This application claims priority to European Patent Application No. 16179699.0, filed Jul. 15, 2016, and all the benefits accruing therefrom under 35 U.S.C. §119, the contents of which in its entirety are herein incorporated by reference.
The invention relates to people conveyors, such as moving walkways or escalators, comprising a plurality of transportation elements, such as pallets or steps, forming an endless band (loop) which is movable in a conveying direction. The invention in particular relates to transportation elements to be employed in such conveyors.
In a people conveyor, the transportation elements are drivingly coupled to at least one conveying element. Usually the transportation elements are drivingly coupled to two chains provided on both lateral sides of the transportation elements. For avoiding interference of adjacent transportation elements in the turnaround portions of the loop, people conveyors usually are constructed with turnaround portions having diameters (“turnaround diameters”) of more than 600 mm. In consequence, in order to avoid undesirable steps at the entry and exit portions (landings) of the people conveyor, pits having a considerable depth are necessary for accommodating the turnaround portions. Providing such pits increases the costs of the installation and it might not even be possible to form pits having the necessary depth in all situations.
It therefore would be beneficial to provide an improved configuration allowing to reduce the diameter of the turnaround portions. For reducing the energy needed for operating the people conveyor, it further would be beneficial to reduce the weight of the movable parts.
According to an exemplary embodiment of the invention a transportation element which is configured to be moved in a conveying direction of a people conveyor comprises a lower flange, an upper flange, and an intermediate element connecting the lower flange and the upper flange.
A transportation element according to an exemplary embodiment of the invention allows to provide a lower flange having an extension in the conveying direction which is shorter than the extension of the upper flange in the conveying direction. In consequence interference between adjacent transportation elements in the turnaround portions, in particular interference between the lower flanges of adjacent transportation elements, is reliably avoided even in case of small turnaround diameters.
Exemplary embodiments of the invention will be described in the following with respect to the enclosed figures:
The pallet conveyor 70, which in particular may be a people conveyor such as a moving walkway, comprises a plurality of movable pallets 7. The pallets 7 are connected to each other forming an endless pallet band which is movable in a conveying direction.
Although the conveying direction extends horizontally in
In the embodiment shown in
The pallet conveyor 70 in particular comprises an upper transportation portion 71 and a lower return portion 72. The pallets 7 in the upper transportation portion 71 move horizontally from the right side to the left side in
The pallets 7 are in particular non-rotatably connected to the outer pallet chain links 42 by means of fixing modules 12. The fixing modules 12 are described in more detail further below with reference to
Treads (tread plates) 27 are attached to the pallets 7 for providing a moving conveying plane in the upper transportation portion 71 of the pallet conveyor 70. Passengers using the pallet conveyor 70 stand on the treads 27 in the transportation portion 71 of the pallet conveyor 70.
In order to avoid gaps within said conveying plane, the extension of each of the treads 27 in the conveying direction, i.e. the horizontal direction in
The extension of each of the treads 27 in the conveying direction results in an overhang of the treads 27 with respect to a main portion of the pallets 7. Said overhang may result in a tilting movement of the pallets 7 when a passenger traveling in the transportation portion 71 is standing on a tread 27. As one option to suppress such tilting movement, the tension of the pallet chain 50 may be controlled in a suitable manner. Particularly, the pallet chain 50 may be biased, i.e. a tension force may be applied to the pallet chain 50. The tension force may be adjusted as high as required to sufficiently suppress tilting of the tread 27 when traveling in the transportation portion 71 and subject to a typical load. Additionally or alternatively, the tilting movement may be reduced by increasing the weight of each pallet 7.
Pallet rollers 54 are provided on the laterally outer side of each of the pallet chains 50, i.e. on the side of each pallet chain 50 which is opposite to the pallets 7. The pallet rollers 54 support the pallets 7 and the respective pallet chain links 42, 44 on guide rails (not shown in
In the turnaround portions 75 (one of the turnaround portions 75 is shown on the left side of
For allowing an unobstructed view to the pallets 7, the turnaround sprocket 78 and the pallet chain 50 are not shown in
A corresponding turnaround sprocket 78 is arranged in an opposing second turnaround portion 75 of the pallet conveyor 70, which is not shown in the figures. The turnaround sprocket 78 in at least one of the turnaround portions 75 may be driven by a drive mechanism including a motor (not shown) for driving the pallet band of the pallet conveyor 70.
Alternatively or additionally a linear drive mechanism may be provided at at least one position along the transportation portion 71 and/or the return portion 72.
The turnaround portion 75 of the pallet conveyor 70 is covered by a comb plate 74 including a comb 76. The comb 76 comprises a plurality of teeth which engage with corresponding teeth formed on the top surface of the treads 27.
In the embodiment shown in
Each of the pallets 7 is non-rotatably connected to a respective one of the pallet chain links 42, 44. Hence, the pallets 7 are guided by the guiding mechanism of the pallet chain 50 throughout the endless path followed by the pallet chain 50 and the pallet band. In particular, there is no need for an additional guiding system guiding the pallets through the turnaround portions 75.
As the pallets 7 are connected to each other by at least one pallet chain link 42, 44, the pallet band is flexible enough for following very small turnaround diameters when traveling through the turnaround portions 75. This simplifies the construction, installation and maintenance of the pallet conveyor 70. With such a configuration, a very compact configuration of the turnaround sections 75 may be achieved. In particular sprockets having only a few number of teeth (e.g. a sprocket with only 5 teeth as shown in
Each pallet 7 includes a lower flange 24. In order to avoid the lower flanges 24 of adjacent pallets 7 from interfering with each other in the narrow turnaround portions 75, the lower flanges 24 are formed having a triangular cross section. A broad side of the triangular cross section faces towards the tread 27, and an apex of the triangular cross section is arranged most distant from the tread 27. Such a triangular cross section of the lower flanges 24 allows for small turnaround radii as illustrated in particular in
According to said embodiment, the pallet 7 comprises an upper flange 22 for supporting the tread 27 and an opposing lower flange 24. The upper flange 22 is formed as a plate, whereas the lower flange 24 is formed as profile. For avoiding interference of the lower flanges 24 of adjacent pallets 7 in the turnaround portions 75 (see
The lower flange 24 is connected to the upper flange 22 by means of an intermediate element 26 extending between the upper flange 22 and the lower flange 24. In the embodiment shown in
Openings 25 are provided in the upper flange 22, in the lower flange 24 and in the intermediate element 26, respectively. The openings 25 are configured for receiving appropriate fixing elements, such as bolts or screws (not shown) for fixing the intermediate element 26 to the upper flange 22 and to the lower flange 24, respectively.
Similarly, the tread 27 may fixed to the upper flange 22, or it may be formed integrally with the upper flange 22.
In the embodiment shown in
The intermediate element 26 is provided by a web extending basically perpendicularly to the conveying direction, i.e. perpendicularly to the plane spanned by each of the upper and lower flanges 22, 24.
The skilled person understands that the triangular cross section of the lower flange 24 shown in
In all embodiments the upper flange 22 and the lower flange 24 may be made of a rigid material, such as steel or stainless steel, in order to provide the desired rigidity. For reducing the weight of the pallet 7, 8, 9, the intermediate element 26 may be made of a light material such as aluminum. The tread 27 may be made of aluminum or stainless steel or another appropriate material.
Each of the fixing modules 2a-2d comprises a box-shaped connection portion 6, which is configured for being received within a corresponding receiving space 20 formed between the upper and lower flanges 22, 24 of the pallet 7.
Openings 23, 25, which are configured for receiving appropriate fixing elements such as bolts or screws (not shown), are formed within the connection portions 6 and the lower flange 24 of the pallet 7, respectively. These openings 23, 25 allow to securely fix the fixing modules 2a-2d to the pallets 7 by means of the fixing elements extending through the openings 23, 25.
On the side opposite to the connection portion 6, the fixing modules 2a-2d are provided with fixing portions 11 configured for being fixed to the conveying element 50. The conveying element 50 may be selected from different kinds of pallet chains 50 (fixing modules 2a-2c) and belts (fixing module 2d).
The fixing modules 2a, 2d in particular may be provided with pallet rollers 54 for supporting and guiding the pallets 7 on guide rails and/or tracks (not shown) extending parallel to the transportation portion 71, to the return portion 72 and/or along the turnaround portions 75, respectively.
A number of optional features are set out in the following. These features may be realized in particular embodiments, alone or in combination with any of the other features.
In one embodiment the extension of the intermediate element in the conveying direction may be shorter than the extension of any of the upper flange and the lower flange in the conveying direction. This reduces the amount of material used for the intermediate element reducing the weight of the transportation element. It further avoids interference between adjacent transportation elements in case of small turnaround diameters.
In one embodiment the lower flange may have a tapered cross-section, in particular a triangular or trapezoidal cross-section. This reduces the extension in the conveying direction at the bottom of the transportation element even further, allowing for even smaller turnaround diameters without causing interference between adjacent transportation elements.
In one embodiment the intermediate element may comprise a rectangular profile. A rectangular profile allows to provide the necessary rigidity using a comparatively small amount of material.
In one embodiment at least one of the upper and lower flanges may be made from a different material than the intermediate element. The intermediate element in particular may be made of a lighter material, such as aluminum, than at least one of the upper and lower flanges. At least one of the upper and lower flanges may be made from a more rigid material, such as steel or stainless steel, than the intermediate element. This allows to reduce the weight of the transportation element while simultaneously providing the necessary rigidity of the upper and/or lower flanges.
In one embodiment the transportation element comprises a tread (tread plate) for supporting passengers to be transported by the conveyor. The tread may be a separate element, which is connected to the upper flange. In an alternative configuration, the tread may be formed integrally with the upper flange.
In one embodiment the intermediate element may comprise at least one opening for receiving a fixing module which is configured for connecting the transportation element to a conveying element. This allows for conveniently and securely connecting the transportation elements to the conveying element.
In one embodiment the transportation element may be a pallet of a moving walkway or a step of an escalator. Exemplary embodiments of the invention also include people conveyors such as moving walkways and/or escalators comprising a plurality of transportation elements according to exemplary embodiments of the invention. This allows to provide moving walkways and/or escalators having a smaller turnaround diameter than conventional walkways/escalators.
In one embodiment the people conveyor may comprise at least one conveying element such as a chain or belt, which is configured for conveying the transportation elements in the conveying direction.
In one embodiment the people conveyor may further comprise a plurality of fixing modules which are configured for connecting the transportation elements to the at least one conveying element. Such fixing modules allow for a secure and convenient connection between the transportation elements and the at least one conveying element.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition many modifications may be made to adopt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention include all embodiments falling within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
16179699 | Jul 2016 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3107773 | Clemetsen | Oct 1963 | A |
3590745 | Ouska | Jul 1971 | A |
5072821 | Kruse | Dec 1991 | A |
5433313 | Deschner | Jul 1995 | A |
5944164 | Behle | Aug 1999 | A |
6607064 | Inoue | Aug 2003 | B2 |
7063202 | Ossendorf | Jun 2006 | B2 |
7341139 | Aulanko et al. | Mar 2008 | B2 |
7407049 | Aulanko et al. | Aug 2008 | B2 |
7410043 | Aulanko et al. | Aug 2008 | B2 |
7494006 | Knott | Feb 2009 | B2 |
7611007 | Lim | Nov 2009 | B2 |
9617122 | Matheisl | Apr 2017 | B2 |
9718647 | Makovec | Aug 2017 | B2 |
20020046917 | Okano et al. | Apr 2002 | A1 |
20090250324 | Menke | Oct 2009 | A1 |
20110233033 | Poels | Sep 2011 | A1 |
20150259177 | Srb-Gaffron et al. | Sep 2015 | A1 |
20150284217 | Park | Oct 2015 | A1 |
20160221798 | Eidler | Aug 2016 | A1 |
20160355379 | Matheisl | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
10322568 | Dec 2004 | DE |
102012110764 | May 2013 | DE |
1416386 | Nov 1965 | FR |
2264686 | Sep 1993 | GB |
H115680 | Jan 1999 | JP |
2015010894 | Jan 2015 | WO |
2015032674 | Mar 2015 | WO |
2015058909 | Apr 2015 | WO |
Entry |
---|
European Search Report for application EP 16179699, dated Jan. 20, 2017, 7pgs. |
Number | Date | Country | |
---|---|---|---|
20180016118 A1 | Jan 2018 | US |