1. Field of the Invention
The present invention relates to the field of the transportation and the storage of goods. The invention relates to a transportable packaging unit according to the preamble of claim 1.
The invention further relates to a method for producing such a packaging unit.
2. Discussion of Related Art
Handling goods of all types, which are produced, packaged and finally transported to distributors or customers, requires sophisticated logistics which, in particular, comprises storing the goods and removing the goods from storage and transportation, particularly in these times of online commerce via the Internet.
Many consumer goods, clothing, electrical and electronic devices and the like are already provided with separate packaging by the manufacturer and if required combined together to form larger units which are available, for example, on standard pallets. These pallets are generally moved by forklift trucks, loaded onto trucks or unloaded from trucks and positioned on the shelves of a warehouse for storage and if required removed from storage again.
In specific areas of logistics, in particular, automated high-bay warehouses are used, said high-bay warehouses being operated by automated loading and unloading devices in the aisles between the individual shelves.
In this type of warehouse, it is a costly procedure that the goods stored last in the warehouse generally have to be removed first from the warehouse, as the shelves are generally only filled and emptied from one side. If the goods combined to form larger units are transported on standard pallets, such a larger unit has to be divided up in order to provide individual examples of the goods for further handling. This leads to additional problems if the units are held together on the pallet by a film wrapped around the units.
It is known, for example, in high-bay warehouses to insert pallets with the goods positioned thereon into the shelves on roller tracks sloping toward the unloading side, so that the pallets automatically move toward the unloading side and the next pallet automatically slides down when the previous pallet has been removed from the shelf. At the same time, the removed pallets have to be transported from the warehouse by expensive technical devices.
The situation where the goods are stored and removed from storage individually in their own packaging is even more problematical. If different goods are present, having different types and/or sizes of packaging, the situation is even more complicated. Storage of the goods and removal of the goods from storage by automated and mechanical means is only able to be implemented with great difficulty in this case, so that generally the storage of the goods and the removal of the goods from storage is carried out manually.
The above applies equally to the transportation of goods from the manufacturer to the warehouse or from the warehouse to the distributor or end customers.
The provision of a packaging container is proposed in the publication JP 2006016044, said packaging container being able to be easily transported, being able to hold a packaged object horizontally and also being able to improve the receiving efficiency in a receiving space.
To this end, the spherical packaging container is provided with a first container which is a spherical hollow body, a second container which is a spherical hollow body which is received in the first container and which receives a packaged object and coupling means which couple the first container and the second container together about a degree of freedom of two or more axes.
A third spherical container is provided which is a spherical hollow body which is received in the first container and which receives the second container, the inner surface of the first container and the outer surface of the third container being coupled together at two points by using first coupling members which are positioned on a first straight line which runs through the central point of the third container, and the inner surface of the third container and the outer surface of the second container being coupled together at two points by using second coupling members which are positioned on a second straight line which runs through the central point of the second container and perpendicular to the first straight line.
As the spherical packaging container has a spherical shape, a working force is able to roll the spherical packaging container for conveyance. Accordingly, it is not always necessary to lift the spherical packaging container during conveyance and the spherical packaging container is able to be easily conveyed. Moreover, a groove may be provided for the conveyance of the spherical packaging container. In this case, when the groove is provided with a gradient, the spherical packaging container is naturally rolled by the gravitational force and conveyed from a high side to a low side. The inner container is always able to be held horizontally even when the spherical packaging container is rolled.
A drawback with this type of packaging and packaging container is the exceptionally complicated internal construction of the packaging which is not practicable when processing large flows of goods. A drawback, however, is also the movable storage of goods and/or packaging contents in the packaging container which, if the center of gravity of the goods is not located exactly in the central point of the sphere, results in wobbling and rolling movement sequences which are not able to be controlled.
The publication U.S. Pat. No. 7,954,661 B2 discloses a transport container which comprises a spherical container and a heat accumulating material which is arranged inside the spherical container. The heat accumulating material has a space in which an object to be transported may be accommodated. This space is located in the center of the spherical container. The heat accumulating material surrounds the object to be transported, namely living cell cultures, spherically so that practically the entire heat of the heat accumulating material may be used in order to maintain the temperature of the object to be transported. The spherical shape of the container is selected in order to minimize the outer surface radiating the heat and thus to extend the temperature retention time. Rolling transportation is not provided for this transport container.
The publication U.S. Pat. No. 6,050,438 A discloses a spherical, divided capsule for receiving an article or a plurality of articles. The capsule may be separated without causing damage, wherein the parts comprise interlocking closure elements which result in a stable connection of the parts so that the capsule is suitable for use in vending machines.
The publication GB 2 482 476 A discloses a container with a round cross section. Two shafts are attached to the outer surface of the container and are aligned within a common axis which is perpendicular to the round cross section. Straps are fastened to the shafts. The container may be filled and emptied via openings. If the straps are pulled the container rolls about the common axis. The container may be spherical or cylindrical. The transportation is limited to liquids.
An intelligent system for real-time processing of orders with automatic delivery of goods to customers is disclosed in the publication CN 201942318 U, said system operating with spherical transport containers which respectively comprise a spherical casing and an insert arranged therein which is adapted to a square, cylindrical or round container located in the sphere, said container ultimately receiving the actual goods. This system is designed for long transport paths between the seller of the goods and the customer receiving the goods, via transport pipes and transport paths generally laid underground in all types of location.
A packaging unit, which may be produced and used in a simple manner and which is able to be easily transported by rolling and which may be flexibly adapted to different shapes and sizes of contents, is desirable but not known from the prior art.
It is, therefore, the object of the invention to provide a packaging unit which has the desired properties and a method for the production thereof.
The object is achieved by the features of claims 1 and 25.
The transportable packaging unit according to the invention comprises packaging contents, a casing surrounding the packaging contents and a connecting means connecting the packaging contents to the casing, wherein the surrounding casing has the external shape of a rollable body. The packaging unit is characterized in that the connecting means fixes the packaging contents in the casing.
One embodiment of the packaging unit according to the invention is characterized in that the casing has a round three-dimensional shape. In this sense anything which permits a fully circumferential continuous rolling process on a closed circumferential line of the casing is regarded as round.
The casing, in particular, has a cylindrical or barrel shape.
Preferably, the casing has a spherical shape.
It is also conceivable, however, that the casing has a polyhedral shape. The rolling process in this case is not as uniform as in a round three-dimensional shape but may be adapted if the individual surfaces are selected to be small and the edges between the surfaces are rounded.
In particular, the casing is of multi-part construction.
Preferably the casing is of two-part construction and comprises two casing segments which abut one another in a separating plane.
In particular, the casing is made up of two similar halves.
A further embodiment of the packaging unit according to the invention is characterized in that the casing is configured as a shell enclosing an internal space and that the casing is closed. It is also conceivable, however, that the casing has through-holes or is configured in the shape of a grid or mesh.
In particular, the casing has a uniform wall thickness.
A further embodiment of the packaging unit according to the invention is characterized in that the connecting means is fixedly connected to the casing and/or the packaging contents.
In particular, the connecting means is part of the casing.
Alternatively, the connecting means is part of the packaging contents.
A further embodiment of the packaging unit according to the invention is characterized in that the connecting means comprise one or more films. The packaging contents in this case are preferably welded into the films and then fixed to the casing by means of the films.
A further embodiment of the packaging unit according to the invention is characterized in that the connecting means comprises filling bodies which fill up the casing and surround the packaging contents so as to embed said contents.
A further embodiment of the packaging unit according to the invention is characterized in that the connecting means comprises spacers which hold the packaging contents at a distance from the casing.
In particular, the spacers may have gas-filled cavities.
A further embodiment of the packaging unit according to the invention is characterized in that the connecting means resiliently fixes the packaging contents in the casing.
A further embodiment of the packaging unit according to the invention is characterized in that at least one direct or indirect element containing information about the contents is arranged on the packaging unit so as to be able to be scanned externally. Thus it is possible to establish at any time what type of contents is located in the packaging unit so that when storing goods and removing goods from storage it is possible to proceed accordingly.
In particular, the at least one element containing information about the contents is an RFID element and/or a barcode.
Other types of codes applied, such as for example matrix codes, color codes, numerical codes, thermocodes or holograms are also conceivable as information and/or identification means or as a security feature. All of these means may be read optically, magnetically or by radio and namely either as passive means which are scanned externally or as active means which in turn transmit information.
The packaging unit may be also provided with a separate intelligent system, for example in the form of electronic means for data or signal processing, for example by a microprocessor and corresponding data storage devices. In this case, associated transmitting and receiving devices may exchange signals wirelessly with the surroundings via antenna elements attached to the outer face. It is, however, also conceivable to arrange electrical contacts at specific points of the casing, said electrical contacts being accessible externally and internal circuits being able to be accessed thereby.
In combination with internal electronic devices in the packaging unit, internal energy storage devices and/or energy converters may be provided, said energy storage devices and/or energy converters storing mechanical energy (spring, gas pressure), thermal energy (heat accumulator) or electromagnetic energy (capacitor, battery, accumulator, coil, etc.) or producing energy (piezoelectric converter, inductive converter, etc.).
It is also conceivable to provide locating means within the packaging unit, the location of the unit being able to be determined and tracked at any time thereby. In an extreme case, determining the location by means of a GPS system or comparable systems is considered here. Also, permanent magnets may be arranged within the packaging unit, said permanent magnets being scanned externally or being able to trigger switching processes when passing specific locations.
A further embodiment of the packaging unit according to the invention is characterized in that the casing has a central point and/or a central axis, that the packaging contents have a center of gravity and that the packaging contents are arranged in the casing such that the center of gravity of the packaging contents approximately coincides with the central point and/or is located in the central axis. It is ensured that the packaging unit starts to roll easily and/or rolls uniformly by the center of gravity and the central point and/or central axis coinciding. If the weight of the packaging contents is relatively low, however, a greater deviation between the center of gravity and the central point and/or central axis may also be permitted.
With two similar halves of the casing it is advantageous if the two similar halves interlock when placed together.
Closure devices engaging in the connecting region of the similar halves are provided, in particular, for the interlocking of the similar halves. As a result, the casing may be rapidly and securely closed.
It is also conceivable that lockable closure elements are arranged in the connecting region of the similar halves for the interlocking of the similar halves. In this manner, for example, the halves may be connected together in the manner of a bayonet closure.
The method according to the invention for producing a packaging unit according to the invention is characterized in that in a first step the packaging contents are provided, in a second step the casing is provided and in a third step the packaging contents are introduced into the casing. The separate provision of the casing makes it necessary for the interior of the casing to be accessible from the outside. This may be permitted, for example, by separating the halves or by an access to the casing which is open toward the outside. However, it is also conceivable that the casing is produced retrospectively around the packaging contents by, for example, the packaging contents introduced into a hollow shape being encased by a casing material.
One embodiment of the method according to the invention is characterized in that a multi-part casing is provided and that in the third step the casing is opened or held open, the packaging contents are introduced into the open casing and the casing is closed. This is the case, in particular, in casings which are made up of two similar half-shells.
In particular, when inserting the packaging contents into the open casing the connecting means is introduced therewith.
In particular, the connecting means is introduced separately into the open casing.
It is, however, also conceivable that the connecting means is initially connected to the packaging contents and introduced therewith into the open casing.
Alternatively, however, the connecting means may initially be connected to the casing and receive the packaging contents together with the open casing.
The outer surface of the casing is the surface with which the packaging unit rolls on a substructure. Therefore, it should have sufficient hardness in order to withstand frictional and/or impact loads occurring during the rolling process, over a sufficiently long period of use.
The surface of the casing may be of smooth configuration but may also have protuberances or local indentations as in a golf ball, in order to produce specific running or rolling properties. Moreover, if the ability to roll in any direction is not desired, one or more peripheral guide beads may be provided on the outer face, said guide beads providing the rolling movement with a specific preferred direction.
In particular, suitable plastics are considered as materials, said plastics having different degrees of transparency but also being able to be completely opaque. In individual cases it is also conceivable to use a tough glass as material for the casing, such as for example as is used in reusable beverage bottles. In particular cases, however, the casing may also be produced from a suitable metal or metal alloy if, for example, thermal or electromagnetic properties are important, in particular screening properties, for example.
If the type of casing material is opaque, local visibility of the interior may be provided by viewing apertures being applied at specific points of the casing.
The invention is to be described in more detail hereinafter with reference to exemplary embodiments, in combination with the drawings, in which:
A central feature of the present solution is a packaging unit which is designed such that it is able to roll automatically on an inclined plane with sufficient gradient. The packaging contents which contain the goods to be transported and/or stored are arranged in the packaging unit. Externally, the packaging unit has a shape which is suitable for automatic rolling. This may be a spherical shape, a cylindrical shape, a barrel shape, an elliptical shape or in an extreme case a polyhedral shape. The external shape of the packaging unit is formed and provided by a casing which more or less completely encloses the packaging contents. In an extreme case, the casing may be in one piece but generally consists of a plurality of casing segments which are directly or indirectly connected together if the packaging contents are to be enclosed. The outer surface of the casing is the surface with which the packaging unit rolls on a substrate. Therefore, it should have sufficient hardness in order to withstand the frictional and/or impact loads occurring during the rolling process over a sufficiently long period of use.
The surface of the casing may be of smooth configuration but may also have protuberances or local indentations as in a golf ball, in order to produce specific running or rolling properties. Moreover, if the ability to roll in any direction is not desired, one or more peripheral guide beads may be provided on the outer face, said guide beads providing a specific preferred direction to the rolling movement.
In particular, suitable plastics are considered as materials, said plastics having different degrees of transparency but also being able to be completely opaque. In individual cases it is also conceivable to use a tough glass as material for the casing, for example as is used in reusable beverage bottles. In particular cases, however, the casing may also be produced from a suitable metal or metal alloy if, for example, thermal or electromagnetic properties, in particular screening properties for example, are important.
If the type of casing material is opaque, local visibility of the interior may be provided by viewing apertures being attached at specific points of the casing.
The packaging contents and casing are connected together by connecting means such that the packaging contents are fixed in the casing and is not able to be moved relative to the casing or only slightly. The packaging unit forms in this manner a fixed unit which rolls as a solid body on substantially predictable tracks.
A packaging unit according to a first exemplary embodiment of the invention is shown in
In the example of
The spacers 15a-d may, for example, consist of a resilient plastics foam. However, they may also be gas-filled cushions as are used when packaging goods. The spacers 15a-d may be fastened to the inner wall of the casing 12 or in turn to the packaging contents 11. They may, however, also be located freely between the packaging contents 11 and the casing 12, wherein their position is fixed for example by the friction between the spacers 15a-d and the inner wall of the casing 12. Also, the spacers may form part of a film. Naturally, the spacers 15a-d may also be specifically pre-shaped in order to ensure improved adaptation to the packaging contents 11 and/or the casing 12. Thus it is conceivable, for example, to form recesses in the spacers 15a-d in the form of a cube corner, in order to be able to arrange them securely on the cube corners of the packaging contents 11, in contrast to that shown in
If the packaging contents 11 are fixed by the spacers 15a-d in the casing 12 in the manner shown in
A different type of fixing is shown in
The application of film 16 may be implemented between the casing segments 12a and 12b by friction, adhesive bonding or by pins or rods, which extend from one casing segment through the film 16 to the other casing segment. In order to enlarge the effective surfaces in the case of friction or adhesive bonding, an overlapping connection 17 may be provided as in
A further type of connection between the packaging contents 11 and the two-part casing 12 is shown in
In the examples shown and discussed above, the center of gravity 19 of the packaging contents 11 was located in the central point of the (cube-shaped) packaging contents 11. A symmetrical arrangement of the packaging contents 11 in the casing 12, therefore, was sufficient in order to bring the center of gravity 19 to coincide with the central point of the (spherical) casing 12, and/or toward the central axis of a casing with a cylindrical shape. If the center of gravity 19 is displaced relative thereto from the central point of the packaging contents 11, as shown in
It is also conceivable, however, with a displaced center of gravity 19 of the packaging contents 11 (dashed lines in
A further possibility of producing a packaging unit in the form of a rolling body according to
It is also conceivable, however, according to
If the packaging contents 11, for example according to
In the examples discussed above the packaging contents 11 were arranged inside the casing at a distance from the casing. This is, however, not absolutely necessary.
It is also conceivable according to
As shown by way of example in
A further exemplary embodiment of a packaging unit according to the invention is shown in
In order to make the packaging contents 11 identifiable at any time without the packaging unit 40 having to be opened, a tag, in particular an RFID element or RFID tag 43, may be attached outside or inside to the casing 39, said RFID element or RFID tag being able to be read by corresponding wirelessly operating means. Alternatively or additionally to the RFID element 43, as shown in
The packaging unit may also be provided with a separate intelligent system, for example in the form of electronic means for data or signal processing, for example by a microprocessor and corresponding data storage. Associated transmitting and receiving devices in this case may exchange signals wirelessly with the surroundings via antenna elements attached to the outer face. It is also conceivable, however, to arrange at specific points on the casing electrical contacts which are accessible from the outside and via which internal circuits may be accessed.
In connection with internal electronic devices in the packaging unit internal energy storage devices and/or energy converters may be provided, said energy storage devices and/or energy converters storing mechanical energy (spring, gas pressure), thermal energy (heat accumulator) or electromagnetic energy (capacitor, battery, accumulator, coil, etc.) or producing energy (piezoelectric converter, inductive converter, etc.).
It is also conceivable to provide locating means within the packaging unit, by means of which the location of the unit may be determined and tracked at any time. In an extreme case, a device for determining the location by means of a GPS system or comparable systems are considered here. Also, permanent magnets may be arranged within the packaging unit, said magnets being scanned externally or being able to trigger switching processes when passing specific locations.
A further exemplary embodiment of a packaging unit according to the invention is shown in
According to
A manner of fixing the packaging contents 11 in the casing which is comparable with
Although substantially spherical packaging units have been discussed in the above descriptions, it has already been mentioned above that other rolling body shapes may be used within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1040/13 | May 2013 | CH | national |
1041/13 | May 2013 | CH | national |
1042/13 | May 2013 | CH | national |
0446/14 | Mar 2014 | CH | national |
0709/14 | May 2014 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/001448 | 5/28/2014 | WO | 00 |