The prior art is generally directed to transporting a load, building or house by a flat bed delivery device, such as a truck or other device. Additionally, when transporting a building or house, the prior art delivery devices generally attempt to locate the buildings or houses onto or adjacent a foundation or other structure prior to the building or house being unloaded from the transporter. Locating the house in this manner is generally an attempt to simplify the adjustments necessary to properly position the house upon a foundation.
The present invention relates to a vehicle that includes a first self propelled steerable structure having a first portion, a second self propelled steerable structure having a second portion and a tensioning device connected to the first and second self propelled steerable structures. Whereby the tensioning device is configured to allow a load to be compressed and lifted between the first self propelled steerable structure and the second self propelled steerable structure.
The present invention also relates to a transport vehicle, including a first load bearing portion capable of being individually operated and having a first tensioning device, a second load bearing portion capable of being operated independent from the first load bearing portion and having a second tensioning device, a plurality of bands configured to extend through a load and couple to each of the first and second tensioning devices, and a first computer system in at least one of the first and second load bearing portions configured to operate substantially simultaneously each of the first and second load bearing portions and move the load. Wherein when the plurality of bands are coupled to the tensioning devices and the first and second tensioning devices are engaged, the first and second load bearing portions compress the load therebetween, allowing first and second load bearing portions to lift the load.
The present invention also relates to a method of lifting a load, including the steps of inserting a plurality of bands through a portion of a load, coupling a first end of each of the plurality of bands to a first load bearing structure, coupling a second end of each of the plurality of bands to a second load bearing structure, engaging a tensioning device to apply a tension force to each of the plurality of bands, compressing the load between the first load bearing structure and the second load bearing structure, and lifting the load using the first load bearing structure and the second load bearing structure.
Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
Load 20 can be any suitable load to be moved. For example, the load can be a building, a truck container, a box, a carton, a pallet or any other suitable load or combination of loads. Building is defined as any completed, substantially completed or partially completed structure capable of permanent, semi-permanent or temporary occupancy or a house or other large rigid or semi-rigid payload. For example, a house can be a full sized custom home too large to be transported on public roads, a double wide or triple wide mobile home, modular, factory built, panelized or any other structure desired. When configured as a building or substantially completed house, the load can have a foundation 22 coupled to the building, such that the building can be positioned in any suitable place that can accommodate such a foundation.
The load can have structures or beams 24 that help the load withstand a lateral force, such that the load 20 can be lifted using the compression/tension system and method described herein. The load can have a perimeter 23 that is formed in any shape desired. Both the perimeter 23 and beams 24 can be formed from concrete, metal, wood or any other suitable material or combination of materials. Furthermore, the perimeter and beams can include rebar and be integral or separate from each other. When separate, the beams can couple to the perimeter in any suitable manner, including friction or in any other temporary, permanent or semi-permanent manner. It is noted that the load does not need to have beams 24, and can have any suitable device or structure that would help the load withstand the necessary compression.
The load 20 can also have three (or any suitable number of) fixtures 21 running lengthwise and/or widthwise and/or in any suitable direction that support the tendons and accurately locate them relative to one another. These fixtures are built into the load and stay with it until the vehicle picks up the load. At that point, if desired, the fixtures can be removed from the load and reused. The fixtures can be removed at any other desired time or remain permanently with the load. It is also noted that, as stated above, load 20 can be any suitable load and is not necessarily a building, a house and/or a house with a preattached foundation.
As shown in
As shown in
As shown in the
As shown in
As shown in
The actuators 56 preferably have a dynamic lifting capacity of at least 200,000 lb each with an 8-inch bore and a 38-inch stroke, but can have any suitable size, configuration and lifting capacity. The bogie travel in the vertical direction is preferably about six feet, but can be any suitable distance. In particular, the conventional servoactuators can be hydraulic actuators with integral position feedback and pressure transducers for load feedback that lift and support the payload.
In another embodiment, counterbalanced actuators can be utilized, which are smaller hydraulic actuators connected to a constant pressure source to lift and support a significant portion of the payload weight. That is, the large conventional servo actuators could be replaced by a smaller counterbalance actuator with a smaller servo actuator mechanically connected in parallel. The counterbalance actuator will support most of the payload's dead weight with the smaller servo actuator only required to actively position the payload
The slewing ring bearing any suitable range of angular motion. The slewing ring bearing preferably enables the wheel track of a specific vehicle to vary about 15 feet from the nominal load width, but the wheel track can vary in any suitable amount.
As shown in
Preferably each independent vehicle has a first bogie 32 and a second bogie 34 and therefore when combined, the transport vehicle has four bogies, one at each corner; but it is noted that each independent vehicle can have any number of suitable bogies. Preferably, each bogie wheel 62 is a driven wheel; but the bogie can have any number of suitably driven wheels (e.g., each bogie can have 1, 3, 4 or more driven wheels). Wheels 62 are on an axle 64 with each wheel being driven by a separate hydraulic motor 66, but they can be driven in any suitable manner. The transport vehicle velocity (longitudinal speed and lateral speed of a reference point on the vehicle) and yaw rate can be controlled by independently controlling the rotational speeds of each wheel. The individual wheel speeds can be precisely controlled to work in concert. By commanding different wheel rotational speeds to the left and right sides of a bogie (called differential steering), each bogie can be made to steer in manner consistent with the velocity and yaw rate of the vehicle as a whole.
As shown in
When equipped with two on board drivers, preferably the system operates in a master/slave mode, where one operator is selected as the master. The master is then in control of the vehicle, while the slave can have emergency/motion stop capability. If desired, the system can be configured to allow the operators to switch control of the vehicle (i.e., switch which vehicle is the master and which vehicle is the slave) during transport or positioning of the building or at any other time. In another embodiment, when using two operators, one in each cab, preferably control the vehicle's motion while communicating to each other over headsets; however it is not necessary for the operators to communicate in this manner, to communicate at all or for there even to be two operators; however the vehicle can be operated in any suitable manner. The vehicle can operate with any suitable number of operators and/or the operators can be positioned remotely from the vehicle and communicate with the vehicle from wired or wireless means or the vehicles can be computer controlled or automated. From each of the operators' points of view, each feels as if they are driving their own corner of the vehicle via a steering wheel or joystick on the console (not shown) or using other suitable device(s). The onboard computer system achieves such operation by generating steering and speed commands for all four bogies based on the input of the two joysticks. In this way, the operators can navigate fairly tight corners. The overall velocity is governed primarily by the master (front) operator. Both operators can maintain pressure on a dead-man enable switch (not shown) to enable motion, if desired.
In each mode of operation, the desired velocity vector can be calculated at each moment based on inputs from the operators and the control or computer control system. Each vehicle 12 and 14 can have a computer control that controls each vehicle when operating individually. In other words, when the vehicles are not engaged with each other, each operator is capable of individually steering a respective vehicle using the input controls and the computer control system. However, each control system is designed and configured to electrically couple or interface with the other computer control system, and thereby control the overall direction and speed of the vehicle 10. One system is designated as the dominate or the master system, either automatically or manually. The computer control system can include onboard guidance and navigation systems. A Global Positioning System (GPS) can be used to facilitate calculation of the vehicle position in relation to the instant center, if desired. Additionally, the vehicle can use differential GPS with two or more receivers (preferably at least one on each transport vehicle 12 and 14) and a laser-based beacon detector for more precise handling and control; however, it is noted that one GPS, multiple GPSs and/or a laser-based beacon detector can be each be used alone or in combination with each other or not at all, if desired. Furthermore, the vehicle 10 and each individual vehicle 12 and 14 can be controlled and/or steered and/or directed in any suitable manner.
In one embodiment, differential steering can be used to advance and rotate the vehicle as required. To minimize stresses on the vehicle and payload, algorithms can be used to ensure the bogies steer in a kinematically consistent manner to avoid “fighting” one another. The preferred algorithm, called “countersteering”, transforms operator inputs from any two devices (steering wheel, throttle, joysticks) into 3 vehicle overall commands: longitudinal speed of a reference point on the vehicle, lateral speed of the same reference point on the vehicle, and vehicle yaw rate. The countersteering algorithm transforms the 2 operator inputs into 3 overall commands using an “instant center” calculation. The instant center may be on a line passing through the rear bogies (front wheel steer), on a line passing laterally through the midpoint of the vehicle (“four wheel steering”) or, more generally, on a lateral line located anywhere fore or aft of the center of the vehicle. However, it is noted that it is not necessary to steer the vehicle 10 in this manner and the vehicle can be merely steered by the operator or operators or computer control or other suitable means.
Preferably, the vehicle 10 has two speed ranges available to the master operator through a selection lever in the main cab: “Low” and “High”. Low speed is less restricted with respect to steering and maneuvering, but more restricted with regard to speed. While Low is selected, the steering limit hard stops are retracted allowing full steering range. The hard stops limit the articulation of the bogies. In High range or restricted movement mode, the full range of speeds is available to the operator, but the steering hard stops are engaged, thereby reducing the steering range. This is a safety feature to guard against a failure of a propulsion motor when traveling at an elevated speed causing the bogie to spin too far resulting in damage to the vehicle or the load. However, the restricted movement mode can restrict the movement or any portion or system in of vehicle 10 in any suitable manner. It is noted that having two speed ranges is merely a preferred embodiment and the vehicle can have any number of speed ranges desired, including one or more than two.
Fine positioning of each independent vehicle preferably can occur under the control of an operator in the cab and/or one at a remote pendant that can be positioned in any suitable manner, such as outside of the cab or remote from the cab. One independent vehicle is positioned such that its cab is at the back of the building and the other such that its cab is at the front or in any other suitable manner.
As shown in
The tensioning devices are then actuated pulling bands 16 in the direction of arrow 222. The tensioning devices draw the chassis toward the load and compress the load between the chassis. Each of the tensioning devices each can produce about 150,000 pounds of tension; however the tensioning devices can provide any suitable amount of tension.
Each chassis can have a high friction interface 224. The high friction interface can extend along the entire, substantially the entire or any portion of the chassis facing the load. For example the high friction interface can be a series of pads positioned along the chassis. However, the load can contact the vehicles directly or any other suitable interface or device can be positioned between the load and vehicle.
The tension created by the tensioning devices creates significant compression between the load and the two chassis (or the friction interface). This compression/friction allows the lifting mechanisms to lift and move the load. Once a sufficient compression force is created, the hydraulic actuator 56 on each lifting mechanism is activated, thus lifting the load from the ground.
Additionally, two inter-connect electrical cables between the two independent vehicles can be connected, one at the front of the building or load and one at the back, so that the vehicles can operate as one unit in the master-slave arrangement. Once in this configuration, the load can be lifted by the vehicle. However, it is noted that the vehicles can couple in any suitable manner (e.g., wirelessly) and/or at any suitable time and do not necessarily need to be electrically coupled in this manner (or at all).
With the load loaded, as stated above, one independent vehicle can be selected as the master and the other as the slave using a selection switch on each console or any in other suitable manner. While operating in “cruise mode”, the cab at the front is typically the master and the one at the rear is the slave; however, the vehicle can be operated in any suitable manner. When entering “cruise mode”, an onboard computer system can confirm that the two inter-connect cables are attached and that one cab is set as master and one is set as slave. The onboard computer system can also confirm that all load sensors are within nominal range and that the load is level and/or planar within tolerance as well as other suitable tests as may be required to verify that it is safe to change modes. At this point, the master cab operator can begin moving the vehicle.
While transporting the load to a particular or predetermined site, the bogies are preferably set so that the shortest face of the load is facing forward (i.e., transverse to each chassis, as shown in
As vehicle 10 pulls away, all four bogies can be folded in to their fully retracted position. Such positioning would allow the overall wheel track to be narrow enough to pass through potentially narrow areas; however, the bogies can be positioned in any desired configuration. Folding to this position can be achieved by means of a switch on the console or by any other suitable means. At this point, as the vehicle drives forward, the slewing ring bearings can fold in the linkages automatically. However, as noted above, the bogies can be positioned in any desired or suitable position at any time during loading, setting or transporting the building or load 20.
Preferably, the load is maintained in a substantially planar and/or substantially level position throughout its conveyance to a predetermined position or location. Sensors or other suitable means monitor the angle of the load with respect to a gravity vector while other sensors or means measure the pitch angle induced on the bogies due to the slope of the ground. Based on this input, the onboard computer system causes the servoactuators 56 at each bogie to adjust accordingly to maintain level. In all modes, this leveling action should supersede the travel velocity in so far as the onboard computer system will automatically slow down the wheels to accommodate the leveling response time as necessary. If the system should ever reach the threshold where proper leveling cannot be maintained, the onboard computer system can command a reduced speed, or, if necessary, invoke an Automatic Stop, bringing forward travel to a halt at a suitable deceleration.
When traversing a road surface 400 the roughness or other unevenness of the road can and generally does induce motion through the tire and lift 402, the actuator geometry 404, and actuator 106. Preferably information from each bogie and/or servoactuator 56 is sent to the vehicle controller 408. That is, the leveling system preferably receives data from sensors on each of the four hydraulic cylinders located on each bogie (for example, bogies 32 and 34 and actuator 56); however, the system can receive input from any number of suitable hydraulic actuator sensors or other devices. The sensors on the actuators then send signals identifying their position and pressure feedback to both the controller card 410 and the vehicle controller 408. Additionally, at substantially the same time or on a continual basis, leveling sensors and/or planarity sensors (e.g., strain gages attached to the load floor structure or laser alignment devices) 412 send a signal to the vehicle controller. Preferably the leveling sensors and/or planarity sensors 112 send signals at specific intervals; however, the sensors can send signals on any desired schedule. The leveling sensors and/or planarity sensors 412 can include one device or any other number of suitable sensors.
The vehicle controller 408 processes the information from the actuator 106 and the leveling sensors and/or planarity sensors 412 and sends a commanded position to the controller card 410. For example, as stated above, the sensors and/or planarity sensors 412 can be any suitable means for monitoring the angle of the load with respect to a gravity vector and/or other means that measure the planarity of the vehicle chassis using at least three points directly under the slewing ring bearings or other suitable locations. It is noted that this self leveling system is merely exemplary and any suitable leveling system can be used.
The controller card 410 then using the data or information received from the vehicle controller 408, the sensors 412 and/or the hydraulic cylinder(s) 406 relays or sends valve commands to the proportional valve(s) 414. The valve(s) in turn control the hydraulic cylinder(s) to adjust the height of the building or portion of the building overlying the specific hydraulic cylinder. Such a system enables the vehicle to continually monitor the position of the building and adjust as the vehicle transports the building to a specific site.
While this leveling and or planarity system is preferably used with a transport vehicle that is formed from two separately joined vehicles, this system can be used with any suitable transport vehicle, including a unitarily constructed vehicle or a vehicle formed from any number of other separately joined vehicles.
As shown in
As shown in
Alternatively, vehicle 10 can transition from cruise mode, where the short side of the load is leading, to “crab mode”, where the long side of the load leads. In crab mode, the wheels are rotated 90 degrees and the slewing ring bearings are arranged to minimize the overall width of the vehicle. This orientation aligns the load with the preselected site and sets the transport vehicle for “pull-in mode”. During the pull-in maneuver to position the load at the predetermined site 300, the leading bogies can splay out to clear the obstacles, such as a foundation, if such an obstacle exists.
“Crab mode” can be implemented at any suitable location or time. For example, “crab mode” can be implemented as the vehicle approaches the load placement site 300. The vehicle can transition from “cruise mode” configuration to “crab mode” configuration at some point before the vehicle arrives on adjacent the area where the load will be located; for example, the street adjacent a predetermined site. The vehicle then proceeds with the load sideways, i.e., the side of the load is leading. Once the vehicle aligns the load with the predetermined site 300, the bogies rotate 90 degrees; the leading bogies splay outwards.
The advantage using the “crab mode” maneuver prior to arrival at the site 300 is that it does not require that one of the adjacent sites be empty in order to set the load, depending on the specific set-up and/or configuration of the adjacent buildings and/or based on other objects that may be positioned in and around the load site. For example, this mode can minimize the amount of land needed to maneuver the load into position. Thus, a load can be placed or positioned between two other loads or obstacles spaced only slightly further apart than the width of the load.
As shown in
When the system is switched into “pull-in mode”, the onboard computer system can check to make sure that the vehicle is within the correct starting range using both the GPS receivers and two sensors receiving the rotating beam from the laser beacon. If all the inputs are consistent, the system can indicate that it is ready to begin the automated procedure of pulling in.
The operator then ensures that the path ahead is clear and initiates motion by means of a pushbutton. The vehicle then begins moving at a “creep speed”, which it will maintain throughout the pull in procedure. The operators can have the capability to slightly adjust the motion by way of their joysticks and both must keep pressure on their respective dead-man enable switches.
The onboard computer system automatically drives the vehicle to a precise location and orientation. As the vehicle automatically maneuvers to the known point, the system splays out the two front yokes as needed to fit outside the foundation or other obstacles, if such exist. When the vehicle reaches the front of the site, it will stop and allow the operators to confirm the location visually.
However, it is not necessary to have a precise “pull-in” mode. Such a precise positioning of the load is dependent upon the load and the site. It is contemplated that the load can be positioned manually by the operators or by a computer control system, thus, be positioned within any desired parameters. For example, the operators can manually maneuver and position the load on a suitable location within about a 0-10 foot range or footprint or even within about a few inches.
Preferably, the splay of the lead bogie occurs during pull-in and the rear outer-most bogie remains in full tuck position; however, each or all of the bogies can be positioned in any suitable position and are not limited to the specific positions described herein.
As shown in
The four-bar parallelogram linkage 48 and slewing ring structure 42 allow for final positioning of the load over the site 300 in “set mode”. Through coordinated and controlled movement of the slewing ring bearings, combined with controlled movement in a straight line of the bogies along the side edges of the site, the transport device 10 achieves sufficient latitudinal, longitudinal, and rotational movement over a small range to allow the operators to precisely align the load with its site. However, since the load can be placed on a graded site (or any other suitable place or location), it may not be necessary to have the load placed in a precise manner, and the operators can be given sufficient leeway to place the load within a predetermined area. Such a placement of the load can occur through manual operation of the controls or through an automatic setting, in which a computer control sets the load in a controlled manner.
The tensioning devices disengage from the bands and each vehicle 12 and 14 is individually driven (manually or automatically) away from the site. The bands can them be removed (or left with the load). If the bands are formed from a plurality of segments, the segments are disconnected and individually removed.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.