It is important to protect both material and personnel from catastrophe, especially in cases where the probability of occurrence is greater than the norm. Conventionally, both temporary and permanent means may be used for this purpose, depending on the scenario. For example, a permanent military facility may best be protected by a permanent configuration, whereas a mobile field unit would best be served by a temporary, but not necessarily less effective, configuration. Conventionally, protection against manmade catastrophe, such as occurs in war zones, has been provided with large bulky concrete structures or earthen embankments that require heavy equipment to produce, whether temporary or permanent. Common needs for protective structure may include barriers to prevent personnel access, vehicular intrusion, or even line-of-site access, as well as protective enclosures for emergency response personnel or revetments for high value assets. Because of constraints such as geography, response time, availability of both material and heavy equipment, and the like, select embodiments of the present invention that provide good protection for both personnel and valued assets are of value for protection of military, industrial, community and personal assets.
To protect personnel and assets, organizations such as the military use a variety of protective materials ranging from soil cover to expensive, high-performance, lightweight ballistic ceramics. For the military, a need exists for an inexpensive blast and fragmentation barrier for large-area applications, such as forward facilities, installation and structure perimeters, and both interior and exterior protective upgrades. Certain applications call for panels that may be emplaced on robust platforms, both the modular platform sections and panels being of sufficiently light weight to be man portable. Needs for physical protection exist in the commercial, first responder and consumer communities also, but on a different scale. For example, there is a need for a structure to hold inexpensive protective cladding with superior resistance to wind damage, including penetration of debris generated by natural forces, such as tornadoes and hurricanes.
Select embodiments of the present invention comprise transportable components for fortifying an area. Select embodiments of the present invention include box-shaped platform modules for holding panels in order to provide a secure perimeter. The panels may be resistant to sudden impulses such as may occur with explosions or impact with projectiles and also may shield what they are protecting from view of possible adversaries.
In select embodiments of the present invention, a transportable configuration provides modular support to be combined with panels of pre-specified content for isolation, including physical protection, of assets. A component of select embodiments of the present invention comprises an open stackable frame of a length greater than or equal to its width which in turn is less than or equal to its height. The frame comprises four sides, eight corners and an open top and bottom. In select embodiments of the present invention the frame comprises: mounts at each of its eight corners, four of the mounts being of a first type (“top” mounts) located at the top of the frame and four of the mounts being of a second type (“bottom” mounts) and located at the bottom of the frame such that the top and bottom mounts are able to be interlocked via suitable means to permit vertical stacking as well as horizontal connection of the frames one to another; a pair of cross members in compression on each of the four sides of the frame, such that each cross member of a pair is pivotally joined at its center to the other cross member of the pair thereby allowing pivoting of the pair of cross members in one plane, and such that each cross member is also pivotally joined to one top mount and one bottom mount thereby allowing pivoting of the connected pair of cross members in one plane; and two or more members in tension on each side of the frame, a first member in tension attached to the top mounts and a second member in tension attached to the bottom mounts; pairs of z-bars to be affixed, in one embodiment, along a first longitudinal side of the frame, ends of the z-bars affixed to respective top and bottom mounts; tensioning means for securing the ends of the z-bars to the top and bottom mounts; and four height adjustable bases (leveling pads), on which rest the bottom mounts. The frame is suitable for mounting panels, preferably quadrilateral panels.
In select embodiments of the present invention, third and fourth z-bars are mounted on the longitudinal side of the frame opposite the longitudinal side on which the first two z-bars are mounted. These z-bars accommodate mounting optional panels on the back side (the side away from the origin of external hazards) of the frame.
In select embodiments of the present invention, the cross members are of tubular construction and further comprise means for pivotally connecting each cross member of a pair of cross members at the respective approximate center of each cross member. For example, the means for pivotally connecting may be a bushed rivet or clevis pin. In select embodiments of the present invention the cross members are metal tubes having a quadrilateral cross section, e.g., a square or rectangular cross section.
In select embodiments of the present invention, the members in tension are braided wires affixed to the top and bottom mounts, respectively, horizontally, e.g., via rivets through holes in the top and bottom mounts and end loops on the braided wire from one top mount to another top mount and from one bottom mount to another bottom mount, all on the same frame.
In select embodiments of the present invention, the z-bars are formed from sheet metal and incorporate means for positioning them on the frame and tensioning means for securing the ends of the z-bars to the respective top and bottom mounts.
In select embodiments of the present invention, the top and bottom mounts are formed from sheet metal and further comprise: means for positioning the z-bars on the frame, for example a slot external to the z of the z-bar itself, and means for attaching the tensioning means for connecting the z-bars to the top and bottom mounts, e.g., a strap with hook on one end and a tightening ratchet on the other end; means for connecting to the first and second members in tension, e.g., slots or holes in the top and bottom mounts to which a wire may be affixed via a rivet, clevis pin or the like; channels in the top and bottom mounts for positioning the cross members on the top and bottom mounts, e.g., vertical tabs, with attachment holes, formed in the base of the top and bottom mounts; and means for connecting each end of the cross members in the channels, e.g., bushed pins such as clevis pins or the like.
In select embodiments of the present invention, the adjustable bases comprise: a first plate (“top” plate) for indexing to the bottom mounts, the top plate incorporating a first threaded collar approximately centered in the top plate; a threaded rod incorporating means for moving the threaded rod in the first threaded collar to raise and lower the mount; and a reinforced plate (“bottom” plate) incorporating a second collar for receiving the threaded rod, so that the threaded rod may be turned via the means for moving, such as a hex nut affixed at the top of the threaded rod, to adjust the height of the adjustable base to facilitate interconnecting a frame to adjoining frames.
In select embodiments of the present invention, frames themselves employ four or more vertically oriented connection pins in the top mounts to affix each bottom mount to each top mount to permit vertically stacking of the frames.
In select embodiments of the present invention, a method of installing a modular support for a transportable configuration that provides protection for assets, comprises: providing an open stackable frame having a length greater than or equal to a width that is less than or equal to a height, four sides, and eight corners, the frame comprising: mounts at each of the eight corners of the frame, such that a first four mounts are of a first type (top mounts) located at the top of the frame and a second four mounts are of a second type (bottom mounts) located at the bottom of the frame, a pair of cross members in compression on each of the four sides of the frame, such that each cross member of a pair is pivotally joined at its center to the other cross member of the pair to allow pivoting of the pair of cross members in one plane, and such that each cross member is pivotally joined to one top mount and one bottom mount so as to allow pivoting of the pair of cross members in one plane; and two or more members in tension, such as a braided wire, on each of the four sides of the frame, a first member in tension attached to the top mounts and a second member in tension attached to the bottom mounts. The method further provides z-bars, the z-bars affixed along a longitudinal side of the frame, ends of a first z-bar affixed to tabs on two top mounts and ends of a second z-bar affixed to tabs on two bottom mounts. The method further provides tensioning means, such as wires adjustable for amount of tension, connectable to each end of the z-bars and provides adjustable bases such that each base supports a bottom mount for at least one frame corner depending on the position of frames in a final protective wall. The method further provides eight or more vertically oriented pins, two each pins in the top plates of the adjustable bases for indexing each frame bottom mount to the bases. The method further provides for transporting the support to a location having assets requiring physical protection and unloading the support from its transporting means, such as a truck. The method further comprises completing the following steps to result in support for an isolating wall: a) arranging the adjustable bases on the desired substrate, e.g., the ground, to permit placement of the frames thereon and adjusting the bases to be about six turns from bottoming out; b) leveling the adjustable bases with respect to the substrate; c) placing a first frame, indexing the bottom mounts to the pins in the top plates of the four adjustable bases; d) further arranging two adjustable bases for holding one side of an initially adjoining frame to the originally placed frame and leveling the latter placed two adjustable bases, e) indexing the adjoining frame to the pins of the two adjustable bases common to the initially placed frame and the two further arranged adjustable bases; f) leveling the initially placed frame by adjusting the adjustable bases to facilitate joining the initially placed frame and the adjoining frame at respective top mounts; g) connecting the initially placed frame and the adjoining frames at adjoining top mounts; h) along the length of the frame, attaching a z-bar at the top of each installed frame and a second z-bar at the bottom of each installed frame; i) after inserting a pre-specified number of panels in the z-bars, employing the tensioning means at the ends of each z-bar, thus securing the z-bars to the frame; and j) repeating steps a) through i) treating each added frame as an initially added frame until a pre-specified length of said protective wall is attained.
In select embodiments of the present invention, the method of installation further comprises installing third and fourth z-bars on the side of the frame opposite that on which the first and second z-bars are installed, installing the third and fourth z-bars in a manner identical to that of installing the first and second z-bars; inserting panels between the third and fourth z-bars along the length of each installed frame, and tensioning the z-bars as in step i) above.
In select embodiments of the present invention, the method of installation further comprises: a) stacking one or more frames above each frame of an initially installed protective wall, b) indexing each bottom mount of the added frame to a corresponding top mount of the initially installed frame using the pin on each top mount; c) as necessary, further leveling the adjustable bases with respect to the substrate to facilitate joining each stacked frame to an adjoining stacked frame at the respective top mounts of the stacked frame; d) connecting the stacked frames at adjoining top mounts, e.g., via a rivet and slot arrangement; e) along one side of the length of the stacked frame, attaching a z-bar at the top of each installed stacked frame; f) inserting a pre-specified number of panels between the z-bars and, employing the tensioning means at the ends of each added z-bar, securing the added z-bars to each stacked frame; g) repeating steps a)-f) until the pre-specified height of the protective wall is attained.
In select embodiments of the present invention, the method of installation further comprises: installing additional top z-bars on the side of the stacked frame opposite that on which the initially added z-bars are installed, installing the additional top z-bars in a manner identical to that of installing the initially added z-bars; and inserting the pre-specified number of panels between the additionally added top z-bars and the top z-bars of the base frame along the length of the back of each installed stacked frame.
In select embodiments of the present invention, a transportable configuration for holding panels providing protection for assets comprises: an open stackable frame having a length greater than or equal to a width that is less than or equal to a height, four sides, and eight corners. In select embodiments of the present invention, the frame comprises: mounts at each of the eight corners of the frame, such that a first four mounts are of a first type (hereafter top mounts) located at the top of the frame and a second four mounts are of a second type (hereafter bottom mounts) located at the bottom of the frame, and the top mounts are connectable to the bottom mounts via suitable means to permit vertical stacking of the frames as well as horizontal connection of the frames one to another; a pair of cross members in compression on each of the four sides of the frame, wherein each cross member of a pair is pivotally joined at its center to the other cross member of the pair so as to allow pivoting of the pair of cross members in one plane, and such that each cross member is pivotally joined to one top mount and one bottom mount thereby allowing pivoting of the pair of cross members in one plane; and two members in tension on each of the four sides of the frame, a first member in tension, such as a braided wire, attached to each top mount and a second member in tension attached to each bottom mount; z-bars affixed along a first longitudinal side of the frame, ends of a first z-bar affixed to two top mounts and ends of a second z-bar affixed to two bottom mounts, the z-bars suitable for holding panels between top and bottom z-bars; tensioning means, such as a wire attached to a ratcheting adjustment belt, affixed at an end of each z-bar; and height adjustable bases (leveling pads) for supporting the bottom mounts.
In select embodiments of the present invention the configuration is constructed of man portable components and comprises: an open stackable frame having a length greater than or equal to a width that is less than or equal to a height, four sides, and eight corners. The frame of the configuration further comprises: mounts at each of the eight corners of the frame, such that a first four mounts are of a first type (“top” mounts) located at the top of the frame and a second four mounts are of a second type (“bottom” mounts) located at the bottom of the frame, and such that a top mount is connectable to a bottom mount via suitable means to permit vertical stacking of the frames as well as horizontal connection of the frames one to another; a pair of cross members in compression on each side of the frame, such that each cross member of a pair is pivotally joined at its center to the other cross member of the pair thereby allowing pivoting of the pair of cross members in one plane, and such that each cross member is pivotally joined to one top mount and one bottom mount thereby allowing pivoting of the pair of cross members in one plane; and two members in tension on each of the four sides of the frame, a first member in tension, e.g., a braided wire, attached between top mounts and a second member in tension attached between bottom mounts; z-bars affixed along a first longitudinal side of the frame, ends of a first z-bar affixed to two top mounts and ends of a second z-bar affixed to two bottom mounts; tensioning means, such as braided wire incorporating adjustment means such as a ratchet strap, connected to each end of a z-bar; height adjustable bases, each base supporting a bottom mount; and quadrilateral panels having a length and width, each of the length and width much greater than the depth of the panels, such that the panels are constrained in the z-bars to provide physical protection of assets on the side of the configuration away from the source of any physical forces.
In select embodiments of the present invention, all components are man transportable and some components comprise steel having a corrosion resistant finish. In select embodiments of the present invention the length, width and height of the support are equal.
In select embodiments of the present invention the z-bars comprise integral first and second open rectangular channels, the open portion of a first channel facing to the top and the open portion of a second channel facing to the bottom of the configuration, the channels incorporating open ends, the z-bars much longer in length than either width or depth.
In select embodiments of the present invention members in tension comprise wires, such that for each module, four wires are employed with the mounts of a first type and four wires are employed with the mounts of a second type.
In select embodiments of the present invention the cross members have a quadrilateral cross section. In select embodiments of the present invention, the frame modules are foldable to facilitate storage and transport.
Select embodiments of the box-shaped platform modules of the present invention are man portable. Systems, such as walls, employing select embodiments of the present invention are designed to replace existing systems that are heavier, e.g., those that employ thicker panels comprising materials conventionally used for protection from ballistic sources. Because some existing systems are made from costly materials, such as ceramics, they are also more expensive than embodiments of the present invention.
Refer to
Together with the adjustable bases (leveling pads) 105 on which the frame 800 (
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
In select embodiments of the present invention all modules (components) used in constructing a protective wall or enclosure are man portable, i.e., no specialized mechanical equipment is required for handling, packaging for transport, or installing the components into a finished protective configuration.
The abstract of the disclosure is provided to comply with the rules requiring an abstract that will allow a searcher to quickly ascertain the subject matter of the technical disclosure of any patent issued from this disclosure. 37 CFR §1.72(b). Any advantages and benefits described may not apply to all embodiments of the invention.
While the invention has been described in terms of some of its embodiments, those skilled in the art will recognize that the invention can be practiced with modifications within the spirit and scope of the appended claims. For example, although the system is described in specific examples for use in protecting assets, it may be used for any type of portable structure where physical or visual restriction or even noise suppression is desired. Thus select embodiments of the present invention may be useful in such diverse applications as mining, logging, construction, outdoor concerts, parades, and the like. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures. Thus, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting, and the invention should be defined only in accordance with the following claims and their equivalents.
This application is a national stage under U.S.C. §371, of International Application No. PCT/US09/35,707, filed Mar. 2, 2009, which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application Ser. No. 61/033,059, Transportable Modular Configuration for Holding Panels, filed Mar. 3, 2008, both incorporated herein by reference. This application is also related to U.S. Provisional Patent Application No. 61/033,240, Method of Manufacturing Cement Based Armor Panels filed Mar. 3, 2008; U.S. Pat. No. 8,030,377B2 which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application No. 61/033,212, A Self-Leveling Cementitious Composition with Controlled Rate of Strength Development and Ultra-High Compressive Strength upon Hardening and Articles Made from Same filed Mar. 3, 2008; U.S. Pat. No. 8,062,741B2 which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application No. 61/033,264, Cement Based Laminated Armor Panels; U.S. Pat. No. 8,061,257B2 which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application No. 61,033,258, Cement Based Armor Panel System, filed Mar. 3, 2008; and U.S. National Stage patent application Ser. No. 12,920,497 which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application Ser. No. 61/033,061, Transportable Modular System Permitting Isolation of Assets, filed Mar. 3, 2008, all the above incorporated herein by reference.
Under paragraph 1(a) of Executive Order 10096, the conditions under which this invention was made entitle the Government of the United States, as represented by the Secretary of the Army, to an undivided interest therein on any patent granted thereon by the United States. Research supporting at least part of the work described herein was accomplished with the United States Gypsum Company under a Cooperative Research and Development Agreement, CRADA-05-GSL-04, dated 20 May 2005. This and related patents are available for licensing to qualified licensees. Please contact Phillip Stewart at 601 634-4113.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2009/035707 | 3/2/2009 | WO | 00 | 9/1/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/148652 | 12/10/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2888072 | Nicholas | May 1959 | A |
4995212 | Morgan et al. | Feb 1991 | A |
5230196 | Zeigler | Jul 1993 | A |
5327700 | Sorenson et al. | Jul 1994 | A |
5826397 | Armold | Oct 1998 | A |
6161462 | Michaelson | Dec 2000 | A |
6374843 | Zou | Apr 2002 | B1 |
6439120 | Burealix et al. | Aug 2002 | B1 |
6829869 | Savoie | Dec 2004 | B1 |
6907811 | White | Jun 2005 | B2 |
20070175126 | Tonyan et al. | Aug 2007 | A1 |
20090239977 | Dubey et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
WO2009114319 | Sep 2009 | WO |
WO2009148652 | Dec 2009 | WO |
Entry |
---|
U.S. Appl. No. 12/397,448, Dubey, et al. |
U.S. Appl. No. 12/394,396, Tonyan, et al. |
U.S. Appl. No. 12/394,564, Tonyan, et al. |
Number | Date | Country | |
---|---|---|---|
20110000514 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
61033059 | Mar 2008 | US |