It is important to protect both material and personnel from catastrophe, especially in cases where the probability of occurrence is greater than the norm. Conventionally, both temporary and permanent means may be used for this purpose, depending on the scenario. For example, a permanent military facility may best be protected by a permanent configuration, whereas a mobile field unit would best be served by a temporary, but not necessarily less effective, configuration. Conventionally, protection against manmade catastrophe, such as occurs in war zones, has been provided with large bulky concrete structures or earthen embankments that require heavy equipment to produce, whether temporary or permanent. Needs for protective structure may include barriers to prevent personnel access, vehicular intrusion, or even line-of-site access in the case of a sniper, as well as protective enclosures for emergency response personnel or revetments for high value assets. Because of constraints such as geography, response time, availability of both material and heavy equipment, and the like, select embodiments of the present invention that provide good protection for both personnel and valued assets are of value for protection of both military and community assets.
To protect personnel and resources, military organizations use a variety of protective materials ranging from soil cover to expensive, high-performance, lightweight ballistic ceramics. A need exists for an inexpensive blast and fragmentation barrier for large-area applications, such as forward facilities, installation and structure perimeters, and both interior and exterior protective upgrades. Certain applications call for panels that may be emplaced on robust platforms, both the modular platform sections and panels being of sufficiently light weight to be man portable.
Select embodiments of the panels of the present invention have excellent energy absorbing capacity against blast and ballistic penetration forces. This capacity is often described as toughness, a term also associated with the tensile strength of concrete. Select embodiments of the panels of the present invention obtain their strength and toughness qualities through engineering of the type and quantity of component materials.
When combined with an elastic outer layer, the core of select embodiments of the panels of the present invention reduces fragment velocities as compared to existing core materials that cost more, weigh more, and require greater thickness to achieve the same kinetic energy reduction. Cost is reduced by employing high performance concrete materials as a core. Use of multi-dimensional, discrete and continuous fibers of various material compositions distributed throughout the core matrix optimizes strength and toughness. Coating or covering the inexpensive core with a tough pliable material provides the necessary “toughness” to dampen or completely eliminate through penetration of fragments and debris from an event such as a hurricane, nearby explosion or even penetration by munitions.
Select embodiments of the panels, roof and floor supports and the box-shaped platform modules of the present invention are man portable. Systems, such as walls, floors and roofs, employing select embodiments of the present invention are designed to replace existing systems that are heavier, e.g., those that employ thicker panels comprising materials conventionally used for protection from ballistic sources. Because some existing systems are made from exotic materials, such as ceramics, they are also more expensive than embodiments of the present invention.
A need also exists for inexpensive protective cladding with superior resistance to wind damage, including penetration of debris generated by natural forces, such as tornadoes and hurricanes. Although select embodiments of the present invention may be used as ballistic armor, connectors, protective construction, blast-resistant panels, protection against fragmenting munitions, vehicle up-armoring, and forced entry resistant structural elements. Other applications include strengthening of building components such as walls, floors and ceilings. Because select embodiments of the panels of the present invention have high strength and toughness, they are suitable for use in new construction of residential housing as structural members that are resistant to the natural forces and debris impact of tornadoes and hurricanes and in commercial security situations such as the construction of bank vaults and armor protective enclosures.
Select embodiments of the present invention include a Modular Protective System Overhead Cover (MPS-OHC) that fills an existing gap in a combat soldier's tool kit. The MPS-OHC is a unique structure that provides 360° of protection while its components are light enough to be man-portable and assembled by personnel without requiring special tools or heavy equipment. This allows the MPS-OHC to be attached to a combat unit, transported to remote locations, and deployed with hand tools. Currently, there is no known system capable of providing this protection with its reduced logistical demands.
The MPS-OHC safeguards personnel and material against direct and indirect weapons' fire. The MPS-OHC is similar in concept to the Overhead Coverage System (OCS) developed by the U.S. Army Engineer Research and Development Center (ERDC), USACE Middle East District (MED), Protective Design Center (PDC), in partnership with Perini and Tetra Tech design-build teams. The OCS, however, are permanent structures built over high-density facilities, such as housing units, medical buildings, and dining halls. Changes in the battlefield scenario and logistical constraints require that the next generation of enhanced force protection solutions be lightweight, modular, scalable, recoverable, and reusable. The MPS-OHC is intended to provide sidewall and overhead cover from direct and indirect fire threats in locations where conventional construction materials and equipment are not available or are not feasible or when a permanent structure would not be in line with mission requirements.
U.S. Armed Forces combat personnel operate in austere environments and face the threat of small arms and indirect fire. The MPS-OHC provides a rapidly deployable and rapidly recoverable structure that requires no heavy equipment or specialized tools for assembly. Possible uses include: overhead cover, sidewall protection, protection of living quarters, including tents, ballistic and fragmentation screen or shield, vehicle protection, personnel bunker, command post protection, guard post, fighting position, petroleum, oil and lubricants (POL) store protective cover, ammunitions holding area protection, and the like.
Select embodiments of the present invention envision a system of lightweight modular components that are assembled without heavy equipment or special tools to provide overhead cover protection, in addition to lateral cover protection. The system is re-usable and re-locatable by incorporating a lightweight modular column system.
Select embodiments of the present invention comprise transportable components for fortifying an area. Select embodiments of the present invention comprise lightweight roof trusses and connectors therefor. Select embodiments of the present invention include opaque blast and projectile resistant panels and rectangular box-shaped platform modules for holding the panels in order to provide a secure perimeter. The panels are resistant to sudden impulses such as may occur with explosions or impact with projectiles and also shield what they are protecting from view of possible adversaries.
In select embodiments of the present invention, a transportable configuration provides protection for assets. One of the main components of select embodiments of the present invention comprises an open stackable frame of a length greater than or equal to the width, the width in turn less than or equal to the height. A frame comprises four sides, eight corners and an open top and bottom. In select embodiments of the present invention the frame comprises: mounts at each of its eight corners, four of the mounts being of a first type and located at the top of the frame and four of the mounts being of a second type and located at the bottom of the frame such that the first and second types are able to be interlocked via suitable means to permit vertical stacking as well as horizontal connection of the frames one to another; a pair of cross members in compression on each side of the frame, such that each cross member of a pair is pivotally joined at the center to the other cross member of the pair thereby allowing pivoting of the pair of cross members in one plane, and such that each cross member is also pivotally joined to one top mount of a first type and one bottom mount of a second type thereby allowing pivoting of the connected pair of cross members in one plane; and two or more members in tension on each side of the frame, a first member in tension attached to the top mounts of a first type and a second member in tension attached to a bottom mounts of a second type; pairs of z-bars to be affixed, in one embodiment, along a first longitudinal side of the frame, ends of one of the z-bars affixed to the top mounts of a first type and ends of the second z-bar of a pair affixed to two bottom mounts of a second type; tensioning means for securing the ends of the z-bars to the top and bottom mounts; four height adjustable bases, on which rest the bottom mounts of a second type; and panels, preferably quadrilateral, having a length and width either of which is much greater than the depth of a panel, the panels having a pre-specified resistance to blast and penetration by airborne projectiles such that when the panels are mounted in the z-bars on the frame the combination provides physical protection of assets on the side of the configuration away from the origination of any blast and airborne projectiles.
In select embodiments of the present invention, third and fourth z-bars are mounted on the longitudinal side of the frame opposite the longitudinal side on which the first two z-bars are mounted. These z-bars accommodate mounting optional panels on the “back” side (the side away from the origin of external hazards) of the frame.
In select embodiments of the present invention, the cross members are of tubular construction and further comprise means for pivotally connecting each cross member of a pair of cross members at the respective approximate center of each cross member. For example, the means for pivotally connecting may be a bushed rivet or clevis pin. In select embodiments of the present invention the cross members are metal tubes having a quadrilateral cross section, e.g., a square or rectangular cross section.
In select embodiments of the present invention, the members in tension are braided wires affixed to the plates horizontally, e.g., via rivets through holes in the plates and end loops on the braided wire from one top plate to another top plate and from one bottom plate to another bottom plate, all on the same frame module.
In select embodiments of the present invention, the z-bars are formed from sheet metal and incorporate means for positioning them on the frame and tensioning means for attaching the z-bars to the appropriate mounts, i.e., to top mounts for bottom z-bars and vice versa. In select embodiments of the present invention, the configuration mounts are formed from sheet metal and further comprise: means for positioning the z-bars to the frame, for example an “external slot,” and means for attaching the tensioning means for connecting the z-bars to the mounts, e.g., a strap with hook on one end and a tightening ratchet on the other end; means for connecting to the first and second members in tension, e.g., slots or holes to which a wire may be affixed via a rivet or the like; channels for positioning the cross members at the mounts, e.g., vertical tabs incorporating attachment holes, the tabs affixed by suitable means such as “tack welding” to the base of the mounts; and means for connecting each end of the cross members in the channels, e.g., bushed pins such as clevis pins or the like.
In select embodiments of the present invention, the adjustable bases comprise: a first mount for affixing the mounts of a second type, the mount incorporating a first threaded collar approximately centered in the first mount; a threaded rod incorporating means for moving, such as an affixed hex nut, the threaded rod in the first threaded collar to raise and lower the first mount; and a second reinforced mount incorporating a second collar for receiving the threaded rod, so that the threaded rod may be turned via the means for moving to adjust the height of the adjustable base to facilitate interconnecting a frame module to adjoining frame modules.
In select embodiments of the present invention, the quadrilateral panels comprise a core of very high strength concrete having elastic material bonded to at least one side, the side defined by the length and the width of the quadrilateral panel, the depth or thickness of the panel much less than either the length or width. In select embodiments of the present invention, the quadrilateral panel incorporates elastic material bonded to both its sides. In select embodiments of the present invention, the quadrilateral panels incorporate elastic material bonded to the outside of the quadrilateral panel. In select embodiments of the present invention the elastic material completely encapsulates the panel.
In select embodiments of the present invention, the quadrilateral panels further comprise means for suspending them from the frame, e.g., grommets, tabs and the like.
In select embodiments of the present invention, the frames employ four or more connection pins, such as steel bar stock of circular cross section with both ends chamfered to facilitate insertion of the pins, to affix each bottom mount of a second type to each adjustable base as well as to affix vertically stacked frames to those below.
In select embodiments of the present invention, a method of installing a transportable configuration that provides protection for assets, comprises: providing an open stackable frame having a length greater than or equal to a width that is less than or equal to a height, four sides, and eight corners, the frame comprising: mounts at each of the eight corners of the frame, such that a first four mounts are of a first type located at the top of the frame and a second four mounts are of a second type located at the bottom of the frame, a pair of cross members in compression on each side of the frame, such that each cross member of a pair is pivotally joined at the center to the other cross member of the pair to allow pivoting of the pair of cross members in one plane, and such that each cross member is pivotally joined to one top mount of a first type and one bottom mount of a second type so as to allow pivoting of the pair of cross members in one plane; and two or more members in tension on each side of the frame, tension provided from a member such as a braided wire, a first member in tension attached to the top mounts and a second tension member attached to the bottom mounts. The method further provides z-bars, the z-bars affixed along a longitudinal side of the frame, ends of a first z-bar affixed to two top mounts and ends of a second z-bar affixed to two bottom mounts; providing tensioning means in a vertical plane, such as braided wires adjustable for amount of tension, connectable to each end of the z-bars; providing adjustable bases such that each base supports a bottom mount for one or two frames depending on the position of the frames in a final protective wall; providing four or more connection pins for affixing each frame to the four adjustable bases; and providing quadrilateral panels having a pre-specified resistance to blast and penetration by airborne projectiles; transporting said configuration to a location having assets requiring physical protection and unloading the configuration from its transporting means, such as a truck. The method further comprises completing the following steps to result in a protective wall for the assets: a) arranging the adjustable bases on the desired substrate, e.g., the ground, to permit placement of the frames thereon and adjusting the bases to be about six turns from bottoming out; b) leveling the adjustable bases with respect to the substrate; c) placing a first frame on four adjustable bases; d) connecting the frame to its adjustable bases with four connection pins; e) further arranging two adjustable bases for holding one side of an initially adjoining frame to the originally placed frame, leveling the two adjustable bases, placing the adjoining frame on the two adjustable bases common to the initially placed frame and the two further arranged adjustable bases; f) connecting the adjoining frame to the adjustable bases on the one side common to the initially placed frame; g) connecting the adjoining frame to the two further arranged adjustable bases; h) leveling the initially placed frame by adjusting the adjustable bases to facilitate joining the initially placed frame and the adjoining frames at the top mounts; i) connecting the initially placed frame and the adjoining frames at adjoining top mounts; j) along the length of the frame, attaching a z-bar at the top of each installed frame and a second z-bar at the bottom of each installed frame; k) employing the tensioning means at the ends of each z-bar, securing the z-bars to the frame; l) inserting the quadrilateral panels between the top and bottom z-bars along the length of each installed frame; and m) repeating steps a) through l) treating each added frame as an initially added frame until a pre-specified length of said protective wall is attained.
In select embodiments of the present invention, the method of installation further comprises installing third and fourth z-bars on the side of the frame opposite that on which the first and second z-bars are installed, installing the third and fourth z-bars in a manner identical to that of installing the first and second z-bars; and inserting quadrilateral panels between the third and fourth z-bars along the length of each installed frame.
In select embodiments of the present invention, the method of installation further comprises: a) stacking a frame module above each frame module of an initially installed protective wall, b) attaching each bottom mount of the added frame module to a corresponding top mount of the initially installed frame module using a connection pin per connection; c) as necessary, further leveling the adjustable bases with respect to the substrate to facilitate joining each stacked frame module to an adjoining stacked frame module at the respective top mounts; d) connecting the stacked frame modules at adjoining top mounts, e.g., via a rivet and slot arrangement; e) along one side of the length of the stacked frame module, attaching a z-bar at the top of each installed stacked frame module; f) employing the tensioning means at the ends of each newly installed z-bar, securing the newly installed z-bars to the stacked frame module; g) inserting quadrilateral panels between the originally installed top z-bar of the bottom layer of frame modules and the newly installed z-bars of the top layer of frame modules along the length of each installed stacked frame module until the pre-specified length of the protective wall is attained at the increased height resultant from adding the stacked frame modules.
In select embodiments of the present invention, the method of installation further comprises: installing an additional z-bar on the top of the side of the stacked frame module opposite that on which the newly installed top z-bar is installed, installing the additional top z-bars in a manner identical to that of installing the newly installed top z-bars; and inserting quadrilateral panels between the initially installed top and the newly installed top z-bars along the “back” length of each installed stacked frame module.
In select embodiments of the panels of the present invention, inexpensive impact-resistant composite structures incorporate a core of an improved very high strength concrete (VHSC) and an external “skin” of elastic material. The skin may be applied to one or more sides of the structure or completely cover a structure, e.g., a rectangular panel could be covered on both sides and all four edges. Materials that form a composite structure of an embodiment of the present invention may include a core of a cementitious material such as COR-TUF™ (a high-performance VHSC) coupled with reinforced polymer-based facings placed on one or more sides of the VHSC core or completely enveloping the core. Note that VHSC is an accepted descriptor in the profession for high performance concrete. COR-TUF™ and methods for producing it are described in U.S. Pat. No. 7,744,690 B2 to Durst et al. (hereafter the '690 patent), issued Jun. 29, 2010, incorporated herein by reference. Further, the elastic material for covering the panels may be of the type described in U.S. patent publication 2009/000430 A1, Reinforced Elastomeric Configuration Tailored to Meet a User's Requirements for Protecting a Structure and a Structure Comprised Thereof, published Jan. 1, 2009 (hereafter the '430 publication), incorporated herein by reference. Methods for applying the elastomeric material to a panel are also provided in the '430 publication.
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
In select embodiments of the present invention, sheets 102, 103 of elastic materials used for the “skin” of the composite may comprise a spun para-aramid fiber, e.g., KEVLAR®, ballistic grade E-glass, commercial E-glass, S2-glass, polypropylene thermoplastic sheet, polyurethane/polyurea-blended sheet, polyurethane films (with or without reinforcement), fiberglass, carbon fiber, metal mesh/grid fiber reinforced plastic (FRP), and the like. Where more than one layer of skin is applied as a sheet 102, 103, e.g., as a laminate, the layers may be of the same material and same thickness, same material different thicknesses, different materials of the same thickness or different materials of different thicknesses. Further, individual layers may be a composite of different material, e.g., a laminate of FRP and carbon fiber. The selection of materials depends on the amount of protection required and may also be subject to a cost/benefit constraint. The core 101 may comprise variants of hard armor material produced from high performance concretes, ceramics, quarried stone, various architectural armors, plastics and the like. To keep costs in line, portland cement-based VHSC's, such as COR-TUF™, are preferred.
In select embodiments of the present invention, a core 101 is prepared to accept one or more outer sheets 102, 103 of an elastic material, such as a polymer, by applying a compatible adhesive, such as an epoxy, to the sides 104 and to the surface of the sheets 102, 103 of elastic material, such as solid sheets of polymer, and mating the surfaces of the sheets 102, 103 to that of the surfaces of the sides 104 in accordance with the instructions of the adhesive manufacturer. In select embodiments of the present invention, the sheets 102, 103 may be attached via applying pressure to the back (top) surface of the sheets 102, 103 of elastic material. In select embodiments of the present invention, if the sheet 102, 103 of elastic material is applied in fluid form prior to curing to a flexible solid, e.g., either sprayed, brushed, trowelled or rolled on, the bonding mechanism is generally the fluid form of the elastic material itself, such as a sprayable polymer, and no adhesive is necessary. In select embodiments of the present invention, a “laid-up” composite panel 306 is then allowed to cure in accordance with the instructions of the manufacturer of the material used to create the flexible solid sheets 102, 103 of elastic material.
In select embodiments of the present invention, the core 101 is a very high-strength, high-toughness cement-based material, e.g., a VHSC, that is very efficient at absorbing or reducing the kinetic energy of any impacting object, such as a fragment projected from a blast or deposited by wind.
In select embodiments of the present invention, one or more sheets 102, 103 of elastic material, such as a polymer sheet, trap impacting objects thereby increasing protection from airborne fragments as compared to the trapping capacity available from use of the core 101 alone. A sheet 102, 103 of elastic material, e.g., a polymer sheet, on the non-impact side (inside) 104 of a panel 306 provides added resistance to punching shear in the core 101. Additionally, facing a core 101 with a high tensile strength (high “toughness”) membrane on the impact side (outside) 104, further enhances the performance of the panel 306.
Select embodiments of the present invention may be employed in building construction products such as roofing tiles, wall panels, floor tiles, hurricane and tornado resistant structural elements, forced entry resistant structural elements and the like.
The ability to choose among many polymer materials for an appropriate sheet 102, 103 of elastic material makes various embodiments of the present invention suitable for use in a variety of military, first responder, commercial, industrial and consumer applications.
Select embodiments of the panel of the present invention include a panel 306 having a core 101 comprising a portland cement-based composite material, such as COR-TUF™, that is completely encapsulated in a sheet 102, 103 of thermoplastic material bonded to the core 101 through application of heat and pressure. Because of the combined properties of the thermoplastic material and the COR-TUF™, select embodiments of the present invention are capable of blunting sharp edges of shrapnel resultant from an explosion. This blunting flattens airborne debris (or shrapnel) as it penetrates the core 101, thereby slowing it while decreasing the depth of penetration. Select embodiments of the present invention provide a composite panel 306 that has the compressive strength of high-performance concrete coupled with the additional capacity (toughness) to trap at least some impacting fragments in the encapsulation layers of the sheet 102, 103 of elastic material applied to both the impact (outside) side 104 and non-impact (inside) side 104 of the panel 306.
In select embodiments of the present invention, using COR-TUF™ as the core 101 of a panel 501 such as that of
With the sheets 102, 103 of thermoplastic material placed beneath and over the core 101 the sheets 102, 103 are welded to each other through one of the following processes. While heat is applied to the sheets 102, 103 of thermoplastic material, mechanical pressure such as from weights, applied pressure or other clamping technique, is applied to the top and bottom edges of the sheets 102, 103 to melt the thermoplastic material of the sheets 102, 103 and to fuse the edges of the sheets 102, 103 of thermoplastic material together providing a completely encapsulated core 101 resulting in a panel such as the panel 501 of
In select embodiments of the present invention a vacuum assist, coupled with the heating of the sheets 102, 103 of elastic material, may be used to withdraw any air from inside the confines of the two facing layers and draw the sheets 102, 103 of elastic material to the core 101 to thermally weld one sheet 102 of thermoplastic material to another sheet 103 of thermoplastic material.
Alternatively, in select embodiments of the present invention, a mechanical mold (not shown separately) may be employed. The mold may consist of top and bottom forms that are three inches larger on all sides than the core 101, and deep enough to surround the core 101 with resin (not shown separately) to a depth of about 0.20 inches. In select embodiments of the present invention, a resin incorporating reinforcing polymer fibers is injected around the core 101 in a manner similar to an injection molding process.
Alternatively, in select embodiments of the present invention, an adhesive may be applied to the internal side of the top and bottom sheets 102, 103 of elastic material and mechanical pressure applied to them to “weld” the sheets 102, 103 of elastic material around the core 101. This process bonds the outer sheets 102, 103 of elastic material to themselves and the core 101 as an alternative to a thermal welding process.
These processes are particularly suitable for making inexpensive thin panels 501 for use as armor. If the sheets 102, 103 of elastic material are impermeable to moisture, the core 101 will not gain any moisture after sealing the elastic material of the sheets 102, 103. This is important in areas where any freezing water in a porous concrete core 101 may cause cracking or if the core 101 is reinforced with steel that may corrode upon introduction of moisture.
In select embodiments of the present invention, panels 306, 501 made from these processes may be produced in size and thickness to accommodate man-portability. These man-portable panels 306, 501 may be configured for attaching to a structural framework to produce a protective system for mitigation of blast and fragmentation effects. Further, resistance to dynamic pressure forces makes these embodiments suitable as a panel to resist collateral damage due to hurricanes and tornadoes.
Select embodiments of the panels of the present invention comprise a core 101 of a high-performance concrete such as COR-TUF™ coupled with an elastomeric “skin” consisting of a blend of polyurethane and polyurea that hardens to a tough, elastic sheet (coating) 102, 103 bonded to the core 101.
The polyurethane/polyurea sheet (coating) 102, 103 is applied to the core 101 by suitable means, such as a pressure driven spray gun. The sheet (coating) 102, 103 is applied at ambient temperature by means of multiple passes to build up a sheet thickness of about 1/16 to 1½ inches (1.5 mm-38 mm). For select embodiments of the present invention, the sheet (coating) 102, 103 dries to the touch within 30 seconds and achieves full strength within 24 hours of application.
The bonding of the sheet (coating) 102, 103 of elastic material to the core 101 reduces or eliminates spalling of debris and strike-face chipping by confining fragments behind the sheet (coating) 102, 103 at the front and back faces of resultant panels 306. The resultant panel 306 reduces or eliminates hazards from shock; fragments, projectiles and debris that may strike the panel 306; and reduces or eliminates injuries associated with flying objects. Equipping the panel 306 with sheets (coatings) 102, 103 of this type also minimizes the tendency towards forward momentum of the panel 306 that would accompany ejection of material on the impact side (outside) 104 of the panel 306. Further, the integrity of a significant thickness (greater than ¾″) of a polyurethane/polyurea sheet (coating) 102, 103 has been found to be better than that achieved by adhesively laminating multiple thin polymer sheets 102, 103.
Select embodiments of the present invention comprise a core 101 of a high-performance concrete, such as COR-TUF™, coupled with an applied elastomeric sheet (skin) 102, 103 comprising a blend of polyurethane and polyurea material augmented with an aramid reinforcing layer 302, 303 that is embedded into the blend before the mix hardens to a tough, elastic sheet (coating) 102, 103 bonded to the core 101.
In select embodiments of the present invention, the aramid component comprises strands of the aramid woven into a reinforcing fabric 302, 303. The reinforcing fabric 302, 303 may be composed of one type or a combination of types of strands oriented at various angles to the long axis, L, of the core 101, e.g. oriented as a matrix of fibers, one set at 90° to another to form a matrix (checkerboard), one axis of the matrix aligned along the length, L, of the core 101. In select embodiments of the present invention, an alternate alignment aligns the same matrix as above and aligns it at a 45° angle (i.e., “on a bias”) to the length, L, of the core 101. In select embodiments of the present invention, the reinforcing fabric 302, 303 is cut to the desired size to fit one or more sides 104 of the core 101 and affixed to the sides 104 before a spray-on elastomer is applied to cure as an elastic sheet 102, 103. The reinforcing fabric 302, 303 may be affixed to both the front and back sides 104 of the core 101 or cut to completely enclose the core 101 as shown in the encapsulated panel 306.
As in Example II, in select embodiments of the present invention, a polyurethane/polyurea material is applied and cured as a sheet (coating) 102, 103 to an aramid covered core 101 by suitable means, such as a pressure driven spray gun. The polyurethane/polyurea material is applied to the core 101 at ambient temperature and pressure and by means of multiple passes to build up a thickness of about 1/16 to 1½ inches (1.5 mm-38 mm). The polyurethane/polyurea material dries to the touch within 30 seconds and achieves full strength within 24 hours of application. The polyurethane/polyurea material may be applied to one side 104 of the core 101, both sides 104 of the core 101, or both sides 104 and all four edges 107 of the core 101 to fully encapsulate the core 101 as shown in the panel 306.
In select embodiments of the present invention, the polyurethane/polyurea material saturates the threads of the reinforcement cloth 302, 303, e.g., aramid strands, and penetrates to the sides 104 and covered edges 307 of the core 101. The bonding of the polyurethane/polyurea material to the reinforcement cloth 302, 303 and the core 101 produces a sheet 102, 103 of elastic material that reduces spalling of debris from the front and back sides 104 of the core 101 as well as the covered edges 307. An aramid reinforcement cloth 302, 303 provides an increase of tensile strength (toughness) in the resultant composite panel 306.
The use of aramid as the reinforcement cloth 302, 303 adds a level of flexural failure resistance (toughness) to the resultant panel 306 when under load from a blast. Availability of aramid cloth 302, 303 woven at custom orientations allows a user to specify axis-specific material properties that are beneficial to enhancing the structural capacities of the resultant panels 306. The additional expense of the aramid employed in the reinforcement cloth 302, 303 may limit the use of these panels 306 to fragile or high-value targets.
Select embodiments of the present invention comprise a core 101 of a high-performance concrete such as COR-TUF™ coupled with a facing of a thin elastomeric sheet (membrane) 102, 103 on one or both sides 104 of the core 101. The elastomeric sheet (membrane) 102, 103 may contain embedded reinforcement 302, 303 in a grid or mesh configuration that may be oriented in various geometries (compare
In select embodiments of the present invention, the thin-film elastomeric sheets (membranes) 102, 103 may comprise polymer resin systems of the type: polyurethane, polyurea, polyethylene, polypropylene, commercial elastomeric polymers, and combinations thereof. The thickness of the applied elastomeric membrane 102, 103 may be varied between about 20 mils to 0.5 inches (0.5-12.5 mm). In select embodiments of the present invention, a thin-film sheet (membrane) 102, 103 is affixed to a core 101 by means of an adhesive compatible with both the material of the core 101 and the thin-film sheet (membrane) 102, 103.
In select embodiments of the present invention, the sheet (membrane) 102, 103 may be reinforced. Reinforcement cloth 302, 303 may be provided in grid or mesh configuration and embedded into the sheet (membrane) 102, 103 of elastic material as shown in
The bonding of the thin film elastomeric sheets (membranes) 102, 103 to the core 101 reduces spalling of debris from the front and back sides 104 and edges 107 of the core 101. A resultant panel 306 reduces or eliminates hazards from shock; fragments, projectiles and debris that may strike the panel 306; and reduces or eliminates injuries associated with airborne objects that impact the panel 306. Equipping the panel 306 with thin film sheets (membranes) 102, 103 of this type also minimizes the tendency towards forward momentum of the panel 306 that would accompany ejection of material from an impact side 104 of the panel 306.
Further, select embodiments of the present invention employing adhered thin film sheets (membranes) 102, 103 have the potential for manufacture in remote or austere locations using a minimal amount of specialized equipment. This may significantly reduce cost, including transportation, where the panels 306 are to be used near the site of fabrication.
Select embodiments of the present invention comprise a core 101 of a high-performance concrete such as COR-TUF™ backed with layers of polymer sheets 102, 103 and fiber reinforcement 302, 303 as in
In select embodiments of the present invention, the reinforced polymer sheets 102, 302, 103, 303 may be pre-fabricated sheets or be provided in a package of reinforcement fabric webs 302, 303 and a polymer in fluid form for local application, such as brush-on, trowel-on or spray-on formulations. In select embodiments of the present invention, the reinforcement cloth 302, 303 may be either a self-contained layer of woven material that may be sandwiched between layers of polymer sheets 102, 103 or a woven mesh that is embedded in a thermoplastic polymer (resin) system that is sprayed, brushed or troweled over the mesh, thus encapsulating the strands of the mesh. The reinforcement cloth 302, 303 may be oriented as a matrix (grid or mesh) of fibers, one fiber set at 90° to another to form a matrix (grid or mesh), one axis of the matrix aligned along the length, L, of the core 101. In select embodiments of the present invention, an alternate alignment aligns the same matrix on a bias to the length, L, of the core 101 as discussed above.
In select embodiments of the present invention, polymer sheets 102, 103 are bonded to the back (non-impact) side 104 of the core 101 to provide toughness and spall protection. In select embodiments of the present invention, both the back and front sides 104 of the core 101 may incorporate polymer sheets 102, 103. The same type and thickness of polymer sheet 102, 103 need not be used on the front side 104 as the back side 104 and either or both sides 104 may incorporate reinforcement cloth 302, 303 in the polymer sheets 102, 103 as the user's application dictates. Select embodiments of the present invention provide a modular panel 306 that allows tailoring protection levels to user needs and flexibility in applied configurations and geometry.
Further, select embodiments of the present invention employing adhered, brushed, sprayed-on, or troweled-on polymer coatings (sheets) 102, 103 have the potential for manufacture in remote or austere locations using a minimal amount of specialized equipment. This may significantly reduce cost, including transportation, for panels 306 to be used in the vicinity of their fabrication.
Select embodiments of the present invention comprise a core 101 of a high-performance armor material, e.g., COR-TUF™, coupled with reinforcement of rigid, yet elastic, polymer sheets 102, 103 on one or both sides 104 of the core 101. The polymer sheets 102, 103 may be any rigid, yet elastic, composite comprising a suitable binder/hardener and material of the type comprising: spun para-aramid fibers (e.g., KEVLAR®); ballistic grade E-glass; commercial E-glass; S2-glass; polypropylene thermoplastic sheet; polyurethane/polyurea blended sheet; polyurethane films (with or without reinforcement); fiberglass, carbon fiber reinforced plastic (FRP), metal mesh FRP, combinations thereof, and the like. The component materials used in these embodiments of the present invention obtain strength and toughness qualities by appropriate choice of the type and quantity of component materials, balancing cost with the required performance in each application.
In select embodiments of the present invention, the core 101 may comprise any of various hard armor materials such as that produced from high performance concretes including VHSCs, ceramics, quarried stone or various architectural armors. In select embodiments of the present invention, once fabricated, the sides 104 of the core 101 are prepared to accept a sheet 102, 103 comprising a rigid, yet elastic, outer layer of polymer material by applying a compatible adhesive to the applicable sides 104 of the core 101 that will be bonded to the sheets 102, 103 of rigid, yet elastic, polymer material. In select embodiments of the present invention, adhesive is also applied to the inner surface (not shown separately) of the sheets 102, 103 of rigid, yet elastic, polymer material. Following the adhesive manufacturer's recommended procedures, the core 101 and the sheets 102, 103 of rigid, yet elastic, polymer material are mated and pressure applied to the outer surface of the sheets 102, 103 of rigid, yet elastic, polymer material as provided for in the adhesive manufacturer's instructions for use.
In select embodiments of the present invention, the multi-part rigid, yet elastic, sheets 102, 103 allow a user to tailor configurations for specific applications while optimizing a cost/performance ratio. These embodiments have excellent toughness to resist blast and ballistic penetration forces.
Select embodiments of the present invention comprise a core 101 of a high-performance armor material, e.g., COR-TUF™, coupled with one or more combinations of polymer sheets (layers) 102, 103 with or without reinforcement 302, 303 added to one or more sides 104 of the core 101. For example, a polymer sheet (coating) 102, 103 that is sprayed on a core 101 may be supplemented with a rigid, yet elastic, polymer sheet 102, 103 that sandwiches a reinforcement mesh 302, 303 between the rigid, yet elastic, polymer sheet 102, 103 and the sprayed on sheet (coating) 102, 103 for enhanced protection. In select embodiments of the present invention, an alternative may be the use of multiple thin flexible polymer sheets (membranes) 102, 103 with a reinforcement mesh 302, 303 between each layer on one side 104 of the core 101 to improve penetration and blast resistance of a core 101 having but a single sheet (membrane) 102, 103 or rigid, yet elastic, polymer sheet 102, 103 on that one side 104. In select embodiments of the present invention, an alternative embodiment sprays a coating of a polyurethane and polyurea to create a sheet (coating) 102, 103 on a core 101 having existing elastic sheets (membranes) 102, 103 or rigid, yet elastic, polymer sheets 102, 103 already affixed in order to seal out moisture from the edges 107, to make it easier to handle by reducing sharp edges 107, and to further enhance resistance to blast and fragment penetration.
Select embodiments of the present invention comprise one or more cores 101 of a high-performance armor material, e.g., COR-TUF™, each core 101 coupled with one or more polymer sheets (layers) 102, 103 with or without reinforcement cloth 302, 303 added to one or more sides 104 of each core 101. For example, a polymer sheet (coating) 102, 103 that is sprayed on one or more sides 104 of one or more of the cores 101 may be supplemented with a rigid, yet elastic, polymer sheet 102, 103 that sandwiches a reinforcement cloth mesh 302, 303 between the rigid, yet elastic, polymer sheet 102, 103 and the sprayed on sheet (coating) 102, 103 for enhanced protection. In select embodiments of the present invention, an alternative embodiment may use multiple elastic thin polymer sheets (membranes) 102, 103 with a reinforcement cloth mesh 302, 303 between each two thin polymer sheets (membranes) 102, 103 and the one or more faces 104 of one or more cores 101 to improve penetration and blast resistance of those cores 101 having a single membrane 102, 103 or rigid, yet elastic, polymer sheet 102, 103 on those faces 104. Another alternative may involve spray coating a polyurethane and polyurea coating 102, 103 on one or more cores 101 having existing elastic membranes 102, 103 or rigid, yet elastic, polymer sheets 102, 103 already affixed to seal out moisture from the edges 107, to make it easier to handle by eliminating sharp edges 107, and to further enhance resistance to blast and fragment penetration.
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
Refer to
In embodiments of the invention all modules (components) used in constructing a protective wall, roof, or complete enclosure are “human portable,” i.e., no specialized mechanical equipment (e..g, cranes, forklift, etc.) is required for handling, packaging for transport, unloading, assembling and/or fabrication of the individual components into a finished protective structure, regardless of the particular configuration.
In embodiments of the invention, for example shown in
In embodiments of the invention, for example shown in
In embodiments of the invention, for example shown in
In embodiments of the invention, for example shown in
Adjacent sections of double joist assembly may have diagonal bracing between either upper bar joist sections, lower bar joist sections, or both. Typically, diagonal bracing is not necessary between adjacent sections of double joist assembly. This is an advantage of the invention wherein personnel can maneuver within the confines of the space during the final stages of assembly quickly, without having to maneuver around such diagonal bracing between adjacent sections of double joist assembly 285 or 385 (extended width).
In embodiments of the invention, for example shown in
In embodiments of the invention, the roof assembly is supported on walls are selected from the group consisting of modular walls, concrete walls, soil revetments and combinations thereof.
In embodiments of the invention, the roof assembly has lower and/or upper roof panel pieces having skin materials (102,103) which are selected from the group consisting of spun para-aramid fiber, ballistic-grade E-glass, commercial E-glass, S2-glass, polypropylene thermoplastic sheet, polyurethane/polyurea-blended sheet, polyurethane films (with or without reinforcement), fiberglass, carbon fiber, metal mesh/grid fiber reinforced plastic (FRP) and combinations thereof.
In embodiments of the invention, the roof assembly has lower and/or upper roof panel pieces with core materials (101) which are selected from the group consisting of high performance concretes, ceramics, quarried stone, architectural armors and portland cement-based VHSC's.
In embodiments of the invention, the roof assembly may have multiple layers of upper roof panel pieces, and the thickness may be from 2 inches to 10 inches, or from 4 inches to 6 inches.
In embodiments of the invention, an advantage of the invention is that shipping containers may be pre-packaged with “kits” comprising all the pieces necessary to manufacture any possible configuration for transportation to their intended assembly site.
In embodiments of the invention, a further advantage is that connections may be made without the use of traditional fasteners (nuts/bolts) and therefore eliminating the need for special hand tools and/or torquing requirements which may be difficult to obtain and/or accomplish in a field environment. Pin connections may be used between joists and roof frames as shown in
Field assembly factors are various, including unlevel terrain, other difficult conditions causing concern for personnel such as sniper fire, bad weather or wind, etc. and for that reason all elements may not be true, plumb, and/or level. For that reason, “substantially perpendicular” in this application may mean 90°±5°, or even 90°±10°. For the same reasons “substantially parallel” in this application may mean ±5° from parallel, or even ±10° from parallel.
This application is related to U.S. patent application publication No. 2011/0005695 A1 filed Sep. 1, 2010 as a national stage under U.S.C. §371, of International Application No. PCT/US09/35,703, filed Mar. 2, 2009, which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application Ser. No. 61/033,061, Transportable Modular System Permitting Isolation of Assets, filed Mar. 3, 2008, all incorporated herein by reference. This application is also related to U.S. patent application publication No. 2011/0000514 A1 filed Sep. 1, 2010 as a national stage under U.S.C. §371, of International Application No. PCT/US09/35,707, filed Mar. 2, 2009, which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application Ser. No. 61/033,059, Transportable Modular Configuration for Holding Panels, filed Mar. 3, 2008, all incorporated herein by reference. This application is also related to U.S. Provisional Patent Application No. 61/033,240, Method of Manufacturing Cement Based Armor Panels filed Mar. 03, 2008; U.S. Pat. No. 8,030,377 B2, issued Oct. 4, 2011 which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application No. 61/033,212, Self-Leveling Cementitious Composition with Controlled Rate of Strength Development and Ultra-High Compressive Strength upon Hardening and Articles Made from Same filed Mar. 03, 2008; U.S. Pat. No. 8,062,741 B2, issued Nov. 22, 2011 which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application No. 61/033,264, Cement Based Laminated Armor Panels; and U.S. Pat. No. 8,061,257 B2, issued Nov. 22, 2011 which claims the benefit under 35 U.S.C. §119(e)(1) of U.S. Provisional Patent Application No. 61,033,258, Cement Based Armor Panel System, filed Mar. 03, 2008, all the above incorporated herein by reference.
Under paragraph 1(a) of Executive Order 10096, the conditions under which this invention was made entitle the Government of the United States, as represented by the Secretary of the Army, to an undivided interest therein on any patent granted thereon by the United States. Research supporting at least part of the work described herein was accomplished with the United States Gypsum Company under a Cooperative Research and Development Agreement, CRADA-05-GSL-04, dated 20 May 2005. This and related patents are availabe for licensing to qualified licensees.
Number | Date | Country | |
---|---|---|---|
61565596 | Dec 2011 | US |