Transvascular nerve stimulation apparatus and methods

Information

  • Patent Grant
  • 10792499
  • Patent Number
    10,792,499
  • Date Filed
    Wednesday, January 15, 2020
    4 years ago
  • Date Issued
    Tuesday, October 6, 2020
    4 years ago
Abstract
Electrode structures for transvascular nerve stimulation combine electrodes with an electrically-insulating backing layer. The backing layer increases the electrical impedance of electrical paths through blood in a lumen of a blood vessel and consequently increases the flow of electrical current through surrounding tissues. The electrode structures may be applied to stimulate nerves such as the phrenic, vagus, trigeminal, obturator or other nerves.
Description
TECHNICAL FIELD

The invention relates to neurophysiology and in particular to apparatus and methods for stimulating nerves through the walls of blood vessels. Aspects of the invention provide electrode structures that may be deployed within blood vessels to stimulate nerves passing near the blood vessels; nerve stimulation systems; and methods for nerve stimulation. Aspects of the invention may be applied for restoring breathing, treating conditions such as chronic pain, and other uses involving nerve stimulation. Aspects of the invention may be applied in the treatment of acute or chronic conditions.


BACKGROUND

Nerve stimulation can be applied in the treatment of a range of conditions. The nerve stimulation may be applied to control muscle activity or to generate sensory signals. Nerves may be stimulated by surgically implanting electrodes in, around or near the nerves and driving the electrodes from an implanted or external source of electricity.


The phrenic nerve normally causes the contractions of the diaphragm that are necessary for breathing. Various conditions can prevent appropriate signals from being delivered to the phrenic nerve. These include:

    • chronic or acute injury to the spinal cord or brain stem;
    • Amyotrophic Lateral Sclerosis (ALS);
    • disease affecting the spinal cord or brain stem; and,
    • decreased day or night ventilatory drive (e.g. central sleep apnea, Ondine's curse).


These conditions affect significant numbers of people.


Mechanical ventilation may be used to help patients breathe. Some patients require chronic mechanical ventilation. Mechanical ventilation can be lifesaving but has a range of significant problems. Mechanical ventilation:

    • tends to provide insufficient venting of the lungs. This can lead to accumulation of fluid in the lungs and susceptibility to infection.
    • requires apparatus that is not readily portable. A patient on ventilation is tied to a ventilator. This can lead to atrophy of muscles (including breathing muscles) and an overall decline in well being.
    • can adversely affect venous return because the lungs are pressurized.
    • interferes with eating and speaking.
    • requires costly maintenance and disposables.


Phrenic nerve pacing uses electrodes implanted in the chest to directly stimulate the phrenic nerve. The Mark IV Breathing Pacemaker System available from Avery Biomedical Devices, Inc. of Commack, N.Y. USA is a diaphragmatic or phrenic nerve stimulator that consists of surgically implanted receivers and electrodes mated to an external transmitter by antennas worn over the implanted receivers. Implanting electrodes and other implantable components for phrenic nerve pacing requires significant surgery. The surgery is complicated by the fact that the phrenic nerve is small (approx. diameter 2 mm) and delicate. The surgery involves significant cost.


Laproscopic diaphragm pacing being developed by Case Western Reserve University bio-medical engineers and physician researchers is another technique for controlling breathing. Devices for use in Laproscopic diaphragm pacing are being developed by Synapse Biomedical, Inc. Laproscopic diaphragm pacing involves placing electrodes at motor points of the diaphragm. A laparoscope and a specially designed mapping procedure are used to locate the motor points.


References that in the field of nerve stimulation include:

  • Moffitt et al., WO 06/110338A1, entitled: TRANSVASCULAR NEURAL STIMULATION DEVICE;
  • Caparso et al., US 2006/0259107, entitled: SYSTEM FOR SELECTIVE ACTIVATION OF A NERVE TRUNK USING A TRANSVASCULAR RESHAPING LEAD;
  • Dahl et al., WO 94/07564 entitled: STENT-TYPE DEFIBRILLATION ELECTRODE STRUCTURES;
  • Scherlag et al., WO 99/65561 entitled: METHOD AND APPARATUS FOR TRANSVASCULAR TREATMENT OF TACHYCARDIA AND FIBRILLATION;
  • Bulkes et al., US20070288076A1 entitled: BIOLOGICAL TISSUE STIMULATOR WITH FLEXIBLE ELECTRODE CARRIER;
  • Weinberg et al., EP 1304135 A2 entitled: IMPLANTABLE LEAD AND METHOD FOR STIMULATING THE VAGUS NERVE;
  • Moffitt et al., US20060259107 entitled: SYSTEM FOR SELECTIVE ACTIVATION OF A NERVE TRUNK USING A TRANSVASCULAR RESHAPING LEAD;
  • Denker et al. U.S. Pat. No. 6,907,285 entitled: IMPLANTABLE DEFIBRILLATOR WITH WIRELESS VASCULAR STENT ELECTRODES;
  • Chavan et al. US20070093875 entitled IMPLANTABLE AND RECHARGEABLE NEURAL STIMULATOR;
  • Rezai, U.S. Pat. No. 6,885,888 entitled ELECTRICAL STIMULATION OF THE SYMPATHETIC NERVE CHAIN;
  • Mehra, U.S. Pat. No. 5,170,802 entitled IMPLANTABLE ELECTRODE FOR LOCATION WITHIN A BLOOD VESSEL;
  • Mahchek et al. U.S. Pat. No. 5,954,761 entitled: IMPLANTABLE ENDOCARDIAL LEAD ASSEMBLY HAVING A STENT;
  • Webster Jr. et al. U.S. Pat. No. 6,292,695 entitled: METHOD AND APPARATUS FOR TRANSVASCULAR TREATMENT OF TACHYCARDIA AND FIBRILLATION;
  • Stokes, U.S. Pat. No. 4,643,201;
  • Ela Medical SA, EP 0993840A, U.S. Pat. No. 6,385,492
  • WO 9407564 describes stent-type electrodes that can be inserted through a patient's vasculature.
  • WO 9964105A1 describes transvascular treatment of tachycarida.
  • WO 9965561A1 describes a method and apparatus for transvascular treatment of tachycardia and fibrillation.
  • WO02058785A1 entitled VASCULAR SLEEVE FOR INTRAVASCULAR NERVE STIMULATION AND LIQUID INFUSION describes a sleeve that includes an electrode for stimulating nerves.
  • WO 06115877A1 describes vagal nerve stimulation using vascular implanted devices.
  • WO 07053508A1 entitled INTRAVASCULAR ELECTRONICS CARRIER AND ELECTRODE FOR A TRANSVASCULAR TISSUE STIMULATION SYSTEM and US20070106357A1 describe an intravascular mesh type electrode carrier in which the conductor of a lead is interwoven into the carrier mesh.
  • U.S. Pat. No. 5,224,491 describes implantable electrodes for use in blood vessels.
  • U.S. Pat. No. 5,954,761 describes an implantable lead carrying a stent that can be inserted into the coronary sinus.
  • U.S. Pat. No. 6,006,134 describes transvenous stimulation of nerves during open heart surgery.
  • U.S. Pat. No. 6,136,021 describes an expandable electrode for coronary venous leads (the electrode can be placed or retained in the vasculature of the heart).
  • Spreigl et al. U.S. Pat. No. 6,161,029 entitled: APPARATUS AND METHOD FOR FIXING ELECTRODES IN A BLOOD VESSEL describes fixing electrodes in blood vessels.
  • U.S. Pat. No. 6,438,427 describes electrodes for insertion into the coronary sinus.
  • U.S. Pat. No. 6,584,362 describes leads for pacing and/or sensing the heart from within the coronary veins.
  • U.S. Pat. No. 6,778,854 describes use of electrodes in the Jugular vein for stimulation of the Vagus nerve.
  • U.S. Pat. No. 6,934,583 discloses stimulation of the Vagus nerve with an electrode in a blood vessel.
  • U.S. Pat. No. 7,072,720 describes catheter and tube electrode devices that incorporate expanding electrodes intended to contact the interior walls of blood vessels or anatomic structures in which the electrode devices are implanted as well as methods involving stimulation of the vagus nerve.
  • U.S. Pat. No. 7,184,829 discloses transvascular stimulation of a vagal nerve.
  • U.S. Pat. No. 7,225,019 discloses intravascular nerve stimulation electrodes that may be used in the Jugular vein.
  • U.S. Pat. No. 7,231,260 describes intravascular electrodes.
  • Schauerte et al., US 2002/0026228 entitled: ELECTRODE FOR INTRAVASCULAR STIMULATION, CARDIOVERSION AND/OR DEFIBRILLATION;
  • Jonkman et al., U.S. Pat. No. 6,006,134
  • Bonner et al., U.S. Pat. No. 6,201,994
  • Brownlee et al., U.S. Pat. No. 6,157,862
  • Scheiner et al., U.S. Pat. No. 6,584,362
  • Psukas, WO 01/00273
  • FR 2801509, US 2002065544
  • Morgan, U.S. Pat. No. 6,295,475
  • Bulkes et al., U.S. Pat. No. 6,445,953
  • Rasor et al. U.S. Pat. No. 3,835,864 entitled: INTRA-CARDIAC STIMULATOR
  • Denker et al. US20050187584
  • Denker et al. US20060074449A1 entitled: INTRAVASCULAR STIMULATION SYSTEM WITH WIRELESS POWER SUPPLY;
  • Denker et al. US20070106357A1 entitled: INTRAVASCULAR ELECTRONICS CARRIER ELECTRODE FOR A TRANSVASCULAR TISSUE STIMULATION SYSTEM;
  • Boveja et al. US20050143787
  • Transvenous Parassympathetic cardiac nerve stimulation; an approach for stable sinus rate control, Journal of Cardiovascular Electrophysiology 10(11) pp. 1517-1524 November 1999
  • Transvenous Parassympathetic nerve stimulation in the inferior vena cava and atrioventricular conduction, Journal of Cardiovascular Electrophysiology 11(1) pp. 64-69, January 2000.
  • Planas et al., Diaphragmatic pressures: transvenous vs. direct phrenic nerve stimulation, J. Appl. Physiol. 59(1): 269-273, 1985.
  • Yelena Nabutovsky, M. S. et al., Lead Design and Initial Applications of a New Lead for Long-Term Endovascular Vagal Stimulation, PACE vol. 30, Supplement 1, January 2007 p. 5215


Other references of interest include:

  • Amundson, U.S. Pat. No. 5,779,732


There remains a need for surgically simpler, cost-effective and practical apparatus and methods for nerve stimulation.


SUMMARY OF THE INVENTION

This invention has a range of aspects. One aspect of the invention provides electrodes for transvascular stimulation of nerves. In embodiments, electrode structures comprise at least one electrode supported on an electrically-insulating backing sheet; and, a structure for holding the backing sheet against the inner wall of a blood vessel with the electrode in contact with the inner wall of the blood vessel. In some embodiments, the backing sheet is designed to unroll inside the lumen of a blood vessel to fit around the periphery of the lumen of a blood vessel. In such embodiments, the backing sheet can comprise the structure for holding the backing sheet against the inner wall of the blood vessel. In other embodiments an expandable stent or a tube is provided to hold the backing sheet and electrodes against the blood vessel wall.


Another aspect of the invention comprises a nerve stimulation system comprising a stimulation signal generator and first and second electrode structures. The first electrode structure comprises a first plurality of electrodes and is dimensioned to be implantable at a position along a lumen of a person's left subclavian vein that is proximate to the left phrenic nerve. The second electrode structure comprises a second plurality of electrodes and is dimensioned to be implantable at a position along a lumen of the person's superior vena cava that is proximate to the right phrenic nerve. The system comprises means such as electrical leads, a wireless system or the like for transmitting signals from the signal generator to the first and second pluralities of electrodes.


Another aspect of the invention provides a method for regulating breathing of a person. The method comprises implanting at least one of: a first electrode structure at a position along a lumen of the left subclavian vein that is proximate to the left phrenic nerve; and a second electrode structure at a position along a lumen of the superior vena cava that is proximate to the right phrenic nerve; and subsequently stimulating the left- and right-phrenic nerves by applying stimulation signals to electrodes of the first and second electrode structures.


Further aspects of the invention and features of specific example embodiments of the invention are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate non-limiting example embodiments of the invention.



FIG. 1 shows a number of nerves adjacent to a blood vessel.



FIG. 2 is a schematic diagram of a transvascular nerve stimulation apparatus according to an example embodiment.



FIG. 3 is a cross section through an electrode structure having multiple electrodes or rows of electrodes spaced apart around an inner wall of a blood vessel.



FIGS. 4A, 4B and 4C are partially schematic cross sectional views illustrating stages in the implanting of an electrode structure according to an example embodiment which includes an expandable stent in a blood vessel.



FIGS. 5A, 5B and 5C are partially schematic cross sectional views illustrating an electrode structure according to an embodiment having an engagement structure for holding the electrode structure expanded against an inner wall of a blood vessel.



FIGS. 6 and 6A are respectively perspective and cross sectional views showing an electrode structure according to another embodiment wherein electrodes are held against an inner wall of a blood vessel by a retention tube.



FIGS. 7A and 7B are perspective views showing an electrode structure having four electrodes respectively in a flat configuration and a rolled configuration. In the rolled configuration, the electrodes face radially outward.



FIGS. 7C and 7F are views showing plan views of unrolled electrode structures having electrodes that may be used in bipolar pairs (among other electrical configurations). FIGS. 7D and 7E show example ways for pairing the electrodes of the electrode structure of FIG. 7C.



FIG. 7G is a perspective view showing an electrode structure having four rows of electrodes in a rolled configuration in which the electrode structure is curled up within an apertured insertion tube.



FIG. 7H is a cross section through a blood vessel within which an electrode structure according to another embodiment has been placed.



FIGS. 8A and 8B are schematic illustrations of the use of a structure comprising bi-polar electrodes to stimulate a nerve extending transversely to a blood vessel.



FIG. 8C is a schematic illustrations of the use of a structure comprising bi-polar electrodes to stimulate a nerve extending generally parallel to a blood vessel.



FIG. 9 is a cut away view of a person's neck.



FIG. 9A is a cut away view illustrating a minimally invasive transvascular nerve stimulation system installed in a person according to an embodiment wherein an electrode structure is disposed in the person's internal jugular vein in the neck or upper chest region.



FIGS. 10A and 10B illustrate the anatomy of selected nerves and blood vessels in a person's neck and upper torso.



FIG. 11 is a cut away view illustrating a minimally invasive transvascular nerve stimulation system installed in a person according to an embodiment wherein electrode structures are disposed in one or both of the person's superior vena cava and left subclavian vein.



FIG. 12 is a cut away view illustrating a minimally invasive transvascular nerve stimulation system installed in a person according to an embodiment wherein control signals are transmitted wirelessly to cause stimulation signals to be delivered at electrode structures.





DESCRIPTION

Throughout the following description, specific details are set forth in order to provide a more thorough understanding of the invention. However, the invention may be practiced without these particulars. In other instances, well known elements have not been shown or described in detail to avoid unnecessarily obscuring the invention. Accordingly, the specification and drawings are to be regarded in an illustrative, rather than a restrictive, sense.


This invention relates to transvascular stimulation of nerves. In transvascular stimulation, suitable arrangements of one or more electrodes are positioned in a blood vessel that passes close to a nerve to be stimulated. Electrical currents pass from the electrodes through a wall of the blood vessel to stimulate the nerve.



FIG. 1 shows three nerves, N1, N2 and N3 that pass nearby a blood vessel V having a wall W defining a lumen L. FIG. 1 is illustrative and not intended to represent any specific blood vessel or nerves. FIG. 1 represents any suitable one of the various places in the body where nerves pass nearby to veins or arteries. Nerves N1 and N2 extend roughly parallel to blood vessel V and nerve N3 extends generally transversely to blood vessel V, at least in their parts depicted in FIG. 1. Nerve N1 is closer to blood vessel V than nerve N2.



FIG. 2 illustrates schematically the use of an electrode structure 10 inserted into lumen L of blood vessel V to stimulate nerve N1. Electrode structure 10 comprises an electrode 12, an electrically-insulating backing layer 14 and a means 15 for holding electrode 12 and backing layer 14 in place against the inner wall of blood vessel V. Electrode 12 may be attached to backing layer 14. This is not mandatory, however. It is sufficient that electrode 12 can be held against or at least in close proximity to the wall W of the blood vessel and that backing layer 14 covers the side of electrode 12 facing into lumen L. Various example structures that may be used as means 15 are described below. Electrode structures which provide electrodes backed by electrically-insulating barriers as illustrated generally in FIG. 2 may be provided in a variety of ways.


Electrode 12 is connected to a signal generator 18 by a suitable lead 17. Signal generator 18 supplies electrical current to electrode 12 by way of lead 17. Signal generator 18 may be implanted or external to the body. Signal generator 18 may, for example, comprise an implantable pulse generator (IPG).


In some embodiments electrode structure 10 includes a circuit (not shown) for applying signals to one or more electrodes 12 and a battery, system for receiving power wirelessly or another supply of electrical power. In such embodiments, signal generator 18 may deliver control signals which cause the circuit to apply stimulation signals to electrode 12 by way of a suitable wireless link technology. The wireless link may provide communication of the control signals between a small transmitter associated with signal generator 18 and a small receiver associated with electrode structure 10. With suitably miniature circuitry, it may be possible to provide a signal generator 18 that is co-located in a sufficiently large blood vessel with electrode structure 10. The signal generator 18 may, for example, comprise a thin electronic circuit embedded within backing sheet 14.


Electrode 12 serves as a source or as a sink for electrical current. Depending upon the nature of the electrical signals generated by signal generator 18 electrode 12 may serve as a current source at some times and as a current sink at other times. Another electrode or group of electrodes (not shown in FIG. 2) in contact with the patient serves to complete an electrical circuit. The other electrode or group of electrodes may be incorporated in electrode structure 10 (as is usually preferable) or may be separate.


Electrically-insulating backing layer 14 presents a high-impedance to the flow of electrical current and therefore reduces the amount of current flow through the blood in blood vessel V. It is not mandatory that layer 14 have an extremely high electrical resistance. It is sufficient if layer 14 has a resistance to the flow of electricity through layer 14 that is significantly greater than that presented by the blood in blood vessel V. Blood typically has a resistivity of about 120 to 190 Ωcm. In example embodiments, the blood in a blood vessel may provide an electrical resistance between closely-spaced electrical contacts that is inversely proportional to the dimensions of the lumen of the blood vessel. In large blood vessels the longitudinal electrical resistance between reasonable closely-spaced contacts can be a few tens of ohms for example. Layer 14 preferably provides an electrical resistance of at least a few hundred ohms, preferably a few kilo ohms or more to the flow of electrical current through the thickness of layer 14. Layer 14 could have electrically conductive members such as leads and the like embedded within it or electrically-conductive on its inner surface and still be considered to be ‘electrically-insulating’.


By making layer 14 of a suitable material such as silicone rubber elastomer, a biocompatible plastic, or another biocompatible insulating material it is easily possible to provide a backing layer 14 having a suitable resistance to the flow of electrical current. FIG. 2 illustrates how the presence of backing layer 14 directs the electric field E (illustrated schematically in FIG. 2 by lines of equipotential) outwardly from blood vessel V.


In FIG. 2, the delivery of electrical stimulation to nerve N1 is enhanced by:

    • Locating electrode 12 against the internal wall of blood vessel V at a location close to nerve N1;
    • Providing an electrode 12 having a relatively large contact surface that can achieve a large contact area with the inner wall of blood vessel V;
    • Curving the contact surface of electrode 12 to roughly match the curvature of the inner face of blood vessel V;
    • Providing electrically-insulating backing sheet 14.


      With these features, a significantly lower stimulation intensity is required to stimulate target nerve N1 than would be the case for wire electrodes located in lumen L in contact with the blood in lumen L. Additionally, selectivity for a nerve of interest is improved. Advantageously, electrodes 12 have active surface areas in the range of about ½ mm2 to about 5 mm2. In some embodiments, each electrode has an active surface area on the order of 2 mm2.


Electrode structure 10 may be introduced into blood vessel V in a minimally-invasive, safe way. Blood vessel V may be a relatively large blood vessel that courses in the vicinity of the target nerve N1. In some embodiments, electrode structure 10 comprises a flexible multi-contact electrode carrier sheet (ECS) of suitable dimensions. The sheet may be tightly coiled prior to its insertion into blood vessel V. Once within blood vessel V the sheet may be allowed to unwind so as to bring electrode 12 into contact with wall W of blood vessel V.


An electrode structure may support multiple electrodes. FIG. 3 shows an example electrode structure 20 which supports a number of electrodes including electrodes 22A, 22B, 22C and 22D (collectively electrodes 22). Other electrodes out of the plane of FIG. 3 may also be present. In the illustrated embodiment, electrodes 22A, 22B, 22C and 22D are circumferentially spaced approximately equally around the perimeter of the inside wall of blood vessel V. Each electrode 22 is insulated from the lumen of blood vessel V by a thin flexible insulating sheet 24 (individually identified as 24A, 24B, 24C and 24D. Each of the insulating sheets 24 is conformally disposed against the internal wall of blood vessel V. In alternative embodiments, two or more electrodes are disposed on a common insulating sheet. Insulating sheets 24 may be joined together or may be different parts of a continuous sheet.


E1, E2, E3 and E4 illustrate the areas corresponding to electrodes 24A through 24D in which the electrical field associated with current flow at the corresponding electrode is strong enough to stimulate a nerve. Increasing the strength of the signal (e.g. a stimulation pulse) at an electrode increases the affected area (as indicated by the larger dotted regions).



FIG. 3 shows two nerves N4 and N5. It can be seen that a stimulation signal from electrode 22A can stimulate nerve N4. A stimulation signal from electrode 22B can stimulate nerve N5. The arrangement of blood vessel V and nerves N4 and N5 is like the arrangement of the internal jugular vein and the phrenic and vagus nerves in the neck region of a person. With an arrangement as shown in FIG. 3, a target phrenic nerve at the location of N4 can be preferentially stimulated by electrode 22A due to greater proximity of electrode 22A and also due to the shape of the area E1 affected by electrode 22A. The vagus nerve at location N5 is usually approximately diametrically opposite from electrode 22A and is not affected by signals delivered at normal levels at electrode 22A. The vagus nerve is, however, affected by signals delivered at electrode 22C.


The phrenic nerve and vagus nerve in adult humans are each typically about 2 mm in diameter. The lumen of the internal jugular vein in adult humans is typically in the range of about 10 mm to 20 mm in diameter. The distance from the phrenic nerve to the internal jugular vein and the distance from the vagus nerve to the internal jugular vein are each typically in the range of about 2 mm to about 10 mm. Generally the phrenic nerve and vagus nerve are on opposite sides of the internal jugular vein so that they are roughly 15 mm to 30 mm apart from one another. This arrangement facilitates the ability to perform transvascular stimulation of only the vagus nerve or only the phrenic nerve without stimulating the other nerve. A system according to some embodiments stimulates the phrenic nerve or vagus nerve only. A system according to other embodiments selectively stimulates either or both of the phrenic and vagus nerves from an electrode structure located in the internal jugular vein.


In many cases, nerves comprise a plurality of fascicles. For example, in the example illustrated in FIG. 3, the phrenic nerve N4 is composed of three phrenic fascicles PF1, PF2, and PF3. These phrenic fascicles may be selectively recruited by progressive levels of stimulation current at electrode 22A. At lower stimulation levels, only PF1 is recruited. At higher levels PF1 and PF2 are both recruited. At still higher levels, all of PF1, PF2 and PF3 are recruited. In FIG. 3, the vagus nerve N5 is composed of two vagus fascicles VF1, and VF2 that may be selectively recruited by progressive levels of stimulation current at electrode 22C. At lower stimulation levels only VF1 is recruited. At higher stimulation levels both VF1 and VF2 are recruited.


It is desirable that an electrode structure provide a minimum obstruction to the flow of blood in lumen L of a blood vessel V. Therefore, electrode structures are preferably thin in comparison to the inner diameter of blood vessel V. In some embodiments, a structure that supports electrodes and insulating backing sheets gently urges the electrodes and insulating backing sheets radially outward in lumen L so as to leave an open passage for blood flow past the electrode structure. To prevent the disruption or blockage of blood flow in a blood vessel, the cross-sectional area of an intravascular electrode structure should not exceed a certain fraction of the cross-sectional area of the lumen of the blood vessel. A round blood vessel with an internal diameter of 10 mm has a cross-sectional area of approximately 75 mm2. The circumference of the electrode structure when expanded in the blood vessel should preferably not be greater than about 10×π mm, (approximately 30 mm). If the thickness of an electrode structure is between about 0.3 and 0.5 mm then the cross-sectional area of the electrode structure will be about 10 mm2 to 15 mm2, which represents less than 20% of the lumen of the vessel.



FIGS. 4A, 4B and 4C show an electrode structure 30 according to an example embodiment. Electrode structure 30 comprises a plurality of electrodes 32 disposed on a flexible electrically-insulating sheet 34. Electrode structure is initially introduced into a blood vessel V tightly curled up around an expandable stent 35 inside an introducer tube 36. Stent 35 may, for example, comprise an expandable wire stent. A variety of suitable expandable wire stents is available from medical devices manufacturers.


Electrode structure 30 is guided to a desired location in a blood vessel V inside introducer tube 36. At the desired location, introducer tube 36 is retracted to allow electrically-insulating sheet 34 to begin to unroll as shown in FIG. 4B. Stent 35 is then expanded in order to further unroll electrically-insulating sheet 34 and to urge electrically insulating sheet 34 and the electrodes 32 carried on electrically-insulating sheet 34 against the inner wall of blood vessel V as shown in FIG. 4C.


In the illustrated embodiment, stent 35 is attached to sheet 34 at a point, row of points or line 37. Stent 35 is left in place to retain electrodes 32 and sheet 34.


Stent 35 may comprise any suitable type of expandable stent. A wide range of such stents are known. Stent 35 is expanded in a manner appropriate to the stent. For example, in some embodiments a balloon is placed inside the stent and the stent is expanded by inflating the balloon. The balloon may be withdrawn after the stent has been expanded.



FIGS. 5A, 5B and 5C illustrate an electrode structure 40 which is similar to electrode structure 30 except that it has electrodes 42 supported on a flexible sheet 44 and an engagement mechanism 47 which allows opposed edges portions 44A and 44B of flexible sheet 44 to be locked together when flexible sheet 44 has been opened within the lumen L of blood vessel V. The locking together of edge portions 44A and 44B holds flexible sheet 44 in an expanded configuration with electrodes 42 contacting the inner surface of wall W. Electrode structure 40 does not have a stent inside flexible sheet 44 (although a stent could optionally be added to provide further support for sheet 44). Sheet 44 may be made so that it has a tendency to unroll toward a configuration that is less tightly-rolled than shown in either of FIG. 5A or 5B. This tendency will bias sheet 44 to open into the configuration of FIG. 5B when removed from insertion tube 46 and will help to hold sheet 44 in place inside blood vessel V.


In the illustrated embodiment, mechanism 47 comprises mating sets of ridges 47A and 47B that extend longitudinally respectively along edge portions 44A and 44B. Ridges 47A and 47B are on opposing major surfaces of sheet 44 so that they can contact one another when sheet 44 is sufficiently unrolled. As shown in FIG. 5B, ridges 47A and 47B interlock when sheet 44 is unrolled as fully as the dimension of blood vessel V will permit. Mechanism 47 thus serves to retain sheet 44 and electrodes 42 snugly against the inside of wall W and prevent sheet 44 from curling inwardly or moving away from the wall W.


In preferred embodiments, mechanism 47 permits engagement of edge portions 44A and 44B in a range of degrees of overlap. Thus, mechanism 47 allows engagement of edge portions 44A and 44B when sheet 44 has been expanded against the inner wall of blood vessels having sizes within a given range of different sizes.


Alternative engagement mechanisms 47 are possible. For example, in some embodiments, a biocompatible adhesive is introduced between edge portions 44A and 44B. In other embodiments, ridges or other interlocking features and a biocompatible glue are both used.


An electrode structure 40 may be placed in a desired location by: introducing and sliding the electrode structure along a blood vessel to a desired location; at the desired location, sliding electrode structure 40 out of tube 46; if electrode structure 40 is partially or entirely self-unwinding, allowing electrode structure 40 to unwind; and, if necessary, inflating a balloon 49 to fully expand electrode structure 40 and/or engage engagement mechanism 47. Introducing the electrode structure may comprise cannulating the blood vessel and introducing the electrode structure at the cannulation site.



FIG. 5C illustrates a method for removing or relocating an electrode structure 40. Electrode structure 40 comprises a tab 48 or other projection that is attached to sheet 44 near or at an inside edge thereof and is graspable from within lumen L. A tool 50 is inserted into lumen L and has jaws 51 operable to grasp tab 48. At position 50A jaws 51 of tool 50 are opened to receive tab 48. At position 50B, jaws 51 have been operated to grasp tab 48. At position 50C tool 50 has been moved toward the center of lumen L and tool 50 has thereby peeled the inner edge of sheet 44 away from wall W. Tool 50 may be rotated about its axis to roll electrode structure 40 into a smaller configuration. Electrode structure 40 may then be moved along blood vessel 44 to a new position; or pulled into an insertion tube for safe removal from blood vessel V.



FIGS. 6 and 6A show an electrode structure 70 that includes a rolled, flexible electrically-insulating sheet 74 carrying electrodes 72. Sheet 74 may be opened by partial unrolling within a blood vessel V. A tubular retainer 73 may then be inserted to retain sheet 74 and electrodes 72 in place against a wall of the blood vessel. In cases where electrode structure 70 is to be inserted into the blood vessel through an incision that is smaller than the lumen of the blood vessel then tubular retainer 73 may be expandable so that it can be introduced through the opening and then expanded to a size suitable for retaining sheet 74 and electrodes 72.


Retainer 73 has a diameter selected such that, when placed inside sheet 74, it will retain sheet 74 and electrodes 72 in close apposition to the inside wall of the blood vessel for as long as required. The outside diameter of retainer 73 is chosen to closely match the inner diameter of the blood vessel V minus twice the thickness of sheet 74. For example, for a blood vessel with an inside diameter of 10 mm and an electrode structure 70 with sheet thickness of ½ mm, the outside diameter of retainer 73 should be approximately 10 mm−2×½ mm=9 mm. Retainers 73 in a range of diameters may be provided to allow a surgeon to select and insert the best size. In typical blood vessels having inner diameters of 10 mm or more, the length of retainer 73 should be at least about twice its diameter to ensure that retainer 73 will not tilt inside the blood vessel. The wall thickness of retainer 73 may be fairly small, for example, up to about 0.3 mm or so. Retainer 73 may be made of a suitable material such as a biocompatible metal (e.g. stainless steel or titanium) or a high-strength biocompatible polymer.


Wires 75 carry signals from a signal generator to electrodes 72. In an alternative embodiment, a signal generator is integrated with electrode structure 70. Such as signal generator may be controlled to issue stimulation pulses in response to control signals provided by way of a suitable wireless link.



FIGS. 7A to 7G show examples of electrode structures. Electrode structure 80 of FIG. 7A has four electrodes 82 (individually 82A to 82D) supported on a major face 81 of a flexible insulating sheet 84. Insulated leads 85 connect electrodes 82 to a signal generator (not shown in FIG. 7A). Sheet 84 may comprise a flexible layer of silicone for example. Electrodes 82 and electrode leads 85 may be of any suitable shape and material; e.g., stainless steel or platinum-iridium multi-stranded wire electrodes with Teflon™ coated wire leads.


An electrode structure 80 may be fabricated, for example, by connecting suitable electrodes to coated wire leads and then embedding the electrodes and leads in a layer of silicone such that the electrodes are exposed on one major face of the silicone layer but not the other.


Electrode structure 80 may be used to stimulate nerves by inserting electrode structure 80 into a blood vessel with electrodes 82 facing outwardly; and connecting any one electrode to the negative output of a standard constant-current (preferably) or constant-voltage nerve stimulator (cathodic stimulation) with respect to a remote reference electrode. Alternatively, any two electrodes 82 can be selected as anode and cathode.


Electrode structure 80 is similar to a nerve cuff but ‘inside out’. Each electrode preferentially stimulates a sector of tissue that radiates outwardly from a blood vessel V and spans a limited angle. For example, in an electrode structure having four electrodes disposed approximately every 90 degrees around the circumference of a blood vessel, the volume of tissue affected by each electrode may span approximately 90 degrees (see FIG. 3 for example).


A further improvement in angular selectivity may be obtained by providing longitudinal ridges on the outer major surface of electrode structure 80. The ridges enhance the electrical separation between circumferentially-adjacent electrodes 82. The ridges may be similar to the ridges described in Hoffer et al. U.S. Pat. No. 5,824,027 entitled NERVE CUFF HAVING ONE OR MORE ISOLATED CHAMBERS which is hereby incorporated herein by reference. Ridges 86 are shown schematically in FIG. 7A.


Optionally, sheet 84 may include geometrical complexities such as holes or protuberances to provide a better substrate for connective tissue adhesion and so increase the long-term mechanical stability and immobility of structure 80 inside a blood vessel.



FIG. 7B shows an electrode structure like electrode structure 80 wrapped into a tight spiral with electrodes facing out in preparation for insertion into a blood vessel.



FIG. 7C shows an electrode structure 90 according to another embodiment.


Electrode structure 90 comprises a flexible sheet 94 that supports four pairs of electrodes 92. Sheet 94 may comprise a thin flexible silicone sheet, for example. Electrical leads 93 are provided to connect corresponding electrodes 92 to a signal source. Electrodes and electrode leads may be of any suitable shape and material; e.g., stainless steel or platinum-iridium multi-stranded wire with Teflon™ coated leads. In the illustrated embodiment, electrode contact surfaces are exposed through electrode windows in which insulation of the leads is not present. Electrodes 92A and 92E; 92B and 92F; 92C and 92G; and 92D and 92H may be paired, for example, as shown in FIG. 7D. As another example, electrodes 92A and 92B; 92C and 92D; 92E and 92F; and 92G and 92H may be paired as shown in FIG. 7E.


Electrode structure 90 may be applied to stimulate a nerve or nerves by inserting electrode structure 90 into a blood vessel with electrodes 92 facing outwardly; and connecting any two electrodes 92 to the negative and positive outputs of a standard constant-current or constant-voltage nerve stimulator. An effective mode of stimulation is to select a pair of electrodes that are aligned along a line that is generally parallel to the target nerve, such that the greatest potential difference during stimulation will be generated along the nerve axons in the target nerve. Since the target nerve and target blood vessel may not be strictly parallel to one another, it is useful to have multiple electrodes in an electrode structure from which the pair of electrodes that provide the greatest stimulation selectivity for a target nerve can be identified by trial and error.



FIG. 7F shows an electrode structure 90A that is like electrode structure 90 except that it includes ridges 91 of electrically-insulating material that extend between groups of electrodes 92.



FIG. 7G shows an electrode structure like electrode structure 90 prepared for insertion into a blood vessel. Electrode structure 90 is rolled up into a spiral and held by an outside retainer 95. Outside retainer 95 has relatively thin walls. For example, the wall thickness may be about ½ mm or less in some embodiments. Apertures 96 penetrate the wall of outside retainer 95 and allow flow of electrical currents. Apertures 96 could optionally be filled with electrically-conducting plugs.


At least one electrode 92 of electrode structure 90 is electrically exposed to the surroundings through an aperture 96. As the electrode structure is being advanced toward an intravascular target location (the target location may be determined in advance from an imaging survey study for each patient, and monitored with fluoroscopy during the ECS implant procedure), electrodes 92 are energized. Since at least some electrodes 92 are exposed by way of apertures 96 the target nerve will be stimulated when electrode structure 90 is close enough to the target nerve. An effect of stimulation of the target nerve can be watched for in order to determine when electrode structure has reached the vicinity of the target nerve. The response may be monitored to fine tune the position of electrode structure 90 in a blood vessel. Outside retainer 95 may be removed when electrode structure 90 is at the target location. Outside retainer 95 is tethered by a tether 97 so that it can be recovered after deployment of structure 90.



FIG. 7H shows structure 90 at its intended location in blood vessel V. Outer retainer 96 has been removed and the structure 90 has been allowed to unwind and deploy against the inside wall of blood vessel V. The width (circumferential dimension) of structure 90 is chosen to closely match the inside perimeter of blood vessel V at the target location. The inside dimension of the blood vessel V may have been previously determined from ultrasound imaging, balloon catheter, magnetic resonance imaging or other non-invasive or minimally-invasive imaging technique.


When electrode structure 90 is at its desired position for optimal stimulation of the target nerve, the outer retainer 95 is gently removed and withdrawn from the patient's body while structure 90 is kept in place, if needed, by means of a semi-rigid rod-like tool (not shown) that is temporarily used to stabilize structure 90 and prevent it from moving while outer retainer 95 is withdrawn. As the outer retainer 95 is withdrawn, structure 90 will naturally and rapidly unwrap toward its preferred enlarged-cylindrical (or near-planar in some embodiments) configuration and will stretch out against the inside wall of the blood vessel with electrodes 92 disposed outwardly in close contact to the blood vessel wall.


As noted above, the choice of electrodes to use to stimulate a target nerve can depend on the orientation of the target nerve relative to the blood vessel in which an electrode structure is deployed. Where a target nerve passes more or less at right angles to a blood vessel, it can be most efficient to stimulate the target nerve by passing electric current between two electrodes that are spaced apart circumferentially around the wall of the blood vessel. In such cases it may be desirable to provide elongated electrodes that extend generally parallel to the blood vessel (e.g. generally parallel to an axis of curvature of the electrode structure). Such elongated electrodes may be emulated by a row of smaller electrodes that are electrically connected together.



FIGS. 8A and 8B show a nerve N extending transversely to a blood vessel V. In the illustrated embodiment, the nerve extends generally at right angles to the blood vessel. An electrode structure 54 comprising first and second electrodes 55A and 55B (collectively electrodes 55) is located in lumen L of blood vessel V. Electrodes 55 are each close to or pressed against the inner face of wall W of blood vessel V. Electrode structure 54 may have additional electrodes as well as other features such as a structure for holding electrodes 54 in place however these are not shown in FIG. 8A or 8B for clarity. Electrodes 55A and 55B are spaced apart from one another in a circumferential direction around the periphery of blood vessel V. Electrodes 55 are ideally disposed in a plane in which nerve N lies and which intersects blood vessel V perpendicularly. Precise placement of the electrodes in such a configuration is not mandatory. Electrodes 55 are spaced apart in a direction that is generally along an axis of nerve N.


Each electrode 55 is protected against electrical contact with the blood in lumen L of blood vessel V by an insulating backing member 56. In the illustrated embodiment, backing members 56 comprise hollow insulating caps that may, for example, have the form of hollow hemispheres. An edge of each insulating cap contacts wall W of blood vessel V around the periphery of the corresponding electrode 55.


In this embodiment, electrodes 55 are connected in a bi-polar arrangement such that one electrode acts as a current source and the other acts as a current sink. It is not mandatory that the polarities of electrodes 55 always stay the same. For example, in some stimulation modes the polarities could be switched. In the illustrated embodiment, electrode 55A is connected as a cathode (negative) electrode while electrode 55B is connected as an anode (positive) electrode to a signal source (not shown in FIG. 8A or 8B). When a stimulation signal is applied between electrodes 55 an electric field is created. The electric field causes small electrical currents to flow between electrodes 55 by way of the surrounding tissues.


Since electrodes 55 are insulated from the lumen of blood vessel V, electric current flows out of the current source electrode 55A through wall W and surrounding tissues and returns to the current sink electrode 55B. The stimulation current flows longitudinally through the nerve N in the direction shown by arrows F. For stimulation pulses of sufficient duration and intensity, the nerve axons in target nerve N will generate action potentials that will be conducted along the stimulated axons in nerve N.


Where a target nerve extends generally parallel to a blood vessel it can be efficient to stimulate the target nerve by passing electric current between two electrodes that are spaced apart longitudinally along the wall of the blood vessel.



FIG. 8C shows a nerve N extending parallel to a blood vessel V. An electrode structure 88 having first and second electrodes 89A and 89B (collectively electrodes 89) is located inside blood vessel V with electrodes 89A and 89B close to, preferably against the inside of the wall W of blood vessel V. Electrode structure 88 may have additional electrodes as well as other features such as a structure for holding electrodes 89 in place however these are not shown in FIG. 8C for clarity. Electrodes 89A and 89B are spaced apart from one another in a longitudinal direction along blood vessel V. The electrodes are ideally disposed on a line extending parallel to an axis of the blood vessel although precise placement of the electrodes in such a configuration is not mandatory.


In this embodiment, electrodes 89A and 89B are connected in a bi-polar arrangement such that one electrode acts as a current source and the other acts as a current sink. It is not mandatory that the polarities of electrodes 89A and 89B always stay the same. For example, in some stimulation modes the polarities could be switched.


In the illustrated embodiment, electrode 89A is connected as a cathode (negative) electrode while electrode 89B is connected as an anode (positive) electrode to a signal source (not shown in FIG. 8C). Each electrode 89 is protected against electrical contact with the blood in lumen L of blood vessel V by an insulating backing member 87. In the illustrated embodiment, the backing members comprise hollow insulating caps that may, for example, have the form of hollow hemispheres. An edge of each insulating cap contacts the wall of blood vessel V around the periphery of the corresponding electrode 89.


Since electrodes 89 are electrically insulated from the blood in lumen L of blood vessel V, electric current flows out of the current source (e.g. cathode 89A), through wall W and eventually returns to the current sink (e.g. anode electrode 89B). This results in a stimulation current that flows longitudinally through nerve N in the direction shown by arrows F. For stimulation pulses of sufficient duration and intensity, the nerve axons in the target nerve will generate action potentials that will be conducted along the stimulated axons in nerve N.


Stimulating the phrenic nerves to regulate or cause breathing is an example application of electrode structures as described herein. The present invention provides a surgically simple, lower risk response to the need of stimulating the phrenic nerves to control the movement of the diaphragm and restore normal breathing rate in people who have lost control of diaphragm due to a central neurological lesion such as a high cervical spinal cord injury or disease, including quadriplegia; central alveolar hypoventilation; decreased day or night ventilatory drive (e.g. central sleep apnea, Ondine's Curse) or brain stem injury or disease. Phrenic nerves may be stimulated on an acute care or chronic basis.


The phrenic nerves provide the major nerve supply to the diaphragm. Each phrenic nerve contributes predominantly motor fibres solely to its hemidiaphragm. The passage taken by the right and left phrenic nerves through the thorax is different. This is largely due to the disposition of great vessels within the mediastinum. Occasionally, the phrenic nerve may be joined by an accessory phrenic nerve.


The phrenic nerve on both sides originates from the ventral rami of the third to fifth cervical nerves. The phrenic nerve passes inferiorly down the neck to the lateral border of scalenus anterior. Then, it passes medially across the border of scalenus anterior parallel to the internal jugular vein which lies inferomedially. At this point the phrenic nerve is deep to the prevertebral fascia, the transverse cervical artery and the suprascapular artery.


At the anterior, inferomedial margin of scalenus anterior and hence superficial to the second part of the right subclavian artery, the right phrenic nerve passes medially to cross the pleural cupola deep to the subclavian vein. More medially, it crosses the internal thoracic artery at approximately the level of the first costochondral junction.


Within the thorax the right phrenic nerve is in contact with mediastinal pleura laterally and medially, in succession from superior to inferior, the following venous structures: right brachiocephalic vein, superior vena cava, pericardium of the right atrium, inferior vena cava. From the level of the superior vena cava it is joined by the pericardiophrenic artery and both run inferiorly anterior to the lung root. The right phrenic nerve pierces the diaphragm in its tendinous portion just slightly lateral to the inferior vena caval foramen. It then forms three branches on the inferior surface of the diaphragm: anterior, lateral and posterior. These ramify out in a radial manner from the point of perforation to supply all but the periphery of the muscle.


At the anteroinferior medial margin of scalenus anterior, the left phrenic nerve crosses the first part of the left subclavian artery and then the internal thoracic artery sited slightly inferiorly. Passing inferiorly with the internal thoracic artery laterally, it lies deep to the left brachiocephalic vein and the left first costochondral joint. It receives a pericardiophrenic branch of the internal thoracic artery which stays with its distal course.


Within the thorax, the left phrenic nerve continues inferiorly and slightly laterally on the anterolateral aspect of the arch of the aorta, separated from the posterior right vagus nerve by the left superior intercostal vein. Then it descends anterior to the root of the left lung intermediate to fibrous pericardium medially and parietal pleura laterally. Finally, it curves inferiorly and anteriorly to reach the surface of the diaphragm which it pierces anterior to the central tendon and lateral to the pericardium. It then forms three branches on the inferior surface of the diaphragm: anterior, lateral and posterior. These ramify out in a radial manner from the point of perforation to supply all but the periphery of the muscle.


The accessory phrenic nerve on each side occurs in roughly 15-25% of people. It originates as a branch of the fifth cervical nerve which would otherwise pass to the subclavius. The accessory phrenic nerve begins lateral to the phrenic nerve in the neck and obliquely traverses the anterior surface of scalenus anterior as it descends. It joins the phrenic nerve at the root of the neck to descend to the diaphragm.



FIG. 9 shows the anatomy of the neck and, in particular, the relative locations of phrenic nerve (PhN), vagus nerve (VN) and internal jugular vein (IJV). Note that the IJV courses between the PhN and VN. The PhN merges with the IJV and the three structures run together distally at level of the clavicle (indicated by circle 99).


In one example embodiment illustrated in FIG. 9A, a minimally invasive nerve stimulation system (‘MINS’) 100 comprising a flexible intravascular electrode array 101, for example, an electrode structure of one of the embodiments described above is permanently placed inside a target blood vessel V (in this example the left Internal Jugular Vein, IJV) in close proximity to a target nerve (in this example the left phrenic nerve PhN). One or more electrodes of the electrode array is disposed for selective stimulation of the PhN. Other electrodes are optionally disposed for selective stimulation of a second target nerve, in this example the left vagus nerve VN.


The electrode leads 104 from electrode array 101 emerge from the cannulated BV at the original venous penetration site, C, and then course subcutaneously to connectors 105 that connect to the header of an implanted pulse generator 102 that is surgically placed in a standard subcutaneous pocket. The pocket may be in the upper chest wall for example. FIG. 9 shows only one electrode array 101 on the left side of the neck.


In this embodiment, the implanted MINS 100 stimulates the left PhN to assist breathing by causing rhythmic inspiratory movements of the diaphragm muscle (not shown in FIG. 9). Another electrode array may additionally be implanted in a blood vessel on the right side of the patient's body. For example, another electrode array 101 may be implanted in the right internal jugular vein for selective stimulation of the right PhN and, optionally, also the right VN, if so desired. The additional electrode array may be connected to internal pulse generator 102 or to a second internal pulse generator (not shown in FIG. 9).


MINS 100 may be installed percutaneously using standard procedures for the installation of deep catheters, cannulas, leads or other intravascular device. Such procedures are described in the medical literature. Once an electrode array has been introduced to a location near the target location in the internal jugular vein then the position of the electrode array may be fine-tuned by applying low-current stimulation signals to one or more of the electrodes in electrode array 101 and observing the patient's breathing.



FIGS. 10A and 10B illustrate the anatomy of the neck and chest and, in particular, the relative locations of the left and right phrenic nerves (PhN), vagus nerves (VN), internal jugular veins (DV), brachiocephalic veins (BCV), subclavian veins (SCV) and superior vena cava (SVC). The PhNs run approximately perpendicular to and close to the BCVs in areas 107R and 107L near the IJV/BCV junctions.


Each PhN may have more that one branch. The branches may join together at variable locations ranging from the neck region to the chest region below the IJV/BCV junctions. In the latter case, branches of the PhN on either side of the body may course on opposite sides of the BCVs. Two branches of the right PhN are labeled PhN-1 and PhN-2 in FIG. 10B. The right PhN may include branches that course on either side of the SVC. The left and right PhN extend respectively to left and right hemi-diaphragms (HD).



FIG. 11 shows a MINS 110 having electrode structures 111L and 111R (collectively 111) located respectively in a patient's left SCV and SVC vessels near the left- and right-PhN respectively. Leads 112L and 112R (collectively 112) respectively connect the electrodes of left- and right-electrode structures 111L and 111R to a signal generator. In the illustrated embodiment, the signal generator comprises an implantable pulse generator (IPG) 115. Alternatively, as described above, some or all functions of pulse generator 115 may be provided by circuitry that is co-located with or integrated with one or both of electrode structures 111. In some embodiments, pulse generator 115 generates control signals that are transmitted by way of a wireless communication link to cause circuitry that is local to electrode structures 111 to apply stimulation pulses by way of electrodes on electrode structures 111.


The implantable pulse generator may be configured to deliver electrical pulses to electrodes of the left- and right electrode structures 111 more-or-less simultaneously so that the left- and right-hemidiaphragms are induced to undergo breathing motions in a synchronized manner. IPG 115 may, for example, apply bursts of stimulus pulses at a rate of about 12 or 13 bursts per minute. Each burst may, for example, comprise 20-40 current pulses delivered at a rate of 20 Hz or so and last roughly 1 to 2 seconds. Each burst induces signals in the phrenic nerve that cause the diaphragm to move to provide inspiration. Expiration occurs between bursts.


MINIS 110 can be readily installed as shown in FIG. 11. Electrode structures 111R and 111L may both be introduced through the same intravascular insertion point C1 in the left SCV. In some embodiments, electrode structure 111L is installed first. In such embodiments, electrode structure 111L can be passed through the left SVC past electrode structure 111L (e.g. through a bore of electrode structure 111L) to its target location in the SVC. Flexible leadout cable 112R passes through electrode structure 111L. Both leadout cables 112 emerge from the SCV and course subcutaneously to a subcutaneous pocket area in the upper chest where the leadout cable connectors are connected to IPG 115.


Locating initial target positions for electrode structures 111 is facilitated because the SVC, heart and BCV can be readily visualized using available imaging techniques. It is known that the phrenic nerves pass tightly past the heart on each side. Therefore, target locations in the blood vessels within ±1 to 2 cm of the optimum positions for stimulating the phrenic nerves can be determined readily from images of the upper chest and lower neck.


The arrangement shown in FIG. 11 has the advantage that the distance from electrode structures 111 to the target nerves in these locations may be smaller, more uniform and more reproducible than for similar electrodes implanted in more proximal locations in the IJVs where the target PhNs run parallel to the IJVs, but at more variable distances (see FIG. 9, for example).


MINS 110 may be varied by leaving out one of electrode structures 111 and its associated cable 112. Such embodiments may be useful in acute care environments where it is necessary to provide breathing assistance using a simple quick procedure. Such embodiments may also be useful in chronic situations where stimulation of one hemi-diaphragm is sufficient. Where only one electrode structure 111 is implanted, the electrode structure may be at either the location of electrode structure 111R or the location of electrode structure 111L.



FIG. 12 shows a minimally-invasive nerve stimulation system 120 that is like MINS 110 of FIG. 11 but provides a wireless connection between an implantable pulse generator and circuits which deliver stimulation signals to electrodes. System 120 has two sets of intravascular electrodes 121A and 121B. In some embodiments, each set of electrodes comprises an electrode structure as described herein. Each set of electrodes 121A and 121B is connected by short flexible lead wires 123 to an associated RF receiver unit 124. RF receiver units receive wireless stimulation commands 125 from an implanted pulse generator 126 having an associated transmitter (which is built into implantable pulse generator 126 in the illustrated embodiment.


Each receiver unit 124 may comprise a hermetic package containing an antenna and circuitry to decode command signals and deliver stimulation pulses to the electrodes of the corresponding electrode array 121. Each receiver unit may be attached to an autonomous stent-like structure for safe, permanent and stable installation in a blood vessel near the associated electrode array 121. The receiver units may be powered by the RF signal received from implantable pulse generator 126. In such cases, the receiver units do not require internal batteries.


Implantable pulse generator 126 may contain batteries or another source of electrical energy, control circuitry and transmitter antennas to communicate with receiver units 124 and with an external programmer (not shown) that allows a therapist to program the implanted system.


In some embodiments, an implantable pulse generator or other signal source may have a primary battery or a rechargeable battery that can be periodically recharged through the patient's skin. In either case, it is desirable that the battery or other source of electrical power have an expected life span such that it will not require replacement for a reasonable period such as at least about 3 to 5 years.


Methods of stimulating the phrenic nerves, as described herein can have the advantages that:

    • electrodes do not come into contact with the delicate phrenic nerves;
    • there is no implanted structure that interferes with movement of the diaphragm;
    • the system may be implanted and self-contained such that no wires cross the skin;
    • access to both the right and left phrenic nerves can be provided through a single point of entry;
    • a control system, such as an implantable pulse generator may be placed in reasonably close proximity to an electrode structure so as to facilitate wireless control over the delivery of stimulation pulses at the electrode structure by the implantable pulse generator.


The applications of the apparatus and methods described herein are not limited to phrenic and vagus nerves. The apparatus and methods described herein may be applied to provide surgically simple, low risk solutions for stimulating a wide range of peripheral or cranial nerves. For example, the methods and apparatus may be applied to stimulate the obturator nerve in the hip/groin area or the trigeminal nerve in the head.


The apparatus and methods may be applied to treatment of a wide variety of disorders such as pain of peripheral or craniofacial origin, sensory deficits, paralysis or paresis of central origin, autonomic disorders, and generally any medical condition that can be treated or alleviated using neuromodulation by electrical stimulation of a nerve that is in close proximity to a larger blood vessel into which a flexible multi-channel electrode array can be deployed.


Advantageously, implantation of electrode structures in blood vessels is reversible and does not require surgical intervention directly involving the target nerves.


In some embodiments, signal generator 115 has sensors that sense a condition of the patient and adjust stimulation of the phrenic nerve based on input from the sensors. The sensors may detect things such as one or more of:

    • whether the patient is speaking or preparing to speak;
    • whether the patient is lying down or sitting or standing;
    • whether the patient is awake or asleep;
    • blood oxygen concentration;
    • blood CO2 concentration;
    • etc.


      In response to the sensor signals, the signal generator may adapt the pattern or rate of breathing. For example:
    • Breathing could be automatically suppressed when a sensor signal indicates that the patient is attempting to speak.
    • A breathing rate could be increased during periods of increased physical activity or low blood oxygen concentration.
    • A breathing rate could be decreased or regularized during periods of relaxation or sleep.
    • On-demand breathing stimulation could be provided in response to the detection of the onset of irregular breathing during sleep.


The sensors may be built into the signal generator. For example, the signal generator may include:

    • accelerometers and processor logic configured to determine from outputs of the accelerometers whether the patient's motions indicate that the patient is awake or asleep;
    • an inclinometer or accelerometer and processor logic configured to determine from one or more outputs of the inclinometer of accelerometer whether the patient is lying or upright.


Other sensors may be implanted. For example, in some embodiments, a blood chemistry sensor such as a blood oxygen sensor and/or a blood CO2 sensor is implanted at a suitable location in the patient. The blood oxygen monitor may be mounted on an electrode structure 111 for example. Other sensors may sense signals in the patient's nerves.


Where a component (e.g. an electrode, signal generator, lead, stent, assembly, device, antenna, circuit, etc.) is referred to above, unless otherwise indicated, reference to that component (including a reference to a “means”) should be interpreted as including as equivalents of that component any component which performs the function of the described component (i.e., that is functionally equivalent), including components which are not structurally equivalent to the disclosed structure which performs the function in the illustrated exemplary embodiments of the invention.


As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. For example, electrodes on an electrode structure may be arranged to provide unipolar, bipolar, tripolar or balanced tripolar electrode arrangements or combinations thereof. The example embodiments described herein include various features such as different geometries for insulating backing sheets, different arrangements of electrodes, different control arrangements, and the like. These features may be mixed and matched (i.e. combined on additional combinations) in other embodiments of the invention. Accordingly, the scope of the invention is to be construed in accordance with the substance defined by the following claims.

Claims
  • 1. A method for treating a patient, the method comprising: activating the patient's diaphragm by applying therapeutic electrical stimulation from a first electrode pair positioned within the patient's neck; andactivating the patient's diaphragm by applying therapeutic electrical stimulation from a second electrode pair positioned within the patient's neck, wherein the first electrode pair shares exactly one electrode in common with the second electrode pair.
  • 2. The method of claim 1, wherein the first electrode pair is positioned in the patient's neck percutaneously.
  • 3. The method of claim 1, wherein the first electrode pair is positioned within a blood vessel during the activating step.
  • 4. The method of claim 1, wherein the therapeutic electrical stimulation is delivered from a treatment location, and the method further includes: before the activating step, delivering electrical stimulation to one or more locations inside the neck;evaluating a patient response based on the delivered electrical stimulation; andselecting one or more of the locations as the treatment location.
  • 5. The method of claim 1, further comprising, in response to input from a breathing sensor configured to sense breathing of the patient, adjusting the therapeutic electrical stimulation being applied from the electrode pair.
  • 6. The method of claim 5, wherein securing the first electrode pair within the patient includes securing the first electrode pair with a rigid rod.
  • 7. The method of claim 4, wherein the therapeutic electrical stimulation has a greater intensity than the electrical stimulation delivered to the one or more locations inside the neck.
  • 8. A method for treating a patient, the method comprising: positioning at least part of an electrode structure within the patient's neck; andactivating the patient's diaphragm by applying therapeutic electrical stimulation from the electrode structure;wherein the positioning step, the activating step, or both, occurs while the patient is under mechanical ventilation.
  • 9. The method of claim 8, wherein positioning at least part of the electrode structure includes positioning a plurality of electrodes into the patient's neck.
  • 10. The method of claim 8, wherein positioning at least part of the electrode structure includes positioning a plurality of electrodes proximate to a phrenic nerve.
  • 11. The method of claim 8, wherein the electrode structure includes a pair of electrodes, and applying therapeutic electrical stimulation from the electrode structure includes applying stimulation from the pair of electrodes.
  • 12. The method of claim 8, wherein positioning at least part of an electrode structure within the patient's neck includes positioning a first electrode pair and a second electrode pair within the patient's neck.
  • 13. The method of claim 12, wherein the first electrode pair is at a different radial position, with respect to a longitudinal axis of the electrode structure, than the second electrode pair.
  • 14. The method of claim 12, wherein the first electrode pair defines a line parallel to a line defined by the second electrode pair.
  • 15. The method of claim 8, wherein the electrode structure includes a plurality of electrodes, and the method further comprises selecting an electrode pair of the plurality of electrodes; and applying therapeutic electrical stimulation from the electrode structure includes applying therapeutic electrical stimulation from the electrode pair.
  • 16. The method of claim 8, further comprising, in response to input from a breathing sensor configured to sense breathing of the patient, adjusting the therapeutic electrical stimulation being applied from the electrode structure.
  • 17. A method for treating a patient, the method comprising: positioning at least part of an electrode structure within the patient's neck, including positioning a first electrode pair and a second electrode pair within the patient's neck, wherein the first electrode pair is at a different radial position, with respect to a longitudinal axis of the electrode structure, than the second electrode pair; andactivating the patient's diaphragm by applying therapeutic electrical stimulation from the electrode structure.
  • 18. The method of claim 17, further comprising, in response to input from a breathing sensor configured to sense breathing of the patient, adjusting the therapeutic electrical stimulation being applied from the electrode structure.
  • 19. The method of claim 17, wherein the first electrode pair is positioned within a blood vessel during the activating step.
  • 20. The method of claim 17, wherein positioning at least part of the electrode structure includes positioning a plurality of electrodes proximate to a phrenic nerve.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/012,013, filed Jun. 19, 2018, which is a continuation of U.S. patent application Ser. No. 15/252,687, filed Aug. 31, 2016, now U.S. Pat. No. 10,022,546, issued Jul. 17, 2018, which is a continuation of U.S. patent application Ser. No. 14/792,006, filed Jul. 6, 2015, now U.S. Pat. No. 9,566,436, issued Feb. 14, 2017, which is a continuation of U.S. patent application Ser. No. 14/448,734, filed Jul. 31, 2014, now U.S. Pat. No. 9,108,059, issued Aug. 18, 2015, which is a continuation application of U.S. patent application Ser. No. 14/044,466, filed Oct. 2, 2013, now U.S. Pat. No. 9,220,898, issued Dec. 29, 2015, which is a continuation application of U.S. patent application Ser. No. 12/524,571, filed Jul. 25, 2009, now U.S. Pat. No. 8,571,662, issued Oct. 29, 2013, which is a 371 national stage application of PCT Patent Application No. PCT/CA2008/000179, filed Jan. 29, 2008, which claims priority from U.S. Provisional Patent Application No. 60/887,031, filed Jan. 29, 2007. The entirety of each of the above applications is incorporated herein by reference.

US Referenced Citations (685)
Number Name Date Kind
1693734 Waggoner Dec 1928 A
2532788 Sarnoff Dec 1950 A
2664880 Wales, Jr. Jan 1954 A
3348548 Chardack Oct 1967 A
3470876 John Oct 1969 A
3769984 Muench Nov 1973 A
3804098 Friedman Apr 1974 A
3817241 Grausz Jun 1974 A
3835864 Rasor et al. Sep 1974 A
3847157 Caillouette et al. Nov 1974 A
3851641 Toole et al. Dec 1974 A
3896373 Zelby Jul 1975 A
3938502 Bom Feb 1976 A
3983881 Wickham Oct 1976 A
4054881 Raab Oct 1977 A
4072146 Howes Feb 1978 A
4114601 Abels Sep 1978 A
4143872 Havstad et al. Mar 1979 A
4173228 Childress et al. Nov 1979 A
4249539 Mezrich et al. Feb 1981 A
4317078 Weed et al. Feb 1982 A
4380237 Newbower Apr 1983 A
4407294 Vilkomerson Oct 1983 A
4416289 Bresler Nov 1983 A
4431005 McCormick Feb 1984 A
4431006 Trimmer et al. Feb 1984 A
4445501 Bresler May 1984 A
RE31873 Howes Apr 1985 E
4573481 Bullara Mar 1986 A
4586923 Gould et al. May 1986 A
4587975 Salo et al. May 1986 A
4643201 Stokes Feb 1987 A
4674518 Salo Jun 1987 A
4681117 Brodman et al. Jul 1987 A
4683890 Hewson Aug 1987 A
4697595 Breyer et al. Oct 1987 A
4706681 Breyer et al. Nov 1987 A
4771788 Millar Sep 1988 A
4819662 Heil, Jr. et al. Apr 1989 A
4827935 Geddes et al. May 1989 A
4830008 Meer May 1989 A
4840182 Carlson Jun 1989 A
4852580 Wood Aug 1989 A
4860769 Fogarty et al. Aug 1989 A
4905698 Strohl, Jr. et al. Mar 1990 A
4911174 Pederson et al. Mar 1990 A
4934049 Kiekhafer et al. Jun 1990 A
4944088 Doan et al. Jul 1990 A
4951682 Petre Aug 1990 A
4957110 Vogel et al. Sep 1990 A
4989617 Memberg et al. Feb 1991 A
5005587 Scott Apr 1991 A
5036848 Hewson Aug 1991 A
5042143 Holleman et al. Aug 1991 A
5056519 Vince Oct 1991 A
5115818 Holleman et al. May 1992 A
5146918 Kallok et al. Sep 1992 A
5170802 Mehra Dec 1992 A
5184621 Vogel et al. Feb 1993 A
5224491 Mehra Jul 1993 A
5243995 Maier Sep 1993 A
5265604 Vince Nov 1993 A
5267569 Lienhard Dec 1993 A
5314463 Camps et al. May 1994 A
5316009 Yamada May 1994 A
5324322 Grill, Jr. et al. Jun 1994 A
5330522 Kreyenhagen Jul 1994 A
5345936 Pomeranz et al. Sep 1994 A
5383923 Webster, Jr. Jan 1995 A
5411025 Webster, Jr. May 1995 A
5417208 Winkler May 1995 A
5451206 Young Sep 1995 A
5456254 Pietroski et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5476498 Ayers Dec 1995 A
5486159 Mahurkar Jan 1996 A
5507725 Savage et al. Apr 1996 A
5524632 Stein et al. Jun 1996 A
5527358 Mehmanesh et al. Jun 1996 A
5531686 Lundquist et al. Jul 1996 A
5549655 Erickson Aug 1996 A
5555618 Winkler Sep 1996 A
5567724 Kelleher et al. Oct 1996 A
5584873 Shoberg et al. Dec 1996 A
5604231 Smith et al. Feb 1997 A
5665103 Lafontaine et al. Sep 1997 A
5678535 Dimarco Oct 1997 A
5683370 Luther et al. Nov 1997 A
5709853 Iino et al. Jan 1998 A
5716392 Bourgeois et al. Feb 1998 A
5733255 Dinh et al. Mar 1998 A
5755765 Hyde et al. May 1998 A
5776111 Tesio Jul 1998 A
5779732 Amundson Jul 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5788681 Weaver et al. Aug 1998 A
5813399 Isaza et al. Sep 1998 A
5814086 Hirschberg et al. Sep 1998 A
RE35924 Winkler Oct 1998 E
5824027 Hoffer et al. Oct 1998 A
5827192 Gopakumaran et al. Oct 1998 A
5916163 Panescu et al. Jun 1999 A
5944022 Nardella et al. Aug 1999 A
5954761 Machek et al. Sep 1999 A
5967978 Littmann et al. Oct 1999 A
5971933 Gopakumaran et al. Oct 1999 A
5983126 Wittkampf Nov 1999 A
6006134 Hill et al. Dec 1999 A
6024702 Iversen Feb 2000 A
6096728 Collins et al. Aug 2000 A
6120476 Fung et al. Sep 2000 A
6123699 Webster, Jr. Sep 2000 A
6126649 Vantassel et al. Oct 2000 A
6136021 Tockman et al. Oct 2000 A
6157862 Brownlee et al. Dec 2000 A
6161029 Spreigl et al. Dec 2000 A
6165133 Rapoport Dec 2000 A
6166048 Bencherif Dec 2000 A
6171277 Ponzi Jan 2001 B1
6183463 Webster, Jr. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6201994 Warman et al. Mar 2001 B1
6208881 Champeau Mar 2001 B1
6210339 Kiepen et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6216045 Black et al. Apr 2001 B1
6236892 Feler May 2001 B1
6240320 Spehr et al. May 2001 B1
6249708 Nelson et al. Jun 2001 B1
6251126 Ottenhoff et al. Jun 2001 B1
6269269 Ottenhoff et al. Jul 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6295475 Morgan Sep 2001 B1
6360740 Ward et al. Mar 2002 B1
6397108 Camps et al. May 2002 B1
6400976 Champeau Jun 2002 B1
6415183 Scheiner et al. Jul 2002 B1
6415187 Kuzma et al. Jul 2002 B1
6438427 Rexhausen et al. Aug 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6449507 Hill et al. Sep 2002 B1
6463327 Lurie et al. Oct 2002 B1
6493590 Wessman et al. Dec 2002 B1
6508802 Rosengart et al. Jan 2003 B1
6526321 Spehr Feb 2003 B1
6569114 Ponzi et al. May 2003 B2
6584362 Scheiner et al. Jun 2003 B1
6585718 Hayzelden et al. Jul 2003 B2
6587726 Lurie et al. Jul 2003 B2
6602242 Fung et al. Aug 2003 B1
6610713 Tracey Aug 2003 B2
6630611 Malowaniec Oct 2003 B1
6643552 Edell et al. Nov 2003 B2
6651652 Waard Nov 2003 B1
6682526 Jones et al. Jan 2004 B1
6702780 Gilboa et al. Mar 2004 B1
6718208 Hill et al. Apr 2004 B2
6721603 Zabara et al. Apr 2004 B2
6757970 Kuzma et al. Jul 2004 B1
6778854 Puskas Aug 2004 B2
6779257 Kiepen et al. Aug 2004 B2
6844713 Steber et al. Jan 2005 B2
RE38705 Hill et al. Feb 2005 E
6881211 Schweikert et al. Apr 2005 B2
6885888 Rezai Apr 2005 B2
6907285 Denker et al. Jun 2005 B2
6934583 Weinberg et al. Aug 2005 B2
6981314 Black et al. Jan 2006 B2
6999820 Jordan Feb 2006 B2
7018374 Schon et al. Mar 2006 B2
7047627 Black et al. May 2006 B2
7071194 Teng Jul 2006 B2
7072720 Puskas Jul 2006 B2
7077823 McDaniel Jul 2006 B2
7080645 Genger et al. Jul 2006 B2
7082331 Park et al. Jul 2006 B1
7130700 Gardeski et al. Oct 2006 B2
7142903 Rodriguez et al. Nov 2006 B2
7149585 Wessman et al. Dec 2006 B2
7155278 King et al. Dec 2006 B2
7167751 Whitehurst et al. Jan 2007 B1
7168429 Matthews et al. Jan 2007 B2
7184829 Hill et al. Feb 2007 B2
7206636 Turcott Apr 2007 B1
7212867 Van Venrooij et al. May 2007 B2
7225016 Koh May 2007 B1
7225019 Jahns et al. May 2007 B2
7229429 Martin et al. Jun 2007 B2
7231260 Wallace et al. Jun 2007 B2
7235070 Vanney Jun 2007 B2
7269459 Koh Sep 2007 B1
7277757 Casavant et al. Oct 2007 B2
7283875 Larsson et al. Oct 2007 B2
7340302 Falkenberg et al. Mar 2008 B1
7363085 Benser et al. Apr 2008 B1
7363086 Koh et al. Apr 2008 B1
7371220 Koh et al. May 2008 B1
7416552 Paul et al. Aug 2008 B2
7421296 Benser et al. Sep 2008 B1
7454244 Kassab et al. Nov 2008 B2
7519425 Benser et al. Apr 2009 B2
7519426 Koh et al. Apr 2009 B1
7522953 Gharib et al. Apr 2009 B2
7553305 Honebrink et al. Jun 2009 B2
7555349 Wessman et al. Jun 2009 B2
7569029 Clark et al. Aug 2009 B2
7591265 Lee et al. Sep 2009 B2
7593760 Rodriguez et al. Sep 2009 B2
7613524 Jordan Nov 2009 B2
7636600 Koh Dec 2009 B1
7670284 Padget et al. Mar 2010 B2
7672728 Libbus et al. Mar 2010 B2
7672729 Koh et al. Mar 2010 B2
7676275 Farazi et al. Mar 2010 B1
7676910 Kiepen et al. Mar 2010 B2
7697984 Hill et al. Apr 2010 B2
7747323 Libbus et al. Jun 2010 B2
7771388 Olsen et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7794407 Rothenberg Sep 2010 B2
7797050 Libbus et al. Sep 2010 B2
7813805 Farazi Oct 2010 B1
7819883 Westlund et al. Oct 2010 B2
7840270 Ignagni et al. Nov 2010 B2
7853302 Rodriguez et al. Dec 2010 B2
7869865 Govari et al. Jan 2011 B2
7891085 Kuzma et al. Feb 2011 B1
7925352 Stack et al. Apr 2011 B2
7949409 Bly et al. May 2011 B2
7949412 Harrison et al. May 2011 B1
7962215 Ignagni et al. Jun 2011 B2
7970475 Tehrani et al. Jun 2011 B2
7972323 Bencini et al. Jul 2011 B1
7974693 David et al. Jul 2011 B2
7974705 Zdeblick et al. Jul 2011 B2
7979128 Tehrani et al. Jul 2011 B2
7994655 Bauer et al. Aug 2011 B2
8000765 Rodriguez et al. Aug 2011 B2
8019439 Kuzma et al. Sep 2011 B2
8021327 Selkee Sep 2011 B2
8036750 Caparso et al. Oct 2011 B2
8050765 Lee et al. Nov 2011 B2
8052607 Byrd Nov 2011 B2
8104470 Lee et al. Jan 2012 B2
8116872 Tehrani et al. Feb 2012 B2
8121692 Haefner et al. Feb 2012 B2
8135471 Zhang et al. Mar 2012 B2
8140164 Tehrani et al. Mar 2012 B2
8147486 Honour et al. Apr 2012 B2
8160701 Zhao et al. Apr 2012 B2
8160711 Tehrani et al. Apr 2012 B2
8195297 Penner Jun 2012 B2
8200336 Tehrani et al. Jun 2012 B2
8206343 Racz Jun 2012 B2
8224456 Daglow et al. Jul 2012 B2
8233987 Gelfand et al. Jul 2012 B2
8233993 Jordan Jul 2012 B2
8239037 Glenn et al. Aug 2012 B2
8244358 Tehrani et al. Aug 2012 B2
8244359 Gelfand et al. Aug 2012 B2
8244378 Bly et al. Aug 2012 B2
8255056 Tehrani Aug 2012 B2
8256419 Sinderby et al. Sep 2012 B2
8265736 Sathaye et al. Sep 2012 B2
8265759 Tehrani et al. Sep 2012 B2
8275440 Rodriguez et al. Sep 2012 B2
8280513 Tehrani et al. Oct 2012 B2
8315713 Burnes et al. Nov 2012 B2
8321808 Goetz et al. Nov 2012 B2
8335567 Tehrani et al. Dec 2012 B2
8340783 Sommer et al. Dec 2012 B2
8348941 Tehrani Jan 2013 B2
8369954 Stack et al. Feb 2013 B2
8374704 Desai et al. Feb 2013 B2
8388541 Messerly et al. Mar 2013 B2
8388546 Rothenberg Mar 2013 B2
8391956 Zellers et al. Mar 2013 B2
8401640 Zhao et al. Mar 2013 B2
8401651 Caparso et al. Mar 2013 B2
8406883 Barker Mar 2013 B1
8406885 Ignagni et al. Mar 2013 B2
8412331 Tehrani et al. Apr 2013 B2
8412350 Bly Apr 2013 B2
8428711 Lin et al. Apr 2013 B2
8428726 Ignagni et al. Apr 2013 B2
8428730 Stack et al. Apr 2013 B2
8433412 Westlund et al. Apr 2013 B1
8442638 Libbus et al. May 2013 B2
8457764 Ramachandran et al. Jun 2013 B2
8467876 Tehrani Jun 2013 B2
8473068 Farazi Jun 2013 B2
8478412 Ignagni et al. Jul 2013 B2
8478413 Karamanoglu et al. Jul 2013 B2
8478426 Barker Jul 2013 B2
8483834 Lee et al. Jul 2013 B2
8504158 Karamanoglu et al. Aug 2013 B2
8504161 Kornet et al. Aug 2013 B1
8509901 Tehrani Aug 2013 B2
8509902 Cho et al. Aug 2013 B2
8509919 Yoo et al. Aug 2013 B2
8511303 Djupesland Aug 2013 B2
8512256 Rothenberg Aug 2013 B2
8522779 Lee et al. Sep 2013 B2
8527036 Jalde et al. Sep 2013 B2
8532793 Morris et al. Sep 2013 B2
8554323 Haefner et al. Oct 2013 B2
8560072 Caparso et al. Oct 2013 B2
8560086 Just et al. Oct 2013 B2
8571662 Hoffer Oct 2013 B2
8571685 Daglow et al. Oct 2013 B2
8615297 Sathaye et al. Dec 2013 B2
8617228 Wittenberger et al. Dec 2013 B2
8620412 Griffiths et al. Dec 2013 B2
8620450 Tockman et al. Dec 2013 B2
8626292 Mccabe et al. Jan 2014 B2
8630707 Zhao et al. Jan 2014 B2
8644939 Wilson et al. Feb 2014 B2
8644952 Desai et al. Feb 2014 B2
8646172 Kuzma et al. Feb 2014 B2
8650747 Kuzma et al. Feb 2014 B2
8676323 Ignagni et al. Mar 2014 B2
8676344 Desai et al. Mar 2014 B2
8694123 Wahlstrand et al. Apr 2014 B2
8696656 Abboud et al. Apr 2014 B2
8706223 Zhou et al. Apr 2014 B2
8706235 Karamanoglu et al. Apr 2014 B2
8706236 Ignagni et al. Apr 2014 B2
8718763 Zhou et al. May 2014 B2
8725259 Kornet et al. May 2014 B2
8738154 Zdeblick et al. May 2014 B2
8755889 Scheiner Jun 2014 B2
8774907 Rothenberg Jul 2014 B2
8781578 Mccabe et al. Jul 2014 B2
8781582 Ziegler et al. Jul 2014 B2
8781583 Cornelussen et al. Jul 2014 B2
8801693 He et al. Aug 2014 B2
8805511 Karamanoglu et al. Aug 2014 B2
8838245 Lin et al. Sep 2014 B2
8858455 Rothenberg Oct 2014 B2
8863742 Blomquist et al. Oct 2014 B2
8886277 Kim et al. Nov 2014 B2
8897879 Karamanoglu et al. Nov 2014 B2
8903507 Desai et al. Dec 2014 B2
8903509 Tockman et al. Dec 2014 B2
8909341 Gelfand et al. Dec 2014 B2
8914113 Zhang et al. Dec 2014 B2
8918169 Kassab et al. Dec 2014 B2
8918987 Kuzma et al. Dec 2014 B2
8923971 Haefner et al. Dec 2014 B2
8942823 Desai et al. Jan 2015 B2
8942824 Yoo et al. Jan 2015 B2
8948884 Ramachandran et al. Feb 2015 B2
8968299 Kauphusman et al. Mar 2015 B2
8972015 Stack et al. Mar 2015 B2
8983602 Sathaye et al. Mar 2015 B2
9008775 Sathaye et al. Apr 2015 B2
9026231 Hoffer May 2015 B2
9037264 Just et al. May 2015 B2
9042981 Yoo et al. May 2015 B2
9072864 Putz Jul 2015 B2
9072899 Nickloes Jul 2015 B1
9108058 Hoffer Aug 2015 B2
9108059 Hoffer Aug 2015 B2
9125578 Grunwald Sep 2015 B2
9138580 Ignagni et al. Sep 2015 B2
9138585 Saha et al. Sep 2015 B2
9149642 Mccabe et al. Oct 2015 B2
9168377 Hoffer Oct 2015 B2
9174046 Francois et al. Nov 2015 B2
9199075 Westlund Dec 2015 B1
9205258 Simon et al. Dec 2015 B2
9216291 Lee et al. Dec 2015 B2
9220898 Hoffer Dec 2015 B2
9226688 Jacobsen et al. Jan 2016 B2
9226689 Jacobsen et al. Jan 2016 B2
9242088 Thakkar et al. Jan 2016 B2
9259573 Tehrani et al. Feb 2016 B2
9295846 Westlund et al. Mar 2016 B2
9314618 Imran et al. Apr 2016 B2
9333363 Hoffer et al. May 2016 B2
9345422 Rothenberg May 2016 B2
9370657 Tehrani et al. Jun 2016 B2
9398931 Wittenberger et al. Jul 2016 B2
9415188 He et al. Aug 2016 B2
9427566 Reed et al. Aug 2016 B2
9427588 Sathaye et al. Aug 2016 B2
9468755 Westlund Oct 2016 B2
9474894 Mercanzini et al. Oct 2016 B2
9485873 Shah et al. Nov 2016 B2
9498625 Bauer Nov 2016 B2
9498631 Demmer et al. Nov 2016 B2
9504837 Demmer et al. Nov 2016 B2
9532724 Grunwald et al. Jan 2017 B2
9533160 Brooke et al. Jan 2017 B2
9539429 Brooke et al. Jan 2017 B2
9545511 Thakkar et al. Jan 2017 B2
9561369 Burnes et al. Feb 2017 B2
9566436 Hoffer et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9597509 Hoffer et al. Mar 2017 B2
9615759 Hurezan et al. Apr 2017 B2
9623239 Francois et al. Apr 2017 B2
9623252 Sathaye et al. Apr 2017 B2
9662494 Young et al. May 2017 B2
9682235 O'Mahony et al. Jun 2017 B1
9694185 Bauer Jul 2017 B2
9717899 Kuzma et al. Aug 2017 B2
9724018 Cho et al. Aug 2017 B2
9744349 Westlund et al. Aug 2017 B2
9744351 Gelfand et al. Aug 2017 B1
9776005 Meyyappan et al. Oct 2017 B2
9861817 Cho et al. Jan 2018 B2
9872989 Jung et al. Jan 2018 B2
9884178 Bouton et al. Feb 2018 B2
9884179 Bouton et al. Feb 2018 B2
9919149 Imran et al. Mar 2018 B2
9931504 Thakkar et al. Apr 2018 B2
9950167 Hoffer et al. Apr 2018 B2
9956132 Francois et al. May 2018 B2
9956396 Young et al. May 2018 B2
9968785 Hoffer et al. May 2018 B2
9968786 Bauer May 2018 B2
9987488 Gelfand et al. Jun 2018 B1
9999768 Gelfand et al. Jun 2018 B2
1002254 Hoffer et al. Jul 2018 A1
1003501 Thakkar et al. Jul 2018 A1
1003992 Thakkar et al. Aug 2018 A1
1019542 Thakkar et al. Feb 2019 A1
1029316 Nash et al. May 2019 A1
1030027 Gelfand et al. May 2019 A1
1031503 Bauer Jun 2019 A1
1033559 Bauer Jul 2019 A1
1036936 Bauer et al. Aug 2019 A1
1039131 Hoffer et al. Aug 2019 A1
1040636 Westlund et al. Sep 2019 A1
1041320 Saha et al. Sep 2019 A1
1044899 Olson Oct 2019 A1
1049327 Bauer Dec 2019 A1
20010052345 Niazi Dec 2001 A1
20020026228 Schauerte Feb 2002 A1
20020056454 Samzelius May 2002 A1
20020065544 Smits et al. May 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020128546 Silver Sep 2002 A1
20020188325 Hill et al. Dec 2002 A1
20030078623 Weinberg et al. Apr 2003 A1
20030125786 Gliner et al. Jul 2003 A1
20030195571 Burnes et al. Oct 2003 A1
20040003813 Banner et al. Jan 2004 A1
20040010303 Bolea et al. Jan 2004 A1
20040030362 Hill et al. Feb 2004 A1
20040044377 Larsson et al. Mar 2004 A1
20040064069 Reynolds et al. Apr 2004 A1
20040077936 Larsson et al. Apr 2004 A1
20040088015 Casavant et al. May 2004 A1
20040111139 McCreery Jun 2004 A1
20040186543 King et al. Sep 2004 A1
20040210261 King et al. Oct 2004 A1
20050004565 Vanney Jan 2005 A1
20050013879 Lin et al. Jan 2005 A1
20050021102 Ignagni et al. Jan 2005 A1
20050027338 Hill Feb 2005 A1
20050033136 Govari et al. Feb 2005 A1
20050033137 Oral et al. Feb 2005 A1
20050043765 Williams et al. Feb 2005 A1
20050065567 Lee et al. Mar 2005 A1
20050070981 Verma Mar 2005 A1
20050075578 Gharib et al. Apr 2005 A1
20050085865 Tehrani Apr 2005 A1
20050085866 Tehrani Apr 2005 A1
20050085867 Tehrani et al. Apr 2005 A1
20050085868 Tehrani et al. Apr 2005 A1
20050085869 Tehrani et al. Apr 2005 A1
20050090870 Hine Apr 2005 A1
20050096710 Kieval May 2005 A1
20050109340 Tehrani May 2005 A1
20050113710 Stahmann et al. May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050138791 Black et al. Jun 2005 A1
20050138792 Black et al. Jun 2005 A1
20050143787 Boveja et al. Jun 2005 A1
20050165457 Benser et al. Jul 2005 A1
20050182454 Gharib et al. Aug 2005 A1
20050187584 Denker et al. Aug 2005 A1
20050192655 Black et al. Sep 2005 A1
20050251238 Wallace et al. Nov 2005 A1
20050251239 Wallace et al. Nov 2005 A1
20050288728 Libbus et al. Dec 2005 A1
20050288730 Deem et al. Dec 2005 A1
20060030894 Tehrani Feb 2006 A1
20060035849 Spiegelman et al. Feb 2006 A1
20060058852 Koh et al. Mar 2006 A1
20060074449 Denker et al. Apr 2006 A1
20060122661 Mandell Jun 2006 A1
20060122662 Tehrani et al. Jun 2006 A1
20060130833 Younes Jun 2006 A1
20060142815 Tehrani et al. Jun 2006 A1
20060149334 Tehrani et al. Jul 2006 A1
20060155222 Sherman et al. Jul 2006 A1
20060167523 Tehrani et al. Jul 2006 A1
20060188325 Dolan Aug 2006 A1
20060195159 Bradley et al. Aug 2006 A1
20060217791 Spinka et al. Sep 2006 A1
20060024222 Bradley et al. Oct 2006 A1
20060224209 Meyer Oct 2006 A1
20060229677 Moffitt et al. Oct 2006 A1
20060247729 Tehrani Nov 2006 A1
20060253161 Libbus et al. Nov 2006 A1
20060253182 King Nov 2006 A1
20060258667 Teng Nov 2006 A1
20060259107 Caparso et al. Nov 2006 A1
20060282131 Caparso et al. Dec 2006 A1
20060287679 Stone Dec 2006 A1
20070005053 Dando Jan 2007 A1
20070021795 Tehrani Jan 2007 A1
20070027448 Paul et al. Feb 2007 A1
20070087314 Gomo Apr 2007 A1
20070093875 Chavan et al. Apr 2007 A1
20070106357 Denker et al. May 2007 A1
20070112402 Grill et al. May 2007 A1
20070112403 Moffitt et al. May 2007 A1
20070118183 Gelfand et al. May 2007 A1
20070150006 Libbus et al. Jun 2007 A1
20070168007 Kuzma et al. Jul 2007 A1
20070173900 Siegel et al. Jul 2007 A1
20070191908 Jacob et al. Aug 2007 A1
20070196780 Ware et al. Aug 2007 A1
20070203549 Demarais et al. Aug 2007 A1
20070208388 Jahns et al. Sep 2007 A1
20070221224 Pittman et al. Sep 2007 A1
20070240718 Daly Oct 2007 A1
20070250056 Vanney Oct 2007 A1
20070250162 Royalty Oct 2007 A1
20070255379 Williams et al. Nov 2007 A1
20070265611 Ignagni et al. Nov 2007 A1
20070288076 Bulkes et al. Dec 2007 A1
20080039916 Colliou et al. Feb 2008 A1
20080065002 Lobl et al. Mar 2008 A1
20080125828 Ignagni et al. May 2008 A1
20080161878 Tehrani et al. Jul 2008 A1
20080167695 Tehrani et al. Jul 2008 A1
20080177347 Tehrani et al. Jul 2008 A1
20080183186 Bly et al. Jul 2008 A1
20080183187 Bly Jul 2008 A1
20080183239 Tehrani et al. Jul 2008 A1
20080183240 Tehrani et al. Jul 2008 A1
20080183253 Bly Jul 2008 A1
20080183254 Bly et al. Jul 2008 A1
20080183255 Bly et al. Jul 2008 A1
20080183259 Bly et al. Jul 2008 A1
20080183264 Bly et al. Jul 2008 A1
20080183265 Bly et al. Jul 2008 A1
20080188903 Tehrani et al. Aug 2008 A1
20080215106 Lee et al. Sep 2008 A1
20080288010 Tehrani et al. Nov 2008 A1
20080288015 Tehrani et al. Nov 2008 A1
20080312712 Penner Dec 2008 A1
20080312725 Penner Dec 2008 A1
20090024047 Shipley et al. Jan 2009 A1
20090036947 Westlund et al. Feb 2009 A1
20090118785 Ignagni et al. May 2009 A1
20090275956 Burnes et al. Nov 2009 A1
20090275996 Burnes et al. Nov 2009 A1
20090276022 Burnes et al. Nov 2009 A1
20090318993 Eidenschink et al. Dec 2009 A1
20100022950 Anderson et al. Jan 2010 A1
20100036451 Hoffer Feb 2010 A1
20100077606 Black et al. Apr 2010 A1
20100094376 Penner Apr 2010 A1
20100114227 Cholette May 2010 A1
20100114254 Kornet May 2010 A1
20100198296 Ignagni et al. Aug 2010 A1
20100204766 Zdeblick et al. Aug 2010 A1
20100268311 Cardinal et al. Oct 2010 A1
20100319691 Lurie et al. Dec 2010 A1
20110060381 Ignagni et al. Mar 2011 A1
20110077726 Westlund et al. Mar 2011 A1
20110093032 Boggs, II et al. Apr 2011 A1
20110118815 Kuzma et al. May 2011 A1
20110230932 Tehrani et al. Sep 2011 A1
20110230935 Zdeblick Sep 2011 A1
20110230945 Ohtaka et al. Sep 2011 A1
20110270358 Davis et al. Nov 2011 A1
20110288609 Tehrani et al. Nov 2011 A1
20120035684 Thompson et al. Feb 2012 A1
20120053654 Tehrani et al. Mar 2012 A1
20120078320 Schotzko et al. Mar 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120158091 Tehrani et al. Jun 2012 A1
20120209284 Westlund et al. Aug 2012 A1
20120215278 Penner Aug 2012 A1
20120323293 Tehrani et al. Dec 2012 A1
20130018247 Glenn et al. Jan 2013 A1
20130018427 Pham et al. Jan 2013 A1
20130023972 Kuzma et al. Jan 2013 A1
20130030496 Karamanoglu et al. Jan 2013 A1
20130030497 Karamanoglu et al. Jan 2013 A1
20130030498 Karamanoglu et al. Jan 2013 A1
20130060245 Grunewald et al. Mar 2013 A1
20130116743 Karamanoglu et al. May 2013 A1
20130123891 Swanson May 2013 A1
20130131743 Yamasaki et al. May 2013 A1
20130158625 Gelfand et al. Jun 2013 A1
20130165989 Gelfand et al. Jun 2013 A1
20130167372 Black et al. Jul 2013 A1
20130197601 Tehrani et al. Aug 2013 A1
20130237906 Park et al. Sep 2013 A1
20130268018 Brooke et al. Oct 2013 A1
20130289686 Masson et al. Oct 2013 A1
20130296964 Tehrani Nov 2013 A1
20130296973 Tehrani et al. Nov 2013 A1
20130317587 Barker Nov 2013 A1
20130333696 Lee et al. Dec 2013 A1
20140067032 Morris et al. Mar 2014 A1
20140088580 Wittenberger et al. Mar 2014 A1
20140114371 Westlund et al. Apr 2014 A1
20140121716 Casavant et al. May 2014 A1
20140128953 Zhao et al. May 2014 A1
20140148780 Putz May 2014 A1
20140316486 Zhou et al. Oct 2014 A1
20140324115 Ziegler et al. Oct 2014 A1
20140378803 Geistert et al. Dec 2014 A1
20150018839 Morris et al. Jan 2015 A1
20150034081 Tehrani et al. Feb 2015 A1
20150045810 Hoffer et al. Feb 2015 A1
20150045848 Cho et al. Feb 2015 A1
20150119950 Demmer et al. Apr 2015 A1
20150165207 Karamanoglu Jun 2015 A1
20150196354 Haverkost et al. Jul 2015 A1
20150196356 Kauphusman et al. Jul 2015 A1
20150202448 Hoffer et al. Jul 2015 A1
20150231348 Lee et al. Aug 2015 A1
20150250982 Osypka et al. Sep 2015 A1
20150265833 Meyyappan et al. Sep 2015 A1
20150283340 Zhang et al. Oct 2015 A1
20150290476 Krocak et al. Oct 2015 A1
20150359487 Coulombe Dec 2015 A1
20150374252 De La Rama et al. Dec 2015 A1
20150374991 Morris et al. Dec 2015 A1
20160001072 Gelfand et al. Jan 2016 A1
20160129244 Westlund May 2016 A1
20160144078 Young et al. May 2016 A1
20160193460 Xu et al. Jul 2016 A1
20160228696 Imran et al. Aug 2016 A1
20160239627 Cerny et al. Aug 2016 A1
20160256692 Baru Sep 2016 A1
20160310730 Martins et al. Oct 2016 A1
20160331326 Xiang et al. Nov 2016 A1
20160367815 Hoffer Dec 2016 A1
20170007825 Thakkar et al. Jan 2017 A1
20170013713 Shah et al. Jan 2017 A1
20170021163 Westlund et al. Jan 2017 A1
20170021166 Bauer et al. Jan 2017 A1
20170021175 Yu Jan 2017 A1
20170028191 Mercanzini et al. Feb 2017 A1
20170036017 Tehrani et al. Feb 2017 A1
20170050033 Wechter Feb 2017 A1
20170143973 Tehrani May 2017 A1
20170143975 Hoffer et al. May 2017 A1
20170196503 Narayan et al. Jul 2017 A1
20170224993 Sathaye et al. Aug 2017 A1
20170232250 Kim et al. Aug 2017 A1
20170252558 O'Mahony et al. Sep 2017 A1
20170291023 Kuzma et al. Oct 2017 A1
20170296812 O'Mahony et al. Oct 2017 A1
20170312006 Mcfarlin et al. Nov 2017 A1
20170312507 Bauer et al. Nov 2017 A1
20170312508 Bauer et al. Nov 2017 A1
20170312509 Bauer et al. Nov 2017 A1
20170326354 Westlund et al. Nov 2017 A1
20170326359 Gelfand et al. Nov 2017 A1
20170347921 Haber et al. Dec 2017 A1
20180001086 Bartholomew et al. Jan 2018 A1
20180008821 Gonzalez et al. Jan 2018 A1
20180110562 Govari et al. Apr 2018 A1
20180117334 Jung May 2018 A1
20180256440 Francois et al. Sep 2018 A1
20180280692 Gelfand et al. Oct 2018 A1
20180326209 Gelfand et al. Nov 2018 A1
20190247656 Bauer Aug 2019 A1
20190255322 Bauer et al. Aug 2019 A1
20190351229 Westlund et al. Nov 2019 A1
Foreign Referenced Citations (42)
Number Date Country
1652839 Aug 2005 CN
102143781 Aug 2011 CN
0993840 Apr 2000 EP
1304135 Apr 2003 EP
0605796 Aug 2003 EP
2489395 Aug 2012 EP
2801509 Jun 2001 FR
H08510677 Nov 1996 JP
2003503119 Jan 2003 JP
2010516353 May 2010 JP
2011200571 Oct 2011 JP
2012000195 Jan 2012 JP
WO-9407564 Apr 1994 WO
WO-9508357 Mar 1995 WO
WO-9964105 Dec 1999 WO
WO-9965561 Dec 1999 WO
WO-0100273 Jan 2001 WO
WO-02058785 Aug 2002 WO
WO-03005887 Jan 2003 WO
WO-03094855 Nov 2003 WO
WO-2005018524 Mar 2005 WO
WO-2006063339 Jun 2006 WO
WO-2006110338 Oct 2006 WO
WO-2006115877 Nov 2006 WO
WO-2007053508 May 2007 WO
WO-2008092246 Aug 2008 WO
WO-2008094344 Aug 2008 WO
WO-2009006337 Jan 2009 WO
WO-2009134459 Nov 2009 WO
WO-2010029842 Mar 2010 WO
WO-2010148412 Dec 2010 WO
WO-2011094631 Aug 2011 WO
WO-2011158410 Dec 2011 WO
WO-2012106533 Aug 2012 WO
WO-2013131187 Sep 2013 WO
WO-2013188965 Dec 2013 WO
WO-2014008171 Jan 2014 WO
WO-2015075548 May 2015 WO
WO-2015109401 Jul 2015 WO
WO-2019154834 Aug 2019 WO
WO-2019154837 Aug 2019 WO
WO-2019154839 Aug 2019 WO
Non-Patent Literature Citations (62)
Entry
Antonica A., et al., “Vagal Control of Lymphocyte Release from Rat Thymus,” Journal of the Autonomic Nervous System, Elsevier, vol. 48(3), Aug. 1994, pp. 187-197.
Ayas N.T., et al., “Prevention of Human Diaphragm Atrophy with Short periods of Electrical Stimulation,” American Journal of Respiratory and Critical Care Medicine, Jun. 1999, vol. 159(6), pp. 2018-2020.
Borovikova, et al., “Role of the Vagus Nerve in the Anti-Inflammatory Effects of CNI-1493,” Proceedings of the Annual Meeting of Professional Research Scientists: Experimental Biology 2000, Abstract 97.9, Apr. 15-18, 2000.
Borovikova L.V., et al., “Role of Vagus Nerve Signaling in CNI-1493-Mediated Suppression of Acute Inflammation,” Autonomic Neuroscience: Basic and Clinical, vol. 85 (1-3), Dec. 20, 2000, pp. 141-147.
Borovikova L.V., et al., “Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin,” Nature, Macmillan Magazines Ltd, vol. 405, May 25, 2000, pp. 458-462.
Chinese Search Report for Application No. CN2013/80023357.5, dated Jul. 24, 2015.
Co-pending U.S. Appl. No. 15/606,867, filed May 26, 2017.
Daggeti, W.M. et al., “Intracaval Electrophrenic Stimulation. I. Experimental Application during Barbiturate Intoxication Hemorrhage and Gang,” Journal of Thoracic and Cardiovascular Surgery, 1966, vol. 51 (5), pp. 676-884.
Daggeti, W.M. et al., “Intracaval electrophrenic stimulation. II. Studies on Pulmonary Mechanics Surface Tension Urine Flow and Bilateral Ph,” Journal of Thoracic and Cardiovascular Surgery, 1970, vol. 60(1 ), pp. 98-107.
De Gregorio, M.A. et al., “The Gunther Tulip Retrievable Filter: Prolonged Temporary Filtration by Repositioning within the Inferior Vena Cava,” Journal of Vascular and Interventional Radiology, 2003, vol. 14, pp. 1259-1265.
Deng Y-J et al., “The Effect of Positive Pressure Ventilation Combined with Diaphragm Pacing on Respiratory Mechanics in Patients with Respiratory Failure; Respiratory Mechanics,” Chinese critical care medicine, Apr. 2011, vol. 23(4), pp. 213-215.
Escher, Doris J.W. et al., “Clinical Control of Respiration by Transvenous Phrenic Pacing,” American Society for Artificial Internal Organs: Apr. 1968—vol. 14—Issue 1—pp. 192-197.
European Search Report for Application No. 13758363, dated Nov. 12, 2015.
European Search Report for Application No. EP17169051.4, dated Sep. 8, 2017, 7 pages.
Extended European Search Report for Application No. 14864542.7, dated Jun. 2, 2017, 8 pages.
Extended European Search Report for Application No. 15740415.3, dated Jul. 7, 2017.
Fleshner M., et al., “Thermogenic and Corticosterone Responses to Intravenous Cytokines (IL-1β and TNF-α) are Attenuated by Subdiaphragmatic Vagotomy,” Journal of Neuroimmunology, vol. 86, Jun. 1998, pp. 134-141.
Frisch S., “A Feasibility Study of a Novel Minimally Invasive Approach for Diaphragm Pacing,” Master of Science Thesis, Simon Fraser University, 2009, p. 148.
Furman, S., “Transvenous Stimulation of the Phrenic Nerves,” Journal of Thoracic and Cardiovascular Surgery, 1971, vol. 62 (5), pp. 743-751.
Gaykema R.P.A. et al., “Subdiaphragmatic Vagotomy Suppresses Endotoxin-Induced Activation of Hypothalamic Corticotropin-Releasing Hormone Neurons and ACTH Secretion,” Endocrinology, The Endocrine Society, vol. 136 (10), 1995, pp. 4717-4720.
Gupta A.K., “Respiration Rate Measurement Based on Impedance Pneumography,” Data Acquisition Products, Texas Instruments, Application Report, SBAA181, Feb. 2011, 11 pages.
Guslandi M., “Nicotine Treatment for Ulcerative Colitis,” The British Journal of Clinical Pharmacology, Blackwell Science Ltd, vol. 48, 1999, pp. 481-484.
Hoffer J.A. et al., “Diaphragm Pacing with Endovascular Electrodes”, IFESS 2010—International Functional Electrical Stimulation Society, 15th Anniversary Conference, Vienna, Austria, Sep. 2010.
Huffman, William J. et al., “Modulation of Neuroinflammation and Memory Dysfunction Using Percutaneous Vagus Nerve Stimulation in Mice,” Brain Stimulation, 2018.
Ishii, K. et al., “Effects of Bilateral Transvenous Diaphragm Pacing on Hemodynamic Function in Patients after Cardiac Operations,” J. Thorac. Cardiovasc. Surg., 1990.
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Dec. 6, 2016, 4 pages.
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Oct. 17, 2017, 5 pages.
Kawashima K., et al., “Extraneuronal Cholinergic System in Lymphocytes,” Pharmacology & Therapeutics, Elsevier, vol. 86, 2000, pp. 29-48.
Levine S., et al., “Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans,” New England Journal of Medicine, 2008, vol. 358, pp. 1327-1335.
Lung pacer: Therapy, News.< http://lungpacer.com>. Accessed Dec. 27, 2016.
Madretsma, G.S., et al., “Nicotine Inhibits the In-vitro Production of Interleukin 2 and Tumour Necrosis Factor-α by Human Mononuclear Cells,” Immunopharmacology, Elsevier, vol. 35(1), Oct. 1996, pp. 47-51.
Marcy, T.W. et al., “Diaphragm Pacing for Ventilatory Insufficiency,” Journal of Intensive Care Medicine, 1987, vol. 2 (6), pp. 345-353.
Meyyappan R., “Diaphragm Pacing during Controlled Mechanical Ventilation: Pre-Clinical Observations Reveal a Substantial Improvement in Respiratory Mechanics”, 17th Biennial Canadian Biomechanics Society Meeting, Burnaby, BC, Jun. 6-9, 2012.
Nabutovsky, Y., et al., “Lead Design and Initial Applications of a New Lead for Long-Term Endovascular Vagal Stimulation,” PACE, Blackwell Publishing, Inc, vol. 30(1), Jan. 2007, pp. S215-S218.
Notification of Reasons for Rejection and English language translation issued in corresponding Japanese Patent Application No. 2015-517565, dated Mar. 28, 2017, 6 pages.
Onders R.,, “A Diaphragm Pacing as a Short-Term Assist to Positive Pressure Mechanical Ventilation in Critical Care Patients,” Chest, Oct. 24, 2007, vol. 132(4), pp. 5715-5728.
Onders R.,, “Diaphragm Pacing for Acute Respiratory Failure,” Difficult Decisions in Thoracic Surgery, Chapter 37, Springer-Verlag, 2011, M.K. Ferguson (ed.), pp. 329-335.
Onders R, et al., “Diaphragm Pacing with Natural Orifice Transluminal Endoscopic Surgery: Potential for Difficult-To-Wean Intensive Care Unit Patients,” Surgical Endoscopy, 2007, vol. 21, pp. 475-479.
Pavlovic D., et al., “Diaphragm Pacing During Prolonged Mechanical Ventilation of the Lungs could Prevent from Respiratory Muscle Fatigue,” Medical Hypotheses, vol. 60 (3), 2003, pp. 398-403.
Planas R.F., et al., “Diaphragmatic Pressures: Transvenous vs. Direct Phrenic Nerve Stimulation,” Journal of Applied Physiology, vol. 59(1), 1985, pp. 269-273.
Romanovsky, A.A., et al., “The Vagus Nerve in the Thermoregulatory Response to Systemic Inflammation,” American Journal of Physiology, vol. 273 (1 Pt 2), 1997, pp. R407-R413.
Salmela L., et al., “Verification of the Position of a Central Venous Catheter by Intra-Atrial ECG. When does this method fail?,” Acta Anasthesiol Scand, vol. 37 (1), 1993, pp. 26-28.
Sandborn W.J., “Transdermal Nicotine for Mildly to Moderately Active Ulcerative Colitis,” Annals of Internal Medicine, vol. 126 (5), Mar. 1, 1997, pp. 364-371.
Sandoval R., “A Catch/Ike Property-Based Stimulation Protocol for Diaphragm Pacing, Master of Science Coursework project”, Simon Fraser University, Mar. 2013.
Sarnoff, S.J. et al., “Electrophrenic Respiration,” Science, 1948, vol. 108, p. 482.
Sato E., et al., “Acetylcholine Stimulates Alveolar Macrophages to Release Inflammatory Cell Chemotactic Activity,” American Journal of Physiology, vol. 274 (Lung Cellular and Molecular Physiology 18), 1998, pp. L970-L979.
Sato, K.Z., et al., “Diversity of mRNA Expression for Muscarinic Acetylcholine Receptor Subtypes and Neuronal Nicotinic Acetylcholine Receptor Subunits in Human Mononuclear Leukocytes and Leukemic Cell Lines,” Neuroscience Letters, vol. 266 (1), 1999, pp. 17-20.
Schauerte P., et al., “Transvenous Parasympathetic Nerve Stimulation in the Inferior Vena Cava and Atrioventricular Conduction,” Journal of Cardiovascular Electrophysiology, vol. 11 (1), Jan. 2000, pp. 64-69.
Schauerte P.N., et al., “Transvenous Parasympathetic Cardiac Nerve Stimulation: An Approach for Stable Sinus Rate Control,” Journal of Cardiovascular Electrophysiology, vol. 10 (11), Nov. 1999, pp. 1517-1524.
Scheinman R.I., et al., “Role of Transcriptional Activation of IκBα in Mediation of Immunosuppression by Glucocorticoids,” Science, vol. 270, Oct. 13, 1995, pp. 283-286.
Sher, M.E., et al., “The Influence of Cigarette Smoking on Cytokine Levels in Patients with Inflammatory Bowel Disease,” Inflammatory Bowel Diseases, vol. 5 (2), May 1999, pp. 73-78.
Steinlein, O., “New Functions for Nicotinic Acetylcholine Receptors?”, Behavioural Brain Research, vol. 95, 1998, pp. 31-35.
Sternberg E.M., (Series Editor) “Neural-Immune Interactions in Health and Disease,” The Journal of Clinical Investigation, vol. 100 (11), Dec. 1997, pp. 2641-2647.
Sykes., A.P., et al., “An Investigation into the Effect and Mechanisms of Action of Nicotine in Inflammatory Bowel Disease,” Inflammation Research, vol. 49, 2000, pp. 311-319.
Toyabe S., et al., “Identification of Nicotinic Acetylcholine Receptors on Lymphocytes in the Periphery as well as Thymus in Mice,” Immunology, vol. 92, 1997, pp. 201-205.
Van Dijk A.P.M., et al., “Transdermal Nicotine Inhibits Interleukin 2 Synthesis by Mononuclear Cells Derived from Healthy Volunteers,” European Journal of Clinical Investigation, vol. 28, 1998, pp. 664-671.
Wanner, A. et al., “Trasvenous Phrenic Nerve Stimulation in Anesthetized Dogs,” Journal of Applied Physiology, 1973, vol. 34 (4), pp. 489-494.
Watkins L.R., et al., “Blockade of Interleukin-1 Induced Hyperthermia by Subdiaphragmatic Vagotomy: Evidence for Vagal Mediation of Immune-Brain Communication,” Neuroscience Letters, vol. 183, 1995, pp. 27-31.
Watkins L.R., et al., “Implications of Immune-to-Brain Communication for Sickness and Pain,” PNAS (Proceedings of the National Academy of Sciences of the USA), vol. 96 (14), Jul. 6, 1999, pp. 7710-7713.
Whaley K., et al., “C2 Synthesis by Human Monocytes is Modulated by a Nicotinic Cholinergic Receptor,” Nature, vol. 293, Oct. 15, 1981, pp. 580-582 (and reference page).
PCT Search Report dated Oct. 26, 2018 for PCT Application No. PCT/IB2018/000603, 7 pages.
PCT Search Report and Written Opinion dated Oct. 17, 2018 for PCT Application No. PCT/US2018/043661, 13 pages.
Related Publications (1)
Number Date Country
20200147377 A1 May 2020 US
Provisional Applications (1)
Number Date Country
60887031 Jan 2007 US
Continuations (5)
Number Date Country
Parent 15252687 Aug 2016 US
Child 16743331 US
Parent 14792006 Jul 2015 US
Child 15252687 US
Parent 14448734 Jul 2014 US
Child 14792006 US
Parent 14044466 Oct 2013 US
Child 14448734 US
Parent 12524571 US
Child 14044466 US