1. Field of the Invention
The invention relates to the field of transporters. More particularly, the invention relates to a transporter for industrial ride-on power trowels used for surface treatment of concrete floors.
2. Description of the Prior Art
Many large facilities, such as buildings for expositions or trade-shows, “big-box” retail stores, warehouses, etc. have concrete floors. After the concrete has been poured and set, the floor is troweled to achieve a smooth surface. The trowel was initially a powered trowel that the operator walked beside as it moved across the concrete surface, similar to the operation of a lawnmower. The size of the pours has increased greatly in recent years and ride-on trowels have been developed to make it easier to trowel such large areas. These ride-on trowels are large, extremely heavy power machines. Not only does the trowel have very heavy gear for grinding the concrete surface to a smooth finish, but it also is equipped with the drive means and a seat for the operator, who rides on the trowel and guides it across the floor. One example of such ride-on trowels is the HYDROSTATIC STX-55J-6 by Whiteman, which has a footprint of 125×65 inches, is 57 inches high, and weighs 2,270 lbs. Even the smallest of the ride-on power trowels has a footprint of 71×39 inches and weighs 440 lbs.
It is very difficult to move these ride-on trowels from one location to another. Lifting units, such as hydraulically, mechanically, or electrically powered hand trucks, are typically used to lift the ride-on trowel above the ground surface. For example, two lifting units are coupled with lifting points provided on the ride-on trowel, are then actuated to lift the ride-on trowel several inches above ground. Once lifted above ground, two to six persons, depending on the size of the ride-on trowel, now push the ride-on trowel along the ground or up or down a loading ramp. The process is time-consuming and potentially very hazardous, as the risks are great of losing control over the ride-on trowel and, as a result, suffering injury to personnel and/or economic loss due to damage to the trowel or other equipment. The task of pushing a ride-on trowel across a soft ground surface, such as sand, with the lifting units is almost impossible. In that case, a powered hoist means must be employed to lift the ride-on trowel above ground.
What is needed therefore is a transportation means for quickly and safely transporting a ride-on trowel. What is further needed is such a means that lifts the ride-on trowel above the ground surface and moves it to another location.
The problem of maneuvering and transporting the ride-on trowel is solved by providing a trowel transporter that lifts and transports the ride-on trowel, safely, and without danger of injuring personnel or damaging the ride-on trowel itself. The trowel transporter is a wheeled vehicle comprising a hydraulic lift system for lifting and lowering the ride-on trowel, a frame for securing the ride-on trowel above ground, and drive means for moving the trowel transporter across a ground surface.
The frame is a rugged steel vehicle frame that forms a receiving bay for receiving the ride-on trowel. A drive system with wheels and a brake provides the trowel transporter with mobility and maneuverability. The hydraulic lift system and the drive system are powered by a hydraulic power plant that includes conventional hydraulic components, such as a fluid reservoir, hydraulic fluid lines, valves and controls, a hydraulic pump unit, and an engine for driving the pump unit.
The hydraulic lift system includes a hydraulic piston-and-cylinder unit that is assembled on the frame. Attachment means are provided on the frame for coupling the frame with lifting points on the ride-on trowel. The attachment means may include lifting pins or studs mounted on a movable or slidable bracket. The lifting studs are insertable into lifting points that are bores provided on the lower portion of the ride-on trowel. Once attached, the ride-on trowel is lifted above the ground surface by the piston-and-cylinder unit. This is done, for example, by hydraulically lifting the bracket or portion of the frame to which the lifting studs are attached. It is also possible to provide hooks and cables as an attachment means. The cables are suspended from an upper portion of the frame. The hooks are attachable to lifting points that are eye bolts provided on readily accessible areas of the ride-on trowel. The hook ends of the cables are lifted or lowered by the hydraulic lift system.
To move a ride-on trowel, the trowel transporter is driven into an operating position, in which the ride-on trowel is received into the receiving bay. The attachment means are attached to the lifting points on the ride-on trowel. It may be desirable to provide buffers or other securing means between the ride-on trowel and the frame to prevent damage to the ride-on trowel or the trowel transporter during transportation. Once lifted and secured within the trowel transporter, the trowel transporter with ride-on trowel may be driven to a new location or over a loading ramp of a flatbed trailer.
The scope of the invention includes various configurations of the drive system. Often, the trowel transporter will be used to transport the ride-on trowel a short distance, from one area of a construction site to another, or onto or off of a loading ramp. For such purposes, a three-wheeled drive system provides the necessary stability and mobility, and is economical. A drive wheel is provided at a first end of the frame and two follower wheels at a second end of the frame. The drive wheel is provided with steering linkage and a brake. It is, of course, within the scope of the invention to provide a four-wheeled trowel transporter. It is also within the scope of the invention to provide various ways of providing operator control of the trowel transporter. For example, in a simple configuration, a steering bar with a brake control is linked to the drive wheel. To operate the trowel transporter, the operator starts the drive motor, grasps the steering bar and walks alongside the trowel transporter, steering the drive wheel by moving the steering bar to the right or left. It is, however, within the scope of the invention to incorporate an operator seat and control panel within the vehicle frame, to enable the operator to be seated while driving the trowel transporter.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. The drawings are not to scale.
The present invention will now be described more fully in detail with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be complete and will fully convey the scope of the invention to those skilled in the art.
The engine 210, the hydraulic pump 220, the drive motor 320, the chain-and-sprocket mechanism 330, the steering unit 600, and the brake 340 are conventional assemblies, well-known in the art, and are not described in greater detail herein. The following examples of suitable assemblies are provided for illustration purposes only and it is understood that the scope of the invention is not limited to any particular make, model or size of these assemblies. The drive motor 320 is a hydraulic general purpose Char-Lynn® Orbit® motor from the Eaton Corp. In this embodiment, the engine 210 is a GX 240-390 series gasoline engine from the Honda Motor Co., Ltd. The pump 220 is a hydraulic GC Series pump from Haldex, rated at 8 GPM at 3600 RPM. The chain-and-sprocket mechanism 330 is available from any automotive parts store, and the brake 340 is a hydraulic MICO disc brake. The drive motor 320 and the brake 340 is provided by the hydraulic power means 200.
The conventional ride-on trowel RT is typically provided with attachment points, such as eye bolts E or other suitable means for attaching two cables 110A and 110B with their corresponding attachment means 120A and 120B, as shown in
It is understood that the embodiments described herein are merely illustrative of the present invention. Variations in the construction of the trowel transporter may be contemplated by one skilled in the art without limiting the intended scope of the invention herein disclosed and as defined by the following claims.