Joachim Burhenne, “Less Invasive Medicine: Historical Perspectives”, Boston Scientific Online, www.bsci.com/corporate/specialreport1.html; May 20, 1999, pp. 1-8. |
Charles T. Doiter, “Transluminally-Placed Coilsping Endarterial Tube Grafts, Long-Term Patency in Canine Popliteal Artery”, Investigative Radiology, Sep.-Oct. 1969 vol. 4; pp. 329-332. |
Raymond G. McKay, “Catheter-Based Techniques of Local Drug Delivery”, The New Manual of Interventional Cardiology, 1996, pp. 645-660. |
Alfred Goldman, “Experimental Methods for Producing a Collateral Circulation to the Heart Directly From the Left Ventricle”, J. Thoracic Surg.; Mar. 1956; vol. 31. No. 3; pp. 364-374. |
Vallavan Jeevanandam, “Myocardial Revascularization by Laser-Induced Channels”, Surgical Forum, American College of Surgeons 76th Clinical Congress, pp. 225-227. |
A. Hassan Khazei et al., “Myocardial Canalization, A New Method of Myocardial Revascularization”, The Annals of Thoracic Surgery, Vo. 6, No. 2, Aug. 1968; pp. 163-171. |
Ladislav Kuzela et. al. “Experimental Evaluation of Direct Transventricular Revascularization”, Journal of Thoracic and Cardiovascular Surgery, vol. 57, No. 6, Jun. 1969. |
C. Massimo et al., “Myocardial Revascularization by a New Method of Carrying Blood Directly From the Left Ventricular Cavity Into the Coronary Circulation”, Journal. Thoracic Surgery, Aug. 1957, pp. 257-264. |
A. Michael Lincoff et al., “Local Drug Delivery for the Prevention of Restenosis: Fact, Fancy and Future”, Circulation: vol. 90, No. 4: Oct. 1994. |
M. Mirhoseini et al., “Revascularization of the Heart by Laser”, Journal of Microsurgery (1981) 2:253-260. |
M. Mirhoseini, “Myocardial Revascularization by Laser: A Clinical Report”, Lasers in Surgery and Medicine (1983) 3:241-245. |
Reimer Riessen et. al., “Prospects for Site-Specific Delivery of Pharmacologic and Molecular Therapies”, JACC vol. 23, No. 5; Apr. 1994:1234-44. |
P.K. Sen et. al., “Transmyocardial Acupuncture a New Approach to Myocardial Revascularization”, Journal of Thoracic and Cardiovascular Surgery, vol. 50, No. 2, Aug. 1965. |
Bruce F. Waller, “Anatomy, Histology, and Pathology of the Major Epicardial Coronary Arteries Relevant to Echocardiographic Imaging Techniques”, Journal of the American Society of Echocardiography, vol. 2, No. 4: Jul.-Aug. 1989, pp. 232-252. |
P. Walter et. al., “Treatment of Acute Myocardial Infarction by Transmural Blood Supply From the Ventricular Cavity”, Europ. Surg. Res. 3:130-138 (1971). |
Robert L. Wilensky et. al., “Methods and Devices for Local Delivery in Coronary and Peripheral Arteries”, TCM vol. 3, No. 5 (1993) pp. 163-170. |
R-K Li et. al, “Cell Trerapy to Repair Broken Hearts” Can J. Cardiology 1998; 14(5):735-744. |
Zhai Y. et. al., “Inhibition of Angiogenesis and Breast Cancer Xenograft Tumor Growth by Vegi, A Novel Cytokine of the TNF Superfamily”, Int. J. Cancer 1999; Jul. 2;82(1):131-6. |
Warejcka DJ et. al., “A Population of Cells Isolated From Rat Heart Capable of Differentiating Into Several Mesodermal Phenotypes”, J. Surg. Res. May 1996;62(2):233-242. |
Braun T, Arnold, “MYF-5 and MYOD Genes are Activated in Distinct Mesenchymal Stem Cells and Determine Different Skeletal Muscle Cell Lineages”, Emo J. 1996 Jan. 15;15(2):310-318. |
Wakitani S. et. al., “Myogenic Cells Derived From Rat Bone Marrow Mesenchymal Stem Cells Exposed to 5-Azacytidine”, Muscle Nerve Dec. 1995; 18(12):1417-1426. |
Yamaguchi A., “Regulation of Differentiation Pathway of Skeletal Mesenchymal Cells in Cell Lines by Transforming Growth Factor-Beta Superfamily”, Semin Cell Biol. Jun. 1995:6(3):165-173. |
Chiu RC. et. al., “Cellular Cardiomyoplasty:Myocardial Regeneration With Satellite Cell Implantation”, Ann Thorac Surg Jul. 1995:60(1):12-18. |
Gulati AK, “Regeneration Pattern of Cardiac and Skeletal Muscle After Transplantation Into a Skeletal Muscle Bed in Rats”, Anat Rec. Jun. 1995:242(2):188-194. |
Tam SK. et al., “Cardiac Myocyte Terminal Differentiation, Potential for Cardiac Regeneration”, Ann NY Acad. Sci. Mar. 27, 1995;752:72-79. |
Mima T. et. al., “Fibroblast Growth Factor Receptor is Required for In Vivo Cardiac Myocyte Proliferation at Early Embryonic Stages of Heart Development”, Proc. Natl. Acad. Sci. USA Jan. 17, 1995;92(2):467-471. |
Butler R., “Evidence for a Regenerative Capacity in Adult Mammalian Cardiac Myocytes”, Am. J. Physiol Mar. 1989;256(3 Pt. 2):R797-R800. |
B. Schumacher, Induction of Neoangiogenesis in Ischemic Myocardium by Human Growth Factors, First Climical Resutls of a New Treatment of Coronary Heart Disease, Clinical Investigation and Reports, pp 645-650, Dec. 1997. |
Ladislav Kuzela et al., Experimental Evaluation of Direct Transventricular Revascularization, Journal of Thoracic Cardiovascular Surgery, vol. 57, No. 6, pp. 770-773, Jun. 1969. |
Mahmood Mirhoseini et al., Revascularization of the Heart by Laser, Journal of Microsurgery, pp. 253-260, Jun. 1981. |
Michael P. Macris et al., Minimally Invasive Access of the Normal Pericardium: Initial Clinical Experience with a Novel Device, Clin. Cardiol. vol. 22, (Suppl. I) pp. I-36-I-39, (1999). |
P.K. Send et al., Transmyocardial Acupuncture: A New Approach to Myocardial Revascularization, Journal of Cardiovascular Surgery, pp. 181-189, Aug. 1965. |
Peter Whittaker, et al., Transmural Channels Can Protect Ischemic Tissue, Assesment of Long-term Myocardial Response to Laser and Needle-Made Channels, Circulation, vol. 93, No. 1, pp. 143-152, Jan. 1996. |
Roque Pifarre et al., Myocardial Revascularization by Transmyocardial Acupuncture: A Physiologic Impossibility; Journal of Thoracic and Cardiovascular Surgery; vol. 58, No. 3, pp. 424-429, Sep. 1969. |
Neil B. Ingels, et al., Measurement of Midwall Myocardial Dynamics in Intact Man by Radiography of Surgically Implanted Markers, Circulation, vol. 52, pp. 859-867 (Nov. 1975). |