The invention pertains to transport systems and more particularly, by way of example, to guideway-based transport system with short block linear synchronous motors. The invention has application, by way of non-limiting example, in production lines, laboratories and other applications requiring complex guideways, sharp turns, merge and diverge switching, and/or inverted operation.
There are many types of transport systems that can move objects on a guideway. Examples include: wheel-suspended vehicles propelled by rotary or linear motors, maglev or air-cushion suspended vehicles propelled by linear motors or cables, vehicles that move in tubes propelled by air pressure, vehicles supported or guided by bearings, and vehicles that are moved on conveyor belts. Existing transport systems have many useful applications but there are opportunities for substantial improvement, for example, in the precise movement of relatively small and closely spaced objects on a complex guideway.
Small and medium size objects are often transported on conveyor belts because this eliminates the need for wheels or other mechanisms to suspend, guide and propel the objects. Belt transport systems are relatively inexpensive but they lack precise control that is often needed and they require substantial maintenance because of many moving parts. Other approaches to low cost transport include air propelled vehicle moving in tubes and the use of gravitational forces to move objects down an incline, but these approaches have even less precise control.
The advantages of using linear synchronous motor (LSM) propulsion are well known and described in other patents (by way of non-limiting example, U.S. Pat. Nos. 7,458,454, 7,448,327, 6,983,701, 6,917,136, 6,781,524, 6,578,495, 6,499,701, 6,101,952, and 6,011,508, all assigned to the assignee hereof and the teachings of all of which are incorporated herein by reference), but in many cases, particularly, for example, when moving small and closely spaced objects, the LSM can be more expensive and provide less throughput than competing propulsive systems.
In view of the foregoing, an object of the invention is to provide improved transport systems, apparatus and methods.
A related object of the invention is to provide such systems, apparatus and methods as take advantage of LSM technologies.
Another related object of the invention is to provide such systems, apparatus and methods as are adapted for transport of small objects and/or medium-sized objects.
A further related object of the invention is to provide such systems, apparatus and methods as are adapted for use with closely-spaced objects.
Still another object of the invention is to provide such systems, apparatus and methods as are adapted for use in production lines, laboratories and other applications requiring complex guideways, sharp turns, merge and diverge switching, and/or inverted operation.
The foregoing are among the objects attained by the invention, which provides in some aspects an LSM-based transport system that includes a guideway with a plurality of coreless propulsion coils disposed along a region in which one or more vehicles disposed on the guideway are to be propelled, as well as electronic power and control circuitry that excites the propulsion coils independently so as to propel the vehicles along the guideway. The vehicles, according to these aspects of the invention, each include a magnetic flux source—for example, one or more Halbach or other magnet arrays.
Systems according to the foregoing aspect are advantageous for, among other reasons, that the vehicles on the guideway can be moved (or propelled) independently of one another in a controlled fashion—e.g., without risk of collision or uncontrolled motion—regardless of their proximity to other vehicles on the guideway.
Related aspects of the invention provide transport systems as described above in which the vehicles are disposed for sliding motion along guideway. In these aspects, the vehicles can have a low coefficient of friction with the guideway, e.g., a coefficient of friction of less than substantially 0.2.
The guideway, according to related aspects of the invention, can include guidance structure—such as rails—that facilitate maintaining the vehicles on the guideway (or, put another way, that inhibit the vehicles from moving off the guideway).
In related aspects of the invention, the guideway of transport systems of the type described above is made up of a plurality of coupled (e.g., interlocked) modules. The propulsion coils may be mounted in those modules and more particularly, according to some aspects of the invention, on printed circuit boards that make up the modules. The coils are disposed within the modules so as to be in close proximity to magnet arrays (or other flux sources) of vehicles passing over them.
In still other related aspects, the invention provides transport systems as described above in which the modules comprise power controllers that form part of the electronic power and control circuitry and that are selectively electrically coupled to one or more of the propulsion coils, e.g., of the respective modules. Microprocessor(s) and/or switches can also be provided to provide electrical coupling between the power control circuitry and the propulsion coils.
Yet still other aspects of the invention provide transport systems as described above in which the guideway comprises merge and/or diverge regions, each of which may include mechanically and/or magnetically actuated switches to alter the course of passing vehicles. These merge and diverge regions, as well as straight-away regions, that make up the guideway may comprise one or more of the aforementioned coupled modules.
Further related aspects of the invention provide transport systems as described above in which at least one of the diverge regions comprises a plurality of coreless propulsion coils spaced along a region in which the course of passing vehicles is altered—that is, spaced along a corner, curve and/or branch—so as to propel the vehicles through the diverge. According to related aspects of the invention, a merge region can be similarly equipped with a plurality of such coils.
Other aspects of the invention provide guideways, guideway modules and vehicles for use thereon, constructed and/or operated as discussed above.
A more complete understanding of the invention may be attained by reference to the drawings, in which:
Introduction
Described here is an LSM-based transport system that allows vehicles to move on a guideway that can be complex and that can include sharp horizontal and vertical turns, merge and diverge switching, and inverted operation. Examples of applications include: moving bottles on an assembly line while they are being filled and capped, moving vials in a laboratory for analysis, moving electronic devices along a production line so that robots can insert components, and sorting objects that arrive from a multiplicity of sources and must be delivered to appropriate locations. In some cases it is feasible to use wheels, bearing or other rolling elements to assist in suspension and guidance, but this invention can also be used in cases where there are no wheels (or other rolling elements) and the vehicles slide on a guideway surface. Wheel-less vehicles can be small and inexpensive when the objects to be moved are not too large. For heavier vehicles the same short block design is suitable for wheel- or bearing-based suspension and guidance.
The result is a transport system that provides an economically viable means of using LSM propulsion to propel and control closely spaced small to medium size vehicles on a guideway.
Among other aspects of the systems described herein are LSM motor modules that also function as the transport system track (or “guideway”) pieces. A selection of standard track building blocks fit together in a plug-and-play manner to form an almost endless variety of layout options. The motor modules (or “motors”, for short) can contain not only the propulsion and intelligent routing elements, but also the guidance and structural support features to allow for rapid assembly and track configuration. The system is ideally suited, by way of non-limiting example, for environments requiring clean operation and/or wash down capability. It can also support “track and trace” requirements, as each vehicle can be uniquely identified and constantly tracked throughout the system.
A suspension system with a coefficient of friction obtainable with sliding motion can beneficially be used with an LSM with negligible attractive force. This is achieved, in the illustrated embodiment, by using a coreless motor with propulsion coils mounted, e.g., in close proximity to the vehicle magnets.
The text that follows describes components and operation of embodiments of the invention. It is understood that many variations on this design are possible and are contemplated by the invention, but this description shows how to achieve the foregoing and other objectives with a simple system that can be manufactured at a reasonable cost.
Guideway
The design shown in these Figures is based on vehicles that are about 50 mm wide and 50 to 60 mm long. For larger objects the guideway and vehicle dimensions can be scaled, much as model railroads have been constructed with a variety of scaling factors.
Vehicle
The vehicle has curved sides 23 that match the sides of a curved guideway so as to allow short radius horizontal turns. It is guided by the guideway and can move in a normal upright position when transporting an object as well as moving in an inverted position when not carrying an object. It can also negotiate vertical turns. Pins 24, 31 in the corners of the vehicle interact with mechanisms in the diverge and modules so as to control the direction of motion.
Larger objects can be moved on this same guideway by using a double-bogey design, as has been used with conventional LSM designs (see, for example, U.S. Pat. No. 7,458,454, entitled “Three-dimensional Motion Using Single-Pathway Based Actuators,” issued Dec. 2, 2008, and U.S. Patent Application 2007/0044676, entitled “Guideway Activated Magnetic Switching of Vehicles,” published Mar. 1, 2007, the teachings of both of which are incorporated herein by reference), or by increasing the dimensions of guideway and vehicles.
Low Friction Sliding Surface
In order to reduce the required propulsive force and heating from friction, the vehicle and guideway of the illustrated embodiment are designed to minimize the coefficient of friction cf, which is the ratio of the propulsive force needed to move the vehicle to the gravitational force of the vehicle on the guideway. In some cases wheels can be used as a way to reduce this force, but this invention allows the use of wheel-less vehicles.
Examples of low friction for wheel-less applications include Teflon sliding on Teflon and Teflon sliding on stainless steel. Lower friction is possible if the surface can be lubricated by a thin film, but for many applications this is not allowable so the design assumes no lubrication. It is also preferable that the surface have good wear characteristics so, for example, we might use stainless steel on the guideway and Teflon on the vehicle with the expectation that there would be negligible wear on the steel but the vehicle might eventually need to have its sliding surface replaced, an action that is less expensive than replacing the guideway. Sliders 32 in
With some designs cf can be as low a 0.1 but more practical values are in the range 0.15 to 0.2. Because this is a relatively high value it is preferred that the propulsive force not create substantial downward force on the vehicle. A typical LSM using ferromagnetic material will exert an attractive force that is four to six times the propulsive force and with this much attractive force the vehicle may not be able to move, or if it did move there would be substantial heating and power wasted—in such instances, wheels, bearings or other rolling elements can be incorporated for suspension of the vehicles.
Magnet Array
There are many types of magnet arrays that can be used, one of which is shown in
One design consideration is the interaction between magnets on adjacent vehicles. The ferromagnetic piece 35 largely prevents magnetic fields from adjacent vehicles from interfering with each other.
Linear Motor Propulsion
A feature of the illustrated embodiment is the lack of ferromagnetic material that is commonly used in an LSM to make it more efficient. With no ferromagnetic material we can not achieve as high a force, but we can limit the attractive force to a small fraction of the propulsive force and thereby allow strong acceleration and braking forces to move the vehicle when the coefficient of friction is on the order of 0.2 or higher.
In embodiments that use wheel-based vehicles the friction force may be small enough that some ferromagnetic material can be used in the stator so as to achieve higher propulsive force.
Software for controlling the microprocessors can be similar to control software used on LSM designs with blocks that are several coils long. Here, however, position sensing components are located close enough together that they can identify individual vehicles even when the vehicles are touching. Such sensing facilitates control of the movement of the vehicles independently of one another on the guideway. Prior demonstrations of locally commutated LSMs have shown that this software does not require special features.
PC Board Mounted Coils and Control Circuitry
The illustrated embodiment permits the control of each coil individually without the cost associated with conventional designs. With reference to
By mounting the coils directly on a PC board and by using integrated power controllers it is possible to reduce the cost for the coils and electronics. One microprocessor can control a multiplicity of H-bridges but with a coil spacing on the order of 16 mm there can be more than a dozen microprocessors per meter of motor, and the operation of these motor controllers must be coordinated by a higher level “node” controller. With modern semiconductor technology, and for low to moderate power levels, all of these components can be mounted on only one or two PCBs that are contained in the motor housing.
Guideway Modules
The guideway is built of modules much as a model train layout is constructed from modules.
The 180° vertical curve in
The switching function can also be provided by magnetic forces acting on the vehicle. For example, coils on and near the guideway can be controlled so as to create lateral forces that will perform the switching function. This approach to switching is described in U.S. Patent Application US 2007/0044676, entitled “Guideway Activated Magnetic Switching of Vehicles,” the teachings of which are incorporated herein by reference.
A further appreciation of techniques for packaging the linear motor and other module components of the guideway modules may be attained by reference to U.S. Pat. No. 6,578,495, entitled “Modular Linear Motor Tracks and Methods of Fabricating Same,” assigned to the assignee hereof, the teachings of which are incorporated herein by reference.
Application Example
There are many possible applications but the simple layout in
Described above are systems, apparatus and method meeting the foregoing objects, among others. It will be appreciated that the embodiments illustrated and discussed herein are merely examples of the invention and that other embodiments, incorporating changes thereto, fall within the scope of the invention. Thus, by way of non-limiting example, the invention can be practiced with embodiment in which suspension is provided by air-cushion and fluid-cushion, e.g., in addition to the wheel-less, wheeled, and other roller-based designs discussed above, of which we claim.
Number | Name | Date | Kind |
---|---|---|---|
527857 | Hutin et al. | Oct 1894 | A |
3513338 | Poloujadoff | May 1970 | A |
3706922 | Inagaki | Dec 1972 | A |
3938018 | Dahl | Feb 1976 | A |
4061089 | Sawyer | Dec 1977 | A |
4160181 | Lichtenberg | Jul 1979 | A |
4311853 | Cree | Jan 1982 | A |
4311953 | Fukuda et al. | Jan 1982 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4415959 | Vinciarelli | Nov 1983 | A |
4538214 | Fisher et al. | Aug 1985 | A |
4635560 | Ballantyne | Jan 1987 | A |
4736747 | Drake | Apr 1988 | A |
4873677 | Sakamoto et al. | Oct 1989 | A |
4892980 | Riley | Jan 1990 | A |
4920318 | Misic et al. | Apr 1990 | A |
5055775 | Scherz et al. | Oct 1991 | A |
5094172 | Kummer | Mar 1992 | A |
5156092 | Hirtz | Oct 1992 | A |
5277285 | Musachio | Jan 1994 | A |
5293308 | Boys et al. | Mar 1994 | A |
5521444 | Foreman | May 1996 | A |
5528113 | Boys et al. | Jun 1996 | A |
5542356 | Richert et al. | Aug 1996 | A |
5770936 | Hirai et al. | Jun 1998 | A |
5821638 | Boys et al. | Oct 1998 | A |
5839554 | Clark et al. | Nov 1998 | A |
5839567 | Kyotani et al. | Nov 1998 | A |
6011508 | Perreault et al. | Jan 2000 | A |
6100663 | Boys et al. | Aug 2000 | A |
6101952 | Thornton et al. | Aug 2000 | A |
6118249 | Brockmann et al. | Sep 2000 | A |
6307766 | Ross et al. | Oct 2001 | B1 |
6317338 | Boys et al. | Nov 2001 | B1 |
6326713 | Judson | Dec 2001 | B1 |
6397990 | Brien et al. | Jun 2002 | B1 |
6483202 | Boys | Nov 2002 | B1 |
6499701 | Thornton et al. | Dec 2002 | B1 |
6578495 | Yitts et al. | Jun 2003 | B1 |
6580185 | Kang et al. | Jun 2003 | B2 |
6619212 | Stephan et al. | Sep 2003 | B1 |
6621183 | Boys | Sep 2003 | B1 |
6637343 | Stephan et al. | Oct 2003 | B2 |
6651566 | Anderson et al. | Nov 2003 | B2 |
6686823 | Arntz et al. | Feb 2004 | B2 |
6781524 | Clark et al. | Aug 2004 | B1 |
6803744 | Sabo | Oct 2004 | B1 |
6834595 | Henderson | Dec 2004 | B1 |
6899037 | Cowan, Jr. | May 2005 | B1 |
6911747 | Tsuboi et al. | Jun 2005 | B2 |
6917136 | Thornton et al. | Jul 2005 | B2 |
6983701 | Thornton et al. | Jan 2006 | B2 |
7134258 | Kalany et al. | Nov 2006 | B2 |
7243752 | Green et al. | Jul 2007 | B2 |
7432622 | Griepentrog et al. | Oct 2008 | B2 |
7448327 | Thornton et al. | Nov 2008 | B2 |
7458454 | Mendenhall | Dec 2008 | B2 |
7511250 | Lindig | Mar 2009 | B2 |
7525283 | Cheng et al. | Apr 2009 | B2 |
7538469 | Thornton et al. | May 2009 | B2 |
7554316 | Stevens et al. | Jun 2009 | B2 |
7602142 | Weber et al. | Oct 2009 | B2 |
7605496 | Stevens et al. | Oct 2009 | B2 |
7633235 | Boys | Dec 2009 | B2 |
7714537 | Cheng et al. | May 2010 | B2 |
7825537 | Freer | Nov 2010 | B2 |
7863861 | Cheng et al. | Jan 2011 | B2 |
7868587 | Stevens et al. | Jan 2011 | B2 |
7913606 | Schneider et al. | Mar 2011 | B2 |
7926644 | Mendenhall | Apr 2011 | B2 |
7932798 | Tolle et al. | Apr 2011 | B2 |
7952322 | Partovi et al. | May 2011 | B2 |
7952324 | Cheng et al. | May 2011 | B2 |
8113310 | Gurol et al. | Feb 2012 | B2 |
20020093252 | Kang et al. | Jul 2002 | A1 |
20030217668 | Fiske et al. | Nov 2003 | A1 |
20050225188 | Griepentrog et al. | Oct 2005 | A1 |
20070044676 | Clark et al. | Mar 2007 | A1 |
20070283841 | Lopatinsky et al. | Dec 2007 | A1 |
20080148990 | Wamble et al. | Jun 2008 | A1 |
20090107806 | Mendenhall | Apr 2009 | A1 |
20100200316 | Gurol et al. | Aug 2010 | A1 |
20100236445 | King et al. | Sep 2010 | A1 |
20130008336 | Young et al. | Jan 2013 | A1 |
20130074724 | King et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
101378931 | Mar 2009 | CN |
Entry |
---|
International Search Report & Written Opinion, Application No. PCT/US10/21839, Mailed Mar. 26, 2010, 17 pages. |
Chinese Office Action for Application No. 2010800131883, issued Mar. 7, 2013(7 pages) with partial English summary. |
International Search Report and Written Opinion mailed Aug. 6, 2012 for Application No. PCT/US2012/041263 (10 pages). |
Number | Date | Country | |
---|---|---|---|
20100186618 A1 | Jul 2010 | US |