The invention relates to a transport platform for loading, conveying, and storing elongated cargo that has been cut to length, in particular round wood.
In common practice, round logs or tree trunks are transferred individually between different transport modes. As an example, at a loading station, round wood is transferred individually between the railway and a semi-tractor trailer, with a crane usually attached to the truck. The complete reloading process is therefore associated with very long reloading times and thus high personnel costs. In addition, a loading crane must be attached to the truck in order to carry out the loading process.
The use of standardized ISO steel containers is also commonly known, and enables loading, conveying, storing and unloading various types of cargo quickly and easily. The ISO containers may, for example, be provided as 20-foot containers or as 40-foot containers. Such an ISO container may be completely or partially closed with end walls, bottom walls, top walls and/or side walls. The ISO container likewise has standardized ISO corner fittings (“container corners”) on its eight outer corners, and these may be used to lock the ISO container quickly and easily to, for example, the semi-trailer contour of a semi-tractor trailer or other transport mode, and to stack the ISO containers in on top of one another in a plurality of layers.
The object of the invention is to provide a transport platform that is especially suitable for transporting elongated, cut-to-length cargo, in particular round wood, and that enables reducing the handling times for transferring the cargo between different transport modes. The problem is solved by a support structure with a base assembly which is made of longitudinal and transverse supports, wherein a base-side corner fitting is furnished on each of the four corner regions of the base assembly, and the transport platform may be locked on a semi-trailer contour, for example of a semi-tractor trailer or another transportation device, by using the corner fitting, and wherein the base assembly additionally has a vertical support on each of the four corner regions, the vertical support terminating with an upper corner fitting, to which an additional transport platform stacked thereon may be locked or into which a container stacker engages for loading the transport platform. Preferred refinements of the invention are disclosed in the dependent claims.
According to the invention, the round logs are no longer transferred individually between the semi-tractor trailer and the railroad trailers at the loading station, for example. Instead, a transport platform is provided that is specially designed for loading, conveying, storing and unloading such round logs (or elongated cut-to-length cargo in general) quickly and easily. The transport platform is realized as an open support structure with a base assembly consisting of longitudinal and transverse supports. A base-side corner fitting is furnished at each of the four corner areas of the base assembly, and by means of that fitting, the transport platform may be locked to a semi-trailer contour, such as a semi-tractor trailer or another transport mode. In addition, the base assembly has a vertical support at each of its four corner areas, and this vertical support ends with an upper corner fitting. This ensures that the transport platform may be stacked in a plurality of layers. An additional transport platform may be stacked on the transport platform and locked by means of the upper corner fittings. Alternatively, a container stacker may engage in the upper corner fittings in order to load the transport platform. Such container stackers are in widespread use for loading ISO containers and are used, for example, at loading stations. In this way, the transport platform may be easily transferred in the manner of an ISO container between different modes of transport, for example between the railway and a semi-tractor trailer rig, using a container stacker to transfer the ISO containers. The round logs therefore no longer have to be transferred by a truck crane, which results in massive time savings during the loading process.
It is preferable if the upper and lower corner fittings are implemented as ISO container corner fittings, in the manner that these are installed in an ISO container. The distances between the upper and lower corner fittings may also be substantially identical to the distances between the ISO container corner fittings installed in the ISO container.
In a technical implementation, the base assembly of the transport platform may have two parallel lateral longitudinal supports. These may be interconnected by forming a closed supporting frame, at least via frontal transverse supports. The base assembly formed in this way is preferably designed as an open steel support structure, i.e. without sheet metal planking between the transverse and longitudinal supports. For laterally securing the round logs for transport, it is preferable if the base assembly has stanchions on both sides. The stanchions are respectively attached, either fixedly or detachably, to the connecting points of the base assembly, i.e. the two longitudinal supports. A detachable plug system is preferred, in which the stanchion may be detachably inserted into a stanchion pocket positioned on the longitudinal support. In this way, the stanchion may easily be replaced for purposes of repair.
Platform stability may be increased by aligning the stanchions in the platform transverse direction. In addition, the two longitudinal supports may be interconnected respectively via cross struts at the stanchion connecting points. The cross struts and the stanchions thus converge at the stanchion connecting points of the longitudinal supports to form a node, via which forces may be transferred to the support structure.
In order to increase the loading volume available to the transport platform, the transport platform may be extended in the platform longitudinal direction beyond the base-side corner fittings, by means of at least one overhang. In the case of a transport platform loaded on a semi-tractor trailer, the overhang may be positioned on the rear side of the semi-trailer. To realize the rear overhang, the two lateral longitudinal supports may be extended beyond the rear base-side corner fittings and end with a closed vertical frame. The rear vertical frame may be made up of a base-side cross strut that connects the two longitudinal supports to each other, as well as vertical struts that are respectively welded to the longitudinal supports and are connected to an upper cross strut at the top. The upper cross strut and the vertical struts of the vertical frame converge at the upper frame corners. To further increase platform stability, the two upper frame corners may be connected via longitudinal struts to the upper corner fittings of the rear vertical supports. To reduce the platform weight, the rear overhang may be designed as an open support structure, i.e. completely without sheet metal planking. Alternatively and/or additionally, the transport platform may have another overhang on the opposite end face. This overhang protrudes toward the cab when it is loaded onto the semi-tractor trailer. The cab-side overhang may be offset from the underside of the platform by a height offset, forming a base-side free space. In addition, the overhang is dimensioned in such a way that adjacent components of the truck cab or semi-tractor trailer rig, such as hydraulic lines or the like, are separated from the transport platform by a sufficiently large clearance.
In a preferred embodiment, the cab-side overhang may be a box-shaped support structure made up of transverse and longitudinal struts in combination with sheet metal planking. The sheet metal planking has a front wall facing the truck cab, which is connected via a base wall to the front transverse support of the transport platform and is connected via side walls to the vertical supports of the transport platform. Both the cab-side overhang and the rear overhang may be open at the top, i.e. without a top cover, so as not to interfere with the loading process.
In one refinement, the base assembly of the transport platform may have a centering profile on the underside which may be brought into a positive fit with a corresponding counter-profile of the semi-trailer when loading the transport platform onto a semi-tractor trailer rig, to ensure that the transport platform is correctly positioned on the trailer. The centering profile may be realized as a centering plate part, which has a centering area that is set back and upwards in the platform height direction, forming a center tunnel open at the bottom, and in the platform transverse direction merges outwards into inclined ramps. The corresponding counter-contour of the semi-tractor trailer may be achieved by means of upwardly-bent guide rails of a “gooseneck” type semi-trailer chassis, which the platform-side centering plate part is positively fitted over when the transport platform is lowered into the correct position. The centering plate part is preferably connected, in the platform longitudinal direction, at the front to the cab-side transverse support and at the rear to a cross strut that connects the two longitudinal supports.
Locking elements (e.g. twistlocks) for locking transport platforms to each other and/or to a carrier vehicle are known in the art; with their aid, the corner fittings may be brought into a positive-fit connection with the support vehicle or with another transport platform.
The advantageous embodiments and/or refinements of the invention that are described above and/or reflected in the dependent claims, may be applied individually or in any combination except, for example, in cases of unambiguous dependencies or incompatible alternatives.
The invention and its advantageous embodiments and refinements, as well as the advantages thereof, are explained below in greater detail with reference to drawings.
In the following, the structure of a transport platform specially designed for loading round logs 1 (
Base-side corner fittings 13 are respectively welded at each of the four corner areas of the base assembly 5. In addition, each of the four corner areas of the base assembly 5 has the aforementioned vertical supports 7 that protrude upwards in the platform height direction z and terminate at the top with upper corner fittings 15. The upper and lower corner fittings 13, 15 are implemented as standardized ISO container corner fittings with fastening eyelets 16 (
To ensure that the round logs 1 are secured laterally for transport, stanchions 17 are respectively attached to each of the two lateral longitudinal supports 9; the connection of the stanchions to the longitudinal supports 9 is explained below with reference to
The support structure 3 of the transport platform is specially designed for loading onto a semi-tractor trailer 19, the chassis of which is partially indicated in
To realize the rear overhang 21, the two lateral longitudinal supports 9 extend continuously over the base-side corner fittings 13 and terminate these on a closed vertical frame 25. The vertical frame 25, which is closed at the circumference, is made up of a base-side cross strut 27 that runs between the two longitudinal supports 9, and vertical struts 29 that converge with an upper cross strut 31 at the upper frame corners. The two upper frame corners of the vertical frame 25 are connected to the upper corner fittings 15 of the vertical supports 7 via longitudinal struts 33 in order to increase platform stability, especially in the rear area. Together with the vertical frame 25 that is closed at the rear, the rear vertical supports 7 accordingly form a stable open support structure, by means of which the rear side of the transport platform is stiffened in a weight-saving manner.
In contrast to the open support structure of the rear overhang 21, the forward protruding cab-side overhang 23 is box-shaped and closed with a sheet metal planking 34, which is limited by vertical, longitudinal and cross struts 32 (
As
To increase platform stability, two laterally opposite stanchions 17 are respectively arranged so that they are aligned in a transverse plane yz in the platform transverse direction y. In addition, in each transverse plane yz, there runs a cross strut 27 that is respectively connected to the stanchion connecting points of the lateral longitudinal supports 9.
As
Number | Date | Country | Kind |
---|---|---|---|
10 2016 014 249.9 | Nov 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/080222 | 11/23/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/099800 | 6/7/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3768686 | Mappes | Oct 1973 | A |
5449081 | Sjostedt | Sep 1995 | A |
5688086 | Menzemer | Nov 1997 | A |
5816423 | Fenton | Oct 1998 | A |
9545874 | Whitsell | Jan 2017 | B1 |
20020009345 | Clive-Smith | Jan 2002 | A1 |
20020150438 | Coray | Oct 2002 | A1 |
20120074012 | Crane | Mar 2012 | A1 |
20150367986 | Etchegary | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1781827 | Jun 2006 | CN |
4338158 | May 1995 | DE |
19849665 | May 1999 | DE |
Number | Date | Country | |
---|---|---|---|
20190389651 A1 | Dec 2019 | US |