The present invention relates to a conveyance vehicle in or by which something is carried or someone travels and a control method thereof, and particularly to a conveyance vehicle in which pulling force or pushing force of someone who pulls or pushes the conveyance vehicle can be made constant a control method thereof.
As a conveyance vehicle for conveying something, there is so far known a conveyance vehicle described in Cited Patent Reference 1, for example. Cited Patent Reference 1 has described a handcart type conveyance vehicle with a handle by which it is pushed by a walking operator. This handcart type conveyance vehicle is composed of a vehicle body including a handle pushed or pulled by a walking operator and an item carrying portion, a running portion for supporting this vehicle body so that this vehicle body can run, an electrically-powered motor for driving the running portion and a control apparatus for controlling driving of the electrically-powered motor by an electric signal outputted in response to an operated amount of the hand which can be attached to the item carrying portion so as to become rotatable in the pushing or pulling direction. The control apparatus stops rotation of the electrically-powered motor when the operated amount of the handle lies at the neutral area at both pushing and pulling sides of the neutral position. When the operated amount reaches a set amount exceeding the neutral area, this control apparatus can drive the electrically-powered motor at a constant speed and it can vary and adjust a constant speed value of the electrically-powered motor.
Cited Patent Reference 1:
Official Gazette of Japanese laid-open patent application No. 2001-106082 (pages 2 to 3, FIG. 1)
However, since the above-mentioned conveyance vehicle has the arrangement in which a conveyance speed is adjusted by operating the handle, not only it is cumbersome to adjust a speed but also a detection mechanism for detecting the operated amount is required. Thus, it is unavoidable that the apparatus becomes large in size on the whole and that a manufacturing cost is increased. Also, since the operation direction of the handle is limited, there is a problem in which the conveyance vehicle may not be used in the difference in level of the ground surface, steps and the like.
In view of the above-mentioned problems encountered with the prior art, an object of the present invention is to provide a conveyance vehicle and a control method thereof in which pulling force or pushing force of a conveyance body is detected and in which when conveying force exceeds a reference value, power may be assisted by an amount of such exceeding force so that man's conveying force may be maintained at a constant value, thus resulting in load applied to someone being alleviated.
In order to solve the above-described problems and in order to attain the above-described objects, a conveyance vehicle according to the claim 1 of the present application is composed of one or more than two wheels, rotation drive means for rotating the one or more than two wheels, a conveyance body having the rotation drive means mounted thereon, a handle for applying conveying force to the conveyance body, force detecting means for detecting conveying force acting on the handle and drive control means for controlling driving of the rotation drive means based on a detected signal from the force detecting means.
In a conveyance vehicle according to the claim 2 of the present application, the wheels are composed of two drive wheels located on the same axis at both left and right sides of the conveyance body and one or two auxiliary wheels located at the front side or back side of the two drive wheels.
In a conveyance vehicle according to the claim 3 of the present application, the handle is provided on the upper portion of the conveyance body so as to project in the upper direction, the force detecting means being provided on the upper portion of the handle.
In a conveyance vehicle according to the claim 4 of the present application, the wheels have radiuses larger than steps of a ground surface.
In a conveyance vehicle according to the claim 5 of the present application, the force detecting means is either an electrostatic capacity sensor of which electrostatic capacity is changed in response to magnitude of the conveying force or a strain sensor of which strain amount is changed in response to magnitude of strain.
In a conveyance vehicle according to the claim 6 of the present application, the force detecting means includes a force sensor for detecting pulling force acting on the handle and a force sensor for detecting pushing force acting on the handle.
In a conveyance vehicle according to the claim 7 of the present application, the drive control means includes memory means for previously storing therein a previously-set reference value which becomes at least one standard of pulling force and pushing force acting on the handle and control means for making pulling force or pushing force become a reference value by comparing a detected signal based on at least one detected signal of a pulling force sensor for detecting the pulling force and a pushing force sensor for detecting the pushing force with the reference value.
In a control method of a conveyance vehicle for conveying a conveyance body according to the claim 8 of the present application including one or more than two wheels rotated by rotation drive means by pulling or pushing a handle attached to the conveyance body, a conveyance vehicle control method is comprised of the steps of detecting conveying force acting on the handle, calculating a difference of conveying force by the thus detected conveying force and a reference value and rotating the rotation drive means by an amount corresponding to the difference.
Since the conveyance vehicle is constructed as mentioned before, in the conveyance vehicle according to the claim 1 of the present application, when the conveyance body is conveyed by pulling or pushing the handle, conveying force is detected by the force detecting means provided on the handle, conveying force and the previously-set reference value are compared with each other by the drive control means to which the detected signal is supplied and the signal corresponding to the resultant difference is outputted to the rotation drive means. Thus, since the wheels are rotated by the rotation drive means which is rotated in response to the difference between the conveying force and the previously-set reference value, someone who pulls the conveyance vehicle can constantly convey the conveyance vehicle by pulling or pushing the conveyance vehicle with constant conveying force (pulling force or pushing force).
In the conveyance vehicle according the claim 2 of the present application, since the conveyance vehicle includes two drive wheels and one or two auxiliary wheels, it is possible to convey the conveyance vehicle stably.
In the conveyance vehicle according to the claim 3 of present application, since the force detecting means is provided on the upper portion of the handle, it is possible for someone to convey the conveyance vehicle with ease.
In the conveyance vehicle according to the claim 4 of the present application, since the radius of the wheel is larger than the difference in level, the conveyance vehicle can run on to the difference in level with ease.
In the conveyance vehicle according to the claim 5 of the present application, the electrostatic capacity sensor or the strain sensor which is simple kin structure and which is easy to handle can be used as the force detecting means and hence the structure of the conveyance vehicle can be simplified and the cost of the conveyance vehicle can be decreased.
In the conveyance vehicle according to the claim 6 of the present application, since both of the pulling force and the pushing force acting on the handle can be detected by the two force sensors, it is possible to assist power not only when the conveyance vehicle is pulled but also when the conveyance vehicle is pushed.
In the conveyance vehicle according to the claim 7 of the present application, since the control means compares the detected value based on the detected signal supplied from the pulling force sensor or the pushing force sensor with the reference value and controls the conveyance vehicle so that the pulling force or the pushing force may become close to the reference value, the pulling force or the pushing force of someone who pulls or pushes the conveyance vehicle can be decreased to zero or a predetermined small value and hence load imposed on the operator can be alleviated or decreased to zero.
In the conveyance vehicle control method according to the claim 8 of the present application, since the conveying force is detected by the force detecting means provided on the handle and the drive control means to which the detected signal is supplied compares the conveying force and the previously-set reference value and outputs the signal corresponding to the difference to the rotation drive means, the wheels can be rotated by the rotation drive means which is driven in response to the difference between the conveying force and the previously-set reference value and it is possible to convey the conveyance vehicle by constantly making force of someone who pulls the conveyance vehicle become constant conveying force (pulling force or pushing force).
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in
The conveyance body 2 is composed of a housing which is slightly longer than it is wide and which housing is opened in the top surface to carry something. The left and right wheels 3L, 3R are disposed at both side portions of the front side which is the front of this conveyance vehicle 2. Then, the auxiliary wheel 9 is located at the central portion of the left and right direction of the rear side of the conveyance body 2 so as to become freely rotatable. The left and right drive wheels 3L, 3R can be rotated by the wheel drive units 4L, 4R provided on the bottom portion of the conveyance body 2. This wheel drive unit 4 is composed of the left wheel drive unit to rotate the left drive wheel 3L and the right wheel drive unit to rotate the right drive wheel 3R. The arrangements of both of the left and right wheel drive units are identical to each other and hence the wheel drive unit 4L for rotating the left drive wheel 3L will be described as a representative.
As shown in
A DC motor, a synchronous motor, an induction motor and a stepping motor, for example, are suitably available as the electrically-powered motor 15 and it is needless to say that motors of other types can be applied to this electrically-powered motor. The electrically-powered motor 15 has a rotary shaft to which there is attached a decelerator 16 that can be properly decelerated by a suitable means such as a planet gear device. The decelerator 16 includes a rotating portion that has substantially the same size as that of a stationary portion of the electrically-powered motor 15. The drive wheel 3L is fixed to the outer end face of the rotating portion of this decelerator 16 by a fixing means such as fixing screws and thereby the drive wheel can be freely rotated in unison with the decelerator. A battery 8 is located at substantially the central portion of the conveyance body 2.
The two drive wheels 3L, 3R are the identical wheels having identical shape and arrangement and are composed of rubber tires 17 and wheels 18 having tires 17 attached to outer peripheral surfaces thereof. The tire 17 has large rigidity in the front and rear direction which is the flat surface side and has flexible characteristics in the radial direction which is the cross-sectional side. An inside space portion of the tire is formed as a fluid chamber 19. The fluid chamber 19 of the tire 17 is filled with air that shows a specific example of fluid. Although it is preferable that air should be used as fluid filled into the tire 17, it is needless to say that gas other than air may be used such fluid.
While it is customary that the wheel 18 of each of the drive wheels 3L, 3R is made of a metal material such as aluminum alloy, it may be made of other metal materials. Further, the wheel can be made of other suitable materials than metals, such as plastic materials and wood.
The vehicle control unit 5 mounted on the conveyance body 2 is composed of an electronic circuit apparatus including a microcomputer. The microcomputer is composed of a combination of a central processing apparatus, a RAM and a ROM serving as program memories, an input and output interface serving as a peripheral apparatus and the like. A detected signal from a force sensor 7 is inputted to the microcomputer. Hence, the vehicle control unit 5 executes calculation processing previously set based on the detected signal and outputs a control signal to the electrically-powered motor 15 of the wheel driving unit 4, whereby the left and right drive wheels 3L, 3R can be rotated separately.
The first amplifier 23 is connected with a force sensor 7 for detecting pulling power of the conveyance vehicle 1 and thereby a detected signal from the force sensor is amplified to a predetermined signal and supplied to the calculation apparatus 21. Also, the second amplifier 24 is connected with a floating detection sensor 25 for detecting that the wheels float up when the conveyance vehicle 1 is lifted and thereby a detected signal from this detection sensor is amplified to a predetermined signal and supplied to the calculation apparatus 1.
Next, the case in which the vehicle control unit includes only the pulling power sensor will be described. In this case, the reference value is set to the positive value. In the state in which a switch 33 is closed and servo is effected, when the conveyance vehicle 1 is stopped in the state in which the operator who operates the handle 6 stands on the opposite side of the auxiliary wheel 9 relative to the handle 6, drive signals are supplied to the electrically-powered motors 4L, 4R mounted on the conveyance vehicle 1 in such a manner that the output signal from the pulling power sensor 7 and the reference value become equal to each other due to actions of servo. At that time, as the size of the reference signal is increased in the positive direction, force by which the operator pulls the conveyance vehicle 1 is increased.
When the operator is moved in the left direction in
According to the wheel drive control executed based on such reference value, the drive wheels are controlled such that pulling force detected by the force sensor 7 may constantly become a constant value, that is, a reference value of pulling force (for example, pulling force 1 kg). This control is executed by a circuit arrangement including a subtractor 31, a power amplifier 32 and a switch 33. The subtractor 31 subtracts a reference value from a detected value of the pulling force detected by the force sensor 7 and outputs a signal corresponding to a difference to the power amplifier 32. The power amplifier 32 amplifies a received signal and outputs an amplified signal to rotate the electrically-powered motors 4L, 4R for driving the wheels.
The power amplifier 32 and the electrically-powered motors 4L, 4R have interposed therebetween the switch 33 to cut off the driving of the electrically-powered motors 4L, 4R. This switch 33 is adapted to prevent the drive wheels 3L, 3R from running idle when the drive wheels 3L, 3R float up. When the float detection sensor 25 detects floating of the drive wheels 3L, 3R and outputs a detected signal, the switch 33 opens the circuit to stop the supply of power to the electrically-powered motors 4L, 4R. As a consequence, the drive wheels 3L, 3R are stopped rotating and the idling state of the drive wheels may be canceled.
The floating detection sensor 25 is provided on the upper arm portion 12 of the conveyance body 2 as shown in
While the two strain gauges 26, 27 are the identical strain gauges, they are attached to the upper arm portion upside down and connected in series. The reason that the two identical strain gauges are used is to remove influence generated due to thermal expansion because bending degrees of the upper and lower surfaces of the upper arm portion become different when the upper arm portion 12 is deformed by heat. Accordingly, when influence imposed on the arm portion by thermal expansion need not be considered, the strain gauge may be attached to only one of the upper and lower surfaces. Also, the strain gauge may be attached to the lower arm portion 13 instead of the upper arm portion 12.
Two resistors 28, 29 are connected in series to the two strain gauges 26, 27 and these four parts are coupled in an annular fashion on the whole. An alternating current power supply 35 which is connected to the ground is connected between the first strain gauge 26 and the first resistor 28 and a ground line 36 is connected between the second strain gauge 27 and the second resistor 29. A plus terminal of the amplifier 37 is connected between the two strain gauges 26 and 27 and a minus terminal of this amplifier 37 is connected between the two resistors 28 and 29.
According to the floating detection sensor 25 having such arrangement, it is possible to detect the floating of the left and right drive wheels 3L, 3R as follows, for example. As shown in
On the other hand, when the conveyance body 2 is lifted so that the drive wheels 3L, 3R are detached from the ground surface 10, loads of the drive wheels 3L, 3R act in the gravity direction and loaded onto the upper and lower arm portions 12, 13 with the result that the arm portion 12 is bent in response to the magnitude of its load. As a result, the signal corresponding to the bending amount of the arm portion 12 is outputted from the two strain gauges 26, 27. Consequently, a signal corresponding to the value of the detected signal outputted from the strain gauges 26, 27 is outputted from the amplifier 37. The output signal from the amplifier 37 becomes the weight of the drive wheels 3L, 3R of the positive direction relative to the gravity and direction and magnitude of the outputted signal are changed to detect the floating of the drive wheels. As a consequence, the switch 33 is opened in response to the value of the signal outputted from the amplifier 37 to stop the corresponding drive wheels 3L, 3R from rotating. In consequence, the idling state of the drive wheels 3L, 3R can be canceled.
The handle 6 with the force sensor 7 attached thereto consists of a square-like annular operation portion 6a and a shaft portion 6b continued to the lower side of this operation portion 6a. A lower end of the shaft portion 6b of the handle 6 is fixed to the fixed portion 2a a screwing means, a press fit means and other fixing means and thereby it is formed as one body with the conveyance body 2. A grip portion 40 made of a cylindrical resilient material is provided on the upper side of the operation portion 6a of this handle 6 so that the handle becomes easy to grip. The force center 7 is provided at substantially the central portion of this grip portion 40.
The force sensor 7 has an arrangement shown in
A force sensor 50 shown in
According to the case of this embodiment, it is possible to detect pulling force applied through the grip portion to the force sensor 50 by measuring potential generated from the piezoelectric material 51 which is flexed with application of pulling force (external force).
A force sensor 60 shown in
According to the case of this embodiment, since the recess 63 is formed on the operation portion 6a, it is possible to considerably flex the recessed portion by relatively small pulling force (external force). For this reason, it is possible to obtain the force sensor which is high in detection accuracy although it is simple in structure. In addition, the strain gauge can be attached to a desired place, for example, the strain gauge can be attached to the shaft portion 6a to detect the magnitude of pulling force from bending strain.
A force sensor 70 shown in
In the case of this embodiment, power can be assisted not only with application of auxiliary power produced by pushing the handle 6 but also when the conveyance vehicle is pulled by pulling the handle 6 of the conveyance vehicle. That is, it is possible to detect pushing force by pushing the conveyance vehicle 1 with the handle 6. As a result, the drive wheels 3L, 3R can be rotated in the advancing direction through driving of the electrically-powered motors 4L, 4R to thereby assist pushing force to push the conveyance vehicle 1. In this case, pushing force can be assisted on the flat portion of the ground surface in response to pushing force, whereby the conveyance vehicle 1 can be constantly conveyed with constant pulling force when it descends the steps, which will be described later on.
Actions of this embodiment will be described below in detail. Actions of this embodiment will be described with reference to the case in which the two force sensors 7, 70 shown in this embodiment is applied to the conveyance vehicle shown in
First, the case in which the reference value is zero will be described. In
Since the control system shown in
On the other hand, when the operator who operates the handle 6 stands on the opposite side of the auxiliary wheel 9 in relation to the handle 6 and is moved in the right direction in
When the conveyance vehicle includes both of the pulling force sensor 7 and the pushing force sensor 70 as described above, the control system shown in
As described above, when the conveyance vehicle includes only the pushing force sensor 70, similarly to the case in which the conveyance vehicle includes only the pulling force sensor 7, only the polarity of the signal of each unit is changed to that of the pulling force and the pulling force is changed to the pushing force and similar actions can be achieved. That is, when the negative signal is supplied as the reference signal, while pushing forces corresponding to the magnitude of the reference signal is being generated, it becomes possible to move the conveyance vehicle 1 in the two directions by very small force corresponding to the reference value.
FIGS. 20 to 24 are diagrams to which reference will be made in explaining the controlled states of the conveyance vehicle 1 on various kinds of road surfaces.
As a result, the pulling force of someone who pulls the conveyance vehicle may be assisted and hence someone can pull the conveyance vehicle 1 by force smaller than that required when pulling force is not assisted. For example, when force which someone receives is set to 1 kg, load of pulling force of 1 kg is constantly applied to someone so that pulling force can constantly be maintained at 1 kg no matter how load of the conveyance vehicle 1 is fluctuated.
In
In
At that time, under control of the force sensor 7 housed within the grip portion 40 of the handle 6, the electrically-powered motors 4L, 4R are driven in such a manner that force applied to someone who pulls the conveyance vehicle may become previously-set predetermined pulling force, thereby resulting in the drive wheels 3L, 3R being intermittently rotated in the retreating direction (left direction in
In
As shown in
The conveyance body 92 is composed of a flat plate-like member on which someone can ride. The left and right drive wheels 93L, 93R are located at the central portions of both sides of the conveyance body 92. The left and right drive wheels 93L, 93R can be rotated by the wheel drive portions 94L, 94R provided on the side surface portions of the conveyance body 92. The battery 8 is housed within this conveyance body 92 and a pair of floating detection sensors 25 corresponding to the respective drive wheels 93L, 93R is provided on the conveyance body.
The handle 96 is composed of a shaft portion 97 whose lower end is fixed to the front portion of the conveyance body 92 and which is elongated in the upper direction and an operation portion 98 integrally provided on the upper end of this shaft portion 97. An annular portion 98a is provided on the operation portion 98 and the grip portion 40 having the force sensor 7 housed therein is provided on this annular portion 98a.
Also in the conveyance vehicle 91 having the above arrangement, by executing the aforementioned controls of the drive wheels 93L, 93R, it is possible to easily pull and move the conveyance vehicle 91 when someone gets off the conveyance vehicle.
The present invention is not limited to the aforementioned embodiments shown in the sheet of drawings. For example, while the present invention is applied to a tricycle and a bicycle in the above-described embodiments, the present invention is not limited thereto and can be applied to a four-wheeled vehicle and a vehicle having more wheels than the four wheels. As described above, the present invention can be variously modified and effected without departing from the gist thereof.
Number | Date | Country | Kind |
---|---|---|---|
2003-156986 | Jun 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/07906 | 6/1/2004 | WO | 11/30/2005 |