base plate module 2, an angled connection bracket 24 extending in a vertical direction and substantially perpendicular to a surface area of the base plate 20 can be provided. Adjacent base plates 20, and thus adjacent base plate modules 2, can be connected by the corner supports 5 attached to two, three or four connection brackets 24 of the base plates 20 of neighboring transport device units 1. The driving surface module 4 can be coupled to a top end of the corner supports 5 by connecting structures 40 provided at each of the four corners of the driving surface module 4.


The actuator module 3 can be supported by the base plate module 2. For this purpose, the base plate module 2 and the actuator module 3 can have cooperating male and female coupling elements. In the embodiment shown, the base plate 20 can have four receiving openings 25, 26 configured to receive four stands 33, 34 provided at the actuator module 3.


For assembling the transport device 10 shown in FIG. 1 from a plurality of transport device units 1, at first a plurality of base plate modules 2 can be mounted to the support bars 12 (see FIG. 2), wherein adjacent base plate modules 2 can be aligned and connected to each other by the corner supports 5. Next, a wiring of the transport device units 1 can be completed. After the wiring is completed, the actuator modules 3 can be mounted to the base plate modules 2, wherein the stands 33, 34 of the actuator module 3 can be inserted into the receiving openings 25, 26 of the base plate 20. Finally, the driving surface module 4 can be mounted to the base plate module 2 via the corner supports 5, wherein the connecting structures 40 of the driving surface module 4 can be coupled to the corner supports 5.



FIG. 4 shows the base plate 20 of the base plate module 2 in a top view. FIG. 6 shows the base plate module 2 in a top view mounted to a support bar 12.


As can be seen in FIG. 4, close to its center the surface area of the base plate 20 can have four rhombic apertures 27, each configured to receive a fastening bolt 121 (see FIG. 6) equipped with a washer 122 and a rhombic slot nut 123, which rhombic slot nut 123 is schematically shown in FIG. 5. The slot nut 123 can be mounted to the fastening bolt 121 and inserted from above into a groove of the support bar 12 passing through the rhombic apertures 27. This can allow for an easy mounting, wherein the fastening bolt 121 can be tightened after all base plate modules 2 of a transport device are aligned to each other.


As shown in FIG. 4, the surface area of the base plate 20 can have receiving slits 23 on the internal side of the walls 22 surrounding the recess 21. The receiving slits 23 can allow for a mounting of filter elements 230 (see FIGS. 6 and 7) from below, in case the support bar 12 does not hinder an access to the receiving slit 23. In case access to the receiving slit 23 from below is hindered by the support bar 12 as in the case of the receiving slits 23 on the left and the right in FIG. 6, the filter element 230 can be mounted from above.


To one corner of the base plate 20, in the orientation shown in FIGS. 4 and 5 to the upper right corner, a wiring board 6 can be mounted. The wiring board 6 can be mounted to the base plate 20 by screws 61 (see FIG. 6). For this purpose, as shown in FIG. 4, the base plate 20 can have threaded holes 28 for receiving the screws 61. As shown in FIG. 6, in the embodiment shown, an earth or ground cable 60 of the wiring board 6 can be connected to the fastening bolt 121, and the fastening bolt 121 can be the ground for the wiring board 6.


The base plate module 2 can serve as a mounting platform for mounting the actuator module 3 and the driving surface module 4.


The actuator module 3 can be mounted to the base plate module 2 by stands 33, 34 (see FIG. 3) serving as male coupling elements to be inserted into receiving openings 25, 26 provided at the base plate 20. As best seen in FIG. 4, the receiving openings 25, 26 configured to receive the stands 33, 34 can differ in design for providing a mechanical coding or keying system not having rotational symmetry. Thereby, it can be ensured that the actuator module 3 can only be mounted in one particular orientation to the base plate module 2. In the embodiment shown, two receiving openings 25 can have a substantially U-shaped design, whereas the other two receiving openings 26 can have a substantially T-shaped design. Each receiving opening 25, 26 can be arranged at a center of one of the sides of the base plate 20 between two corners. In other embodiments, a keying structure can be provided by arranging at least one of the receiving openings 25, 26 and the corresponding stand 33, 34 offset from a center closer to one corner.


As explained above, the base plates 20 of adjacent transport device units 1 can be coupled and aligned using corner supports 5 (see FIG. 2) attached to the connection brackets 24 at adjacent corners of the base plates 20. In the embodiment shown, each connection bracket 24 can be provided with two longitudinal grooves 240 at its two legs, in which the longitudinal grooves 240 can extend substantially parallel to the two adjoining sides and substantially perpendicular to a surface area of the base plate 20. A coupling element can be inserted into the grooves from above.



FIG. 7 shows a filter element 230 of the base plate module 2 of FIG. 6 in a side view. As can be seen in FIG. 7, the filter element 230 can have mirror symmetry allowing a mounting of the filter element 230 in four different orientations. The filter element 230 can have snap-fit connectors 231 for detachably securing the filter element 230 in position at the base plate 20 of the base plate module 2. If required, the filter element 230 can be removed and cleaned or replaced. In case access to the filter element 230 is possible from below, such a removal and/or replacement can be possible without disassembling the transport device unit 1.



FIG. 8 shows the wiring board 6 of the base plate module 2 of FIG. 6 in a perspective view. As can be seen in FIG. 8, the wiring board 6 can have a board-to-board connector 62 for electrically connecting the wiring board 6 and the actuator module 3 (see FIG. 2), more particular for electrically connecting the wiring board 6 and an actuator module wiring board 35 (see FIG. 11). In order to ensure a correct alignment of the wiring board 6 and the actuator module 3, two centering pins 63 can be provided, which can be received in corresponding centering holes (36, see FIG. 10) at the actuator module 3. In order to avoid an overdetermined mechanical system, the wiring board 6 can be float-mounted to the base plate 20 of the base plate module 2. For this purpose, in the embodiment shown, the wiring board 6 can have through holes 64 for the fixation screws 61 (see FIG. 6), in which the through holes 64 can be larger in diameter than the fixation screws 61. Hence, the wiring board 6 can be mounted moveably within limits by the fixation screws 61 to the base plate 20.



FIGS. 9 and 10 show the actuator module 3 with the carrier element 31 and the actuators 30 in a perspective view from above and from below, respectively. FIG. 11 shows the actuator module 3 in a different orientation than FIG. 9 and wherein the actuators 30 are removed. FIG. 12 shows an electro-magnetic actuator 30 of the actuator module 3.


The actuator module 3 can have a substantially square basic shape with four equal sides and four corners. It can be configured to be mounted to the base plate module 2 by the stands 33, 34 inserted into receiving openings 25, 26 (see FIG. 4, 6). As mentioned above, the carrier element 31 can have four stands 33, 34 configured to be inserted into four receiving openings 25, 26 of the base plate module 2 (see FIG. 2). The receiving openings 25, 26, as well as the corresponding stands 33, 34, can differ in design for providing a mechanical coding not having rotational symmetry. In the embodiment shown, two stands 33 can have a substantially U-shaped cross-section, whereas the other two stands 34 can have a substantially T-shaped cross-section. Each stand 33, 34 can be arranged at a center of one of the sides of the carrier element 31.


The actuator module 3 can comprise an actuator module wiring board 35 having contact pins 350 accessible via a bottom surface 310 of the carrier element 31. The contact pins 350 can be configured to connect with the board-to-board connector 62 (see FIG. 8) of the wiring board 6. In order to ensure for a correct alignment of the contact pins 350 and the board-to-board connector 62 of the wiring board 6, two centering holes 36 can be provided at the bottom surface 310 as well as at the actuator module wiring board 35. The centering holes 36 can be configured for receiving the centering pins 63 of the wiring board 6 for aligning the contact pins 350 of the actuator module wiring board 35 with the board-to-board connector 62.


The actuators 30 can be electrically and mechanically connected to the actuator module wiring board 35. For this purpose, as best seen in FIG. 11, the actuator module wiring board 35 can be equipped with a plurality of sockets 351 configured to receive contact pins 301 provided at the actuators 30 (see FIG. 12). In order to facilitate a mounting of the actuators 30 to the actuator module 3, in the embodiment shown, the actuator module 3 can comprise a grid structure 37 made of a magnetically conductive material such as, for example, a metal, comprising a plurality of bearing pins 370. The bearing pins 370 can be configured to receive one actuator 30 each, wherein the actuators 30 can have corresponding cores 302.


At a bottom side of the actuator module 3, the fan 32 can be provided. The length of the stands 33, 34 can exceed the distance over which the fan 32 can protrude from the bottom surface 310 such that when placing the actuator module 3 on a planar surface, for example during transport, for storage and/or for an assembly, the distal ends of the stands 33, 34 can contact this planar surface and the fan 32 can be distanced from the planar surface. Hence, it can be possible to mount the fan 32 directly to the actuator module wiring board 35.


At each side of each stand 33, 34 a guiding groove 38 for a removal tool 8 (see FIGS. 21, 22) can be provided, as will be explained in more detail with reference to FIGS. 21 and 22 below.



FIGS. 13 and 14 show the driving surface module 4 in a perspective view from above and from below, respectively. FIG. 15 is a perspective view from below showing a detail of two adjacent driving surface modules 4 of FIG. 14.


The driving surface module 4 can have a driving surface element 41. The driving surface element 41 can be made of a material suitable for slidingly transporting sample carriers (not shown) along the top surface of the driving surface element 41. The driving surface element 41 can have a substantially square basic shape with four sides of equal length and four corners.


The driving surface module 4 can be detachably supported by support elements. In the embodiment shown, the driving surface module 4 can be detachably supported by the corner supports 5 (see FIG. 2) serving as support element for the driving surface module 4. At the four corners of the driving surface module 4, connecting structures 40 can be provided for connecting the driving surface module 4 via the corner supports 5 with the base plate module 2 (see FIG. 2). The driving surface module 4 can comprise a sensor board arranged at a bottom side of the driving surface element 41. Hence, the sensor board can be positioned close to the driving surface across which sample support carriers can be transported. The sensor board can at least form part of a device for sensing a presence or position of an individual sample container carrier moved across the upper side of the driving surface element 41. In one embodiment, the driving surface element 41 can be transparent to IR light, wherein the sensor board can be equipped with multiple IR based reflection light barriers arranged in a grid, and the sample container carriers can be adapted to reflect IR radiation emitted by the light barriers.


When mounting the driving surface module 4 to the base plate module 2 by the corner supports 5, the driving surface module 4 can be positioned with high accuracy in relation to the base plate module 2.


At each side of the driving surface element 41, a rim 42 can be provided.


The driving surface elements 41 of adjacent transport device units 1 can overlap each other at their side regions. For this purpose, as best seen in FIGS. 14 and 15, at two adjoining sides of each driving surface module 4, a transition between the top surface of the driving surface element 41 and the rim 42 can have a stepped portion 43. At the respective opposing sides of each driving surface module 4, a transition between the top surface of the driving surface element 41 and the rim 42 can have a complementary overhang portion 44. The stepped portion 43 and the overhang portion 44 can be configured to each other such that the overhang portion 44 rests on the stepped portion 43 and can be supported by the stepped portion 43 for a smooth transition between two driving surface modules 4. In other words, adjacent transport device units 1 (see FIG. 2) can be arranged such that in each case a side provided with an overhang portion 44 can contact a side provided with a stepped portion 43.


Further, for tolerance compensation in a vertical direction, resilient elements 450, 451 can be provided underneath the driving surface element 41 for forcing the stepped portion 43 towards the overhang portion 44. The resilient elements 450, 451 in the embodiment shown can comprise pairs of hooked-shaped elements 450 arranged underneath each overhang portion 44, wherein each pair of hooked-shaped elements 450 can be interacting with a tongue-shaped element 451 provided at sides of the driving surface element 41 having a stepped portion 43. The tongue-shaped element 451 and the stepped portion 43 can be arranged between the overhang portion 44 and the hooked-shaped elements 450. Hence, the overhang portion 44 and the hooked-shaped elements 450 can form a clamp for forcing the stepped portion 43 towards the overhang portion 44 and vice versa.


As best seen in FIG. 14, in the embodiment shown, a grid-shaped resilient component 45 can be provided, wherein the resilient elements 450, 451 can be formed at ends of grid-lines of the grid-shaped resilient component 45. Grid-lines of the grid-shaped resilient component 45 can be arranged above some of the actuators 30 of the actuator module 3 (see FIG. 2), wherein the grid-lines can have recesses 452 for receiving upper ends of the actuators 30. The grid-shaped resilient component 45 can be mounted to the bottom surface of the driving surface element 41. In the embodiment shown, the bottom surface of the driving surface element 41 can have screw sockets 410 for fixing the grid-shaped resilient component 45 to the driving surface element 41.


In order to avoid liquid accidently spilled on the upper surface of the transport device from entering the transport device unit 1, a sealing cord 46 can be provided. In the embodiment shown, the sealing cord 46 can extend along two sides of the driving surface element 41, namely the sides provided with the overhang portion 44. The sealing cord 46 can be mounted at the respective sides to the rim 42. For this purpose, a groove for mounting of the sealing cord 46 can be provided. At the respective opposite sides, the rim 42 can have a sealing projection for contacting the sealing cord 46.


In order to ensure that the driving surface modules 4 are mounted in such an orientation that in each case a side having an overhang portion 44 can contact a side of a driving surface module 4 of an adjacent transport device unit 1 having a stepped portion 43, the driving surface element 40 may not have rotational symmetry and can be mounted only in one orientation.



FIG. 16 shows a detail XVI of FIG. 14, wherein the connecting structure 40 for connecting the driving surface module 4 with the corner support 5 (see FIG. 2) is shown in more detail. The connecting structure 40 can comprise a connection pin 400 formed integrally with the driving surface element 41. Further, two snap-fit elements 402 can be provided, which in the embodiment shown can be formed integrally with the grid-shaped component 45.



FIG. 17 is a perspective view of a corner support 5 for connecting adjacent transport device units 1 (see FIG. 1). The corner support 5, in the embodiment shown, can function as a cross-shaped connection node for both, a plurality of base plate modules 2 and a plurality of driving surface modules 4. As shown in FIGS. 2 and 3, the corner supports 5 can be arranged at the four corners of the transport device unit 1, wherein the driving surface module 4 can rest on the four corner supports 5. Each corner support 5 can have a liquid trap recess 50 at its center for collecting liquid accidently spilled on the driving surface.


For connecting and aligning up to four base plate modules 2, four pairs of snap-fit elements 511, 512, 513, 514 and four pairs of ribs 521, 522, 523, 524 (only partly visible in FIG. 17) can be provided. The snap-fit elements 511, 512, 513, 514 as well as the ribs 521, 522, 523, 524 of each pair can be arranged at an angle of about 90° to each other. The ribs 521, 522, 523, 524 can be configured to enter into the longitudinal grooves 240 of the connecting bracket 24 of the base plate modules 2 (see FIG. 4) and the snap-fit elements 511, 512, 513, 514 can be configured to be snapped to a hook provided at a side of the connecting bracket 24 directly adjacent to this longitudinal groove 240. FIG. 18 shows a bottom view of a corner support 5 attached to a base plate 20, wherein ribs 521 (not visible in FIG. 18) can be inserted into longitudinal grooves 240 of the connecting bracket 24 of the base plate 20 and snap-fit elements 511 can be snapped to the hook provided at the side of the connecting bracket 24 directly adjacent to this longitudinal groove 240.


The corner support 5 shown in FIG. 17 can further have four pairs of latch elements 531, 532, 533, 534 (only partly visible in FIG. 17) for connecting and aligning up to four driving surface modules 4. The latch elements 531, 532, 533, 534 of each pair can also be arranged at an angle of about 90° to each other. Between the two latch elements 531, 532, 533, 534 of each pair, an opening 541, 542, 543, 544 can be provided. FIG. 19 shows a bottom view of a corner support 5, wherein two connecting structures 40 of two adjacent driving surface modules 4 can be coupled by the corner support 5. The connection pin 400 of each connecting structure 40 can be inserted into an opening 541, 542 and the snap-fit elements 402 of the respective connecting structure 40 can interlock with the latch elements 531. 532 arranged on either side of the respective opening 541, 542.


As mentioned above, a sealing cord 46 can be arranged between two adjacent driving surface modules 4.



FIG. 20 schematically shows a sectional view of two adjacent transfer units with base plate elements 20 and driving surface modules 4, which can be coupled by a corner support 5.


The connection pins 400 of each driving surface module 4 can be inserted into an associated opening 541, 544 of a common corner support 5. As schematically shown in FIG. 20, the sealing cord 46 can force the two driving surface modules 4 apart, and hence, the connection pins 400 can be forced against the edges of the openings 541, 544 receiving the connection pins 400 as schematically shown by two arrows in FIG. 20. This can allow for a precise positioning of the adjacent driving surface modules 4 with respect to each other. Further, it can be avoided that acceptable tolerances between adjacent driving surface modules 4 can accumulate along the driving surface.


As also shown in FIG. 20, the corner support 5 can also serve to clamp a base plate element 20 to an adjacent base plate element 20. For this purpose, in the embodiment shown, two parallel ribs 521, 524 can be inserted into two parallel arranged longitudinal grooves 240 of the brackets 24 of the adjacent base plate elements 20.


One advantage of the modular system can be that the transport device can be easily adapted to changing conditions and/or requirements of a laboratory automation system. Further, malfunctioning transport device units 1, in particular malfunction actuator modules 3, can be easily and quickly replaced. The transport device units 1 can be arranged tightly at the transport device. For removal of a driving surface module 4, the driving surface module 4 can be raised at one side having an overhang portion 44 and inclined. An access to the actuator module 3 can be more challenging. For an easy removal, a removal tool 8 can be provided.



FIG. 21 shows the transport device 10 upon removal of one actuator module 3 of a transport device unit 1 using two removal tools 8. FIG. 22 shows a removal tool 8 in a perspective view.


As shown in FIG. 21, for a removal of the actuator module 3, at first the driving surface module 4 can be removed. After the removal, the driving surface module 4 as shown in FIG. 21, two removal tools can be inserted at two opposing sides of the actuator module 3.


The removal tool 8 can be substantially U-shaped with a handle portion 80 and two legs 81. The legs 81 can be configured for entering into the guiding grooves 38 of the actuator module 3 (see FIGS. 9 and 10). At the distal ends of the legs 81, engagement hooks 82 can be provided for engaging with a bottom surface 310 of the carrier element 31 of the actuator module 3 and/or hooks provided in the grooves 38 for removing the actuator module 3 from the transport device 10.


The removal tool 8 can have a stop element 83 arranged at least substantially in parallel to the handle portion 80. The stop element 83 can prevent the removal tool 8 from being entered too deep into the grooves 38. Hence, an unintentional damaging of the actuator module 3 and/or any element arranged below the actuator module 3 with the removal tool 8 can be avoided.


It is noted that terms like “preferably,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.


For the purposes of describing and defining the present disclosure, it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.


Having described the present disclosure in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these preferred aspects of the disclosure.

Claims
  • 1. A transport device, the transport device comprising: a plurality of actuator modules, each of the actuator modules comprising a plurality of electro-magnetic actuators; anda plurality of base plate modules arranged in a pattern, wherein the base plate modules are coupled to each other and aligned by support elements, wherein the plurality of base plate modules equals or exceeds the plurality of actuator modules and each of the base plate modules is configured to support one of the plurality of actuator modules, wherein the base plate modules have a regular polygonal basic shape with three, four or six corners, and wherein the support elements are designed as corner supports arranged to couple neighboring base plate modules at adjacent corner regions.
  • 2. The transport device according to claim 1, wherein each of the base plate modules comprises fixation elements configured to adjustably fix each of the base plate modules in a position to a support frame.
  • 3. The transport device according to claim 2, wherein at least one of the base plate modules comprises a base plate having at least one aperture, wherein the at least one aperture is configured to allow a slot nut to be passed through for mounting the base plate module to a support bar of the support frame by the slot nut.
  • 4. The transport device according to claim 3, wherein at least two apertures are arranged at an angle of 90°.
  • 5. The transport device according to claim 1, wherein at least one of the base plate modules further comprises a base plate and a wiring board mounted to the base plate, wherein the wiring board is configured to communicate with the actuator module supported by the base plate module and with a control device.
  • 6. The transport device according to claim 1, wherein at each corner of the base plate modules, angled connection brackets extend in an at least essentially vertical direction.
  • 7. The transport device according to claim 6, further comprises, legs of the angled connection brackets with longitudinal grooves configured to receive a pair of ribs provided at the corner supports.
  • 8. The transport device according to claim 1, wherein the support elements have snap-fit elements, wherein the support elements are detachably fixed in position in a vertical direction on the base plate modules by the snap-fit elements.
  • 9. The transport device according to claim 1, wherein the support elements are configured to support a driving surface arranged above the actuators, in which the driving surface is configured to carry sample container carriers.
  • 10. The transport device according to claim 9, wherein the driving surface is tiled and comprises a plurality of driving surface modules with driving surface elements and wherein each of the driving surface modules is detachably mounted to a subset of the support elements.
  • 11. The transport device according to claim 1, wherein at least one of the base plate modules and at least one of the actuator modules supported by the base plate module have cooperating male and female coupling elements.
  • 12. The transport device according to claim 11, wherein the male and female coupling elements are arranged for a mechanical keying not having rotational symmetry for ensuring a correct alignment of each of the base plate modules and each of the actuator modules.
  • 13. The transport device according to claim 12, wherein each of the actuator modules has stands protruding from a bottom surface and serving as the male coupling elements for coupling actuator modules to base plate modules.
  • 14. A laboratory sample distribution system, the laboratory sample distribution system comprising: a transport device according to claim 1; anda plurality of sample container carriers, the sample container carriers each comprising at least one magnetically active device and being configured to carry a sample container containing a sample.
  • 15. The laboratory sample distribution system according to claim 14, wherein the at least one magnetically active device is at least one permanent magnet.
  • 16. A laboratory automation system, the laboratory automation system comprising: a plurality of pre-analytical, analytical and/or post-analytical stations; anda laboratory sample distribution system according to claim 14.
Priority Claims (1)
Number Date Country Kind
16157590 Feb 2016 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT/EP2017/051536 filed Jan. 25, 2017, which is based on and claims priority to EP 16157590.7 filed Feb. 26, 2016, which are hereby incorporated by reference.

US Referenced Citations (181)
Number Name Date Kind
3273727 Rogers et al. Sep 1966 A
3653485 Donlon Apr 1972 A
3901656 Durkos et al. Aug 1975 A
4150666 Brush Apr 1979 A
4395164 Beltrop et al. Jul 1983 A
4544068 Cohen Oct 1985 A
4771237 Daley Sep 1988 A
5120506 Saito et al. Jun 1992 A
5295570 Grecksch et al. Mar 1994 A
5309049 Kawada et al. May 1994 A
5457368 Jacobsen et al. Oct 1995 A
5523131 Isaacs et al. Jun 1996 A
5530345 Murari et al. Jun 1996 A
5636548 Dunn et al. Jun 1997 A
5641054 Mori et al. Jun 1997 A
5651941 Stark et al. Jul 1997 A
5720377 Lapeus et al. Feb 1998 A
5735387 Polaniec et al. Apr 1998 A
5788929 Nesti Aug 1998 A
6045319 Uchida et al. Apr 2000 A
6062398 Thalmayr May 2000 A
6141602 Igarashi et al. Oct 2000 A
6151535 Ehlers Nov 2000 A
6184596 Ohzeki Feb 2001 B1
6191507 Peltier et al. Feb 2001 B1
6206176 Blonigan et al. Mar 2001 B1
6255614 Yamakawa et al. Jul 2001 B1
6260360 Wheeler Jul 2001 B1
6279728 Jung et al. Aug 2001 B1
6293750 Cohen et al. Sep 2001 B1
6429016 McNeil Aug 2002 B1
6444171 Sakazume et al. Sep 2002 B1
6571934 Thompson et al. Jun 2003 B1
7028831 Veiner Apr 2006 B2
7078082 Adams Jul 2006 B2
7122158 Itoh Oct 2006 B2
7278532 Martin Oct 2007 B2
7326565 Yokoi et al. Feb 2008 B2
7425305 Itoh Sep 2008 B2
7428957 Schaefer Sep 2008 B2
7578383 Itoh Aug 2009 B2
7597187 Bausenwein et al. Oct 2009 B2
7850914 Veiner et al. Dec 2010 B2
7858033 Itoh Dec 2010 B2
7875254 Garton et al. Jan 2011 B2
7939484 Loeffler et al. May 2011 B1
8240460 Bleau et al. Aug 2012 B1
8281888 Bergmann Oct 2012 B2
8502422 Lykkegaard Aug 2013 B2
8796186 Shirazi Aug 2014 B2
8833544 Stoeckle et al. Sep 2014 B2
8973736 Johns et al. Mar 2015 B2
9097691 Onizawa et al. Aug 2015 B2
9187268 Denninger et al. Nov 2015 B2
9211543 Ohga et al. Dec 2015 B2
9239335 Heise et al. Jan 2016 B2
9423410 Buehr Aug 2016 B2
9423411 Riether Aug 2016 B2
9567167 Sinz Feb 2017 B2
9575086 Heise et al. Feb 2017 B2
9593970 Sinz Mar 2017 B2
9598243 Denninger et al. Mar 2017 B2
9618525 Malinowski et al. Apr 2017 B2
9658241 Riether et al. May 2017 B2
9664703 Heise et al. May 2017 B2
9772342 Riether Sep 2017 B2
9791468 Riether et al. Oct 2017 B2
9810706 Riether et al. Nov 2017 B2
9902572 Mahmudimanesh et al. Feb 2018 B2
9939455 Schneider et al. Apr 2018 B2
9952242 Riether Apr 2018 B2
9969570 Heise et al. May 2018 B2
9989547 Pedain Jun 2018 B2
10288634 Kaeppeli May 2019 B2
20020009391 Marquiss et al. Jan 2002 A1
20030092185 Qureshi et al. May 2003 A1
20040050836 Nesbitt et al. Mar 2004 A1
20040084531 Itoh May 2004 A1
20050061622 Martin Mar 2005 A1
20050109580 Thompson May 2005 A1
20050194333 Veiner et al. Sep 2005 A1
20050196320 Veiner et al. Sep 2005 A1
20050226770 Allen et al. Oct 2005 A1
20050242963 Oldham et al. Nov 2005 A1
20050247790 Itoh Nov 2005 A1
20050260101 Nauck et al. Nov 2005 A1
20050271555 Itoh Dec 2005 A1
20060000296 Salter Jan 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060219524 Kelly Oct 2006 A1
20070116611 DeMarco May 2007 A1
20070210090 Sixt et al. Sep 2007 A1
20070248496 Bondioli et al. Oct 2007 A1
20070276558 Kim Nov 2007 A1
20080012511 Ono Jan 2008 A1
20080029368 Komori Feb 2008 A1
20080056328 Rund et al. Mar 2008 A1
20080131961 Crees et al. Jun 2008 A1
20090004732 LaBarre et al. Jan 2009 A1
20090022625 Lee et al. Jan 2009 A1
20090081771 Breidford et al. Mar 2009 A1
20090128139 Drenth et al. May 2009 A1
20090142844 Le Comte Jun 2009 A1
20090180931 Silbert et al. Jul 2009 A1
20090322486 Gerstel Dec 2009 A1
20100000250 Sixt Jan 2010 A1
20100152895 Dai Jun 2010 A1
20100175943 Bergmann Jul 2010 A1
20100186618 King et al. Jul 2010 A1
20100255529 Cocola et al. Oct 2010 A1
20100300831 Pedrazzini Dec 2010 A1
20100312379 Pedrazzini Dec 2010 A1
20110050213 Furukawa Mar 2011 A1
20110124038 Bishop et al. May 2011 A1
20110172128 Davies et al. Jul 2011 A1
20110186406 Kraus et al. Aug 2011 A1
20110287447 Norderhaug et al. Nov 2011 A1
20120037696 Lavi Feb 2012 A1
20120129673 Fukugaki et al. May 2012 A1
20120178170 Van Praet Jul 2012 A1
20120211645 Tullo et al. Aug 2012 A1
20120275885 Furrer et al. Nov 2012 A1
20120282683 Mototsu Nov 2012 A1
20120295358 Ariff et al. Nov 2012 A1
20120310401 Shah Dec 2012 A1
20130034410 Heise Feb 2013 A1
20130153677 Leen et al. Jun 2013 A1
20130180824 Kleinikkink et al. Jul 2013 A1
20130263622 Mullen et al. Oct 2013 A1
20130322992 Pedrazzini Dec 2013 A1
20140170023 Saito et al. Jun 2014 A1
20140234949 Wasson et al. Aug 2014 A1
20150014125 Hecht Jan 2015 A1
20150166265 Pollack et al. Jun 2015 A1
20150241457 Miller Aug 2015 A1
20150273468 Croquette et al. Oct 2015 A1
20150273691 Pollack Oct 2015 A1
20150276775 Mellars et al. Oct 2015 A1
20150276782 Riether Oct 2015 A1
20160003859 Wenczel et al. Jan 2016 A1
20160025756 Pollack et al. Jan 2016 A1
20160054341 Edelmann Feb 2016 A1
20160229565 Margner Aug 2016 A1
20160274137 Baer Sep 2016 A1
20160282378 Malinowski et al. Sep 2016 A1
20160341750 Sinz et al. Nov 2016 A1
20160341751 Huber et al. Nov 2016 A1
20170059599 Riether Mar 2017 A1
20170097372 Heise et al. Apr 2017 A1
20170101277 Malinowski Apr 2017 A1
20170108522 Baer Apr 2017 A1
20170131307 Pedain May 2017 A1
20170131310 Volz et al. May 2017 A1
20170138971 Heise et al. May 2017 A1
20170168079 Sinz Jun 2017 A1
20170174448 Sinz Jun 2017 A1
20170184622 Sinz et al. Jun 2017 A1
20170248623 Kaeppeli et al. Aug 2017 A1
20170248624 Kaeppeli et al. Aug 2017 A1
20170363608 Sinz Dec 2017 A1
20180067141 Mahmudimanesh et al. Mar 2018 A1
20180074087 Heise et al. Mar 2018 A1
20180106821 Vollenweider et al. Apr 2018 A1
20180128848 Schneider et al. May 2018 A1
20180156835 Hassan Jun 2018 A1
20180188280 Malinowski Jul 2018 A1
20180210000 van Mierlo Jul 2018 A1
20180210001 Reza Jul 2018 A1
20180217174 Malinowski Aug 2018 A1
20180217176 Sinz et al. Aug 2018 A1
20180224476 Birrer et al. Aug 2018 A1
20180340951 Kaeppeli Nov 2018 A1
20180348244 Ren Dec 2018 A1
20180348245 Schneider Dec 2018 A1
20190018027 Hoehnel Jan 2019 A1
20190076845 Huber et al. Mar 2019 A1
20190076846 Durco et al. Mar 2019 A1
20190086433 Hermann et al. Mar 2019 A1
20190094251 Malinowski Mar 2019 A1
20190094252 Waser et al. Mar 2019 A1
20190101468 Haldar Apr 2019 A1
Foreign Referenced Citations (88)
Number Date Country
201045617 Apr 2008 CN
102109530 Jun 2011 CN
3909786 Sep 1990 DE
102012000665 Aug 2012 DE
102011090044 Jul 2013 DE
0601213 Oct 1992 EP
0775650 May 1997 EP
0916406 May 1999 EP
1122194 Aug 2001 EP
1524525 Apr 2005 EP
2119643 Nov 2009 EP
2148117 Jan 2010 EP
2327646 Jun 2011 EP
2447701 May 2012 EP
2500871 Sep 2012 EP
2502675 Feb 2014 EP
2887071 Jun 2015 EP
2165515 Apr 1986 GB
S56-147209 Nov 1981 JP
60-223481 Nov 1985 JP
61-081323 Apr 1986 JP
S61-069604 Apr 1986 JP
S61-094925 May 1986 JP
S61-174031 Aug 1986 JP
S61-217434 Sep 1986 JP
S62-100161 May 1987 JP
S63-31918 Feb 1988 JP
S63-48169 Feb 1988 JP
S63-82433 May 1988 JP
S63-290101 Nov 1988 JP
1148966 Jun 1989 JP
H01-266860 Oct 1989 JP
H02-87903 Mar 1990 JP
03-112393 May 1991 JP
03-192013 Aug 1991 JP
H03-38704 Aug 1991 JP
H04-127063 Apr 1992 JP
H05-69350 Mar 1993 JP
H05-142232 Jun 1993 JP
H05-180847 Jul 1993 JP
06-26808 Feb 1994 JP
H06-148198 May 1994 JP
06-156730 Jun 1994 JP
06-211306 Aug 1994 JP
07-228345 Aug 1995 JP
07-236838 Sep 1995 JP
H07-301637 Nov 1995 JP
H09-17848 Jan 1997 JP
H11-083865 Mar 1999 JP
H11-264828 Sep 1999 JP
H11-304812 Nov 1999 JP
H11-326336 Nov 1999 JP
2000-105243 Apr 2000 JP
2000-105246 Apr 2000 JP
2001-124786 May 2001 JP
2001-240245 Sep 2001 JP
2005-001055 Jan 2005 JP
2005-249740 Sep 2005 JP
2006-106008 Apr 2006 JP
2007-309675 Nov 2007 JP
2007-314262 Dec 2007 JP
2007-322289 Dec 2007 JP
2009-036643 Feb 2009 JP
2009-062188 Mar 2009 JP
2009-145188 Jul 2009 JP
2009-300402 Dec 2009 JP
2010-243310 Oct 2010 JP
2010-271204 Dec 2010 JP
2013-172009 Feb 2013 JP
2013-190400 Sep 2013 JP
685591 Sep 1979 SU
1996036437 Nov 1996 WO
2003042048 May 2003 WO
2007024540 Mar 2007 WO
2008133708 Nov 2008 WO
2009002358 Dec 2008 WO
2010042722 Apr 2010 WO
2012170636 Jul 2010 WO
2010087303 Aug 2010 WO
2010129715 Nov 2010 WO
2012158520 Nov 2012 WO
2012158541 Nov 2012 WO
2013152089 Oct 2013 WO
2013169778 Nov 2013 WO
2013177163 Nov 2013 WO
2014059134 Apr 2014 WO
2014071214 May 2014 WO
2015104263 Jul 2015 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Mar. 7, 2017, in Application No. PCT/EP2017/051536, 3 pp.
Related Publications (1)
Number Date Country
20180340952 A1 Nov 2018 US
Continuations (1)
Number Date Country
Parent PCT/EP2017/051536 Jan 2017 US
Child 16052709 US