Transvascular nerve stimulation apparatus and methods

Information

  • Patent Grant
  • 11369787
  • Patent Number
    11,369,787
  • Date Filed
    Thursday, November 7, 2019
    5 years ago
  • Date Issued
    Tuesday, June 28, 2022
    2 years ago
Abstract
The invention, in one aspect, relates to an intravascular electrode system. The system comprises one or more electrodes supported on an elongated resiliently flexible support member, and the support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel.
Description
TECHNICAL FIELD

The invention relates to neurophysiology and in particular to apparatus and methods for stimulating nerves through the walls of blood vessels. Non-limiting embodiments include nerve stimulation apparatus, electrode structures, electrodes and related methods.


BACKGROUND

Nerve stimulation can be applied in the treatment of a range of conditions. Nerve stimulation may be applied to control muscle activity or to generate sensory signals. Nerves may be stimulated by surgically implanting electrodes in or near the nerves and driving the electrodes from an implanted or external source of electricity.


The phrenic nerves normally carry signals that cause the contractions of the diaphragm that are necessary for breathing. Various conditions can prevent appropriate signals from being delivered to the phrenic nerves. These include:

    • chronic or acute injury to the spinal cord or brain stem;
    • Amyotrophic Lateral Sclerosis (ALS);
    • disease affecting the spinal cord or brain stem; and,
    • decreased day or night ventilatory drive (e.g. central sleep apnea, Ondine's curse). These conditions affect a significant number of people.


Mechanical ventilation (MV) may be used to help patients breathe. Some patients require chronic mechanical ventilation and many more patients require temporary mechanical ventilation. Mechanical ventilation can be lifesaving but has a range of significant problems and/or side effects. Mechanical ventilation:

    • tends to provide insufficient venting of the lungs. This can lead to accumulation of
    • fluid in the lungs and susceptibility to infection and pneumonia.
    • requires apparatus that is not readily portable.
    • can adversely affect venous return because the lungs are positively pressurized.
    • interferes with eating and speaking.
    • requires costly maintenance and disposables.
    • tends to cause positive pressure ventilator induced lung injury (VILI) and ventilator associated pneumonia (VAP).


A patient on mechanical ventilation is tied to a ventilator, and does not breathe independently. This can lead to atrophy of the diaphragm muscle (ventilator induced diaphragmatic dysfunction; VIDD) and an overall decline in well being. Muscle atrophy can occur surprisingly rapidly and can be a serious problem. In patients on mechanical ventilation, the central respiratory drive of the diaphragm is suppressed. The inactivity of the diaphragm muscle causes rapid disuse atrophy. According to a published study (Levine et al., New England Journal of Medicine, 358: 1327-1335, 2008), the diaphragm muscle could shrink by 52-57% after just 18-69 hours of mechanical ventilation and sedation. Ventilator-induced diaphragm atrophy could cause a patient to become ventilator-dependent. Patients in intensive care units (ICU) who become dependent on mechanical ventilation (MV) are at high risk of complications such as ventilator-acquired pneumonia (VAP) and nosocomial infections and are seven times more likely to die in the ICU. It has been reported that in 2008, 1.58 million ICU patients in the United States require MV every year, of which 20-30% (about 400,000 mechanically ventilated patients) have difficulty weaning from MV and are at risk of becoming ventilator-dependent.


Three methods have been used to reverse or slow down atrophy in disused diaphragm muscles by stimulating the phrenic nerves and are discussed below.


Method 1. Phrenic nerve pacing uses electrodes implanted in the chest to directly stimulate the phrenic nerves. The Mark IV Breathing Pacemaker System available from Avery Biomedical Devices, Inc. of Commack, N.Y., USA, is a diaphragmatic or phrenic nerve stimulator that has surgically implanted receivers and electrodes mated to an external transmitter by antennas worn over the implanted receivers. Implanting electrodes and other implantable components for phrenic nerve pacing requires significant surgery. The surgery is risky and complicated by the fact that phrenic nerves are thin (approximately 2 mm in diameter) and delicate. The surgery involves significant cost.


Method 2. Laproscopic diaphragm pacing developed by biomedical engineers and physician researchers at Case Western Reserve University is another technique for controlling breathing. Laproscopic diaphragm pacing involves placing electrodes at motor points of the diaphragm.


Method 3. A method using intravascularly implanted electrodes to stimulate a nerve has been developed by Joaquin Andres Hoffer and is described in U.S. patent application Ser. No. 12/524,571 (published on Feb. 11, 2010 as US2010/00336451) entitled “Transvascular Nerve Stimulation Apparatus And Methods”, which is hereby incorporated by reference.


Method 3 has advantages over Methods 1 and 2, because it does not require invasive surgery that would typically be performed under full anaesthesia. Furthermore, ICU patients are not typically eligible for Methods 1 and 2.


There remains a need for cost-effective, practical, surgically simple and minimally invasive apparatus and methods for nerve stimulation. There is also a need for apparatus and methods for facilitating patients on MV to breathe more naturally and to be weaned from MV. There is also a need for cost effective, practical apparatus and methods for installing and/or removing nerve stimulation apparatus.


SUMMARY OF THE INVENTION

This invention has a number of aspects. Aspects of the invention include: designs for intravascular electrodes; electrode structures; nerve stimulation apparatus; intravascular apparatus including electrodes and structures for introducing and supporting the electrodes; catheters equipped with electrodes; methods for nerve stimulation; and methods for measuring the location of an electrode structure within a blood vessel relative to a target nerve. While these and other aspects may be applied together, individual aspects may be applied separately as well as in other combinations and contexts. For example, electrode structures as described herein may be applied in combination with various deployment systems known in the art for various diagnostic and/or therapeutic applications.


Aspects of the invention may be applied for restoring breathing, treating conditions such as muscle atrophy, chronic pain, and other uses involving nerve stimulation. Aspects of the invention may be applied in the treatment of acute or chronic conditions. Aspects of the invention may be applied to conveniently deploy and remove electrode structures in a patient.


One aspect of the invention relates to transvascular stimulation of nerves. In transvascular stimulation, suitable arrangements of one or more electrodes are positioned in a blood vessel that passes close to a nerve to be stimulated. Electrical currents pass from the electrodes through a wall of the blood vessel to stimulate the target nerve.


One aspect of the invention relates to transvascular stimulation of nerves in the neck and chest of a human or other mammals (e.g., a pig). FIG. 1A illustrates the anatomy of selected nerves and blood vessels in the neck and chest of a human and, in particular, the relative locations of the left and right phrenic nerves (PhN), vagus nerves (VN), internal jugular veins (UV), brachiocephalic veins (BCV), superior vena cava (SVC) and left subclavian vein (LSV).


Further aspects of the invention and features of example embodiments are illustrated in the appended drawings and/or described in the text of this specification and/or described in the accompanying claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate non-limiting example embodiments of the invention.



FIG. 1A illustrates the anatomy of selected nerves and blood vessels in a person's neck and upper torso.



FIGS. 2A-2D are schematic views of a nerve stimulation apparatus according to an example embodiment of the invention.



FIGS. 3A-3C illustrate the operation of nerve stimulation apparatus.



FIG. 4A illustrates a shaft portion comprising a pair of attached tubes.



FIG. 4B illustrates a shaft portion comprising telescoping tubes.



FIGS. 5A and 5B are schematic views of a nerve stimulation apparatus according to an example embodiment of the invention.



FIGS. 6A and 6B are schematic views of a nerve stimulation apparatus according to another example embodiment of the invention.



FIGS. 7A and 7B are schematic views of a nerve stimulation apparatus according to another example embodiment of the invention.



FIG. 8 schematically shows a nerve stimulation apparatus according to another example embodiment of the invention.



FIG. 9 schematically shows a nerve stimulation apparatus according to another example embodiment of the invention.



FIG. 10A is a side view of a nerve stimulation apparatus according to another example embodiment of the invention. FIG. 10B is an isometric view of the apparatus of FIG. 10A in combination with an introducer and a hub. FIGS. 10C and 10D are examples of alternative cross-sectional views of the apparatus of FIG. 10A.



FIGS. 11A and 11B show a nerve stimulation apparatus in combination with an introducer and a hub according to an example embodiment of the invention. FIGS. 11C and 11D are cross sectional views of nerve stimulation apparatus along lines B-B and A-A respectively shown in FIG. 11B.



FIG. 12 shows a nerve stimulation apparatus according to an example embodiment of the invention.



FIG. 13A shows a nerve stimulation apparatus according to an example embodiment of the invention that provides a five-lumen catheter. FIGS. 13B-13E show some possible cross sections of the apparatus of FIG. 13A taken at line A-A in FIG. 13A.



FIG. 14A shows another embodiment of a nerve stimulation apparatus. FIGS. 14B and 14C show some possible cross sections of a tubular member of the apparatus of FIG. 14A.



FIG. 15 shows a nerve stimulation apparatus.



FIG. 16 shows a nerve stimulation apparatus.



FIG. 17 shows a nerve stimulation apparatus.



FIGS. 18A, 18B show an electrode structure according to an example embodiment of the invention. FIG. 18A is a top plan view of the electrode structure. FIG. 18B is a bottom perspective view of the electrode structure.



FIG. 19A shows a schematic of a cross section of an electrode structure according to one example embodiment of the invention. FIG. 19B shows details electrodes of the electrode structure of FIG. 19A.



FIGS. 20A and 20B are perspective and side views of an electrode retaining wire according to one example embodiment.



FIGS. 21A, 21B are top and bottom perspective views of an electrode structure.



FIG. 22 shows an electrode structure according to one example embodiment.



FIGS. 23A-23E show how an example electrode structure may be rolled up and retracted into a tubular member.



FIGS. 24A-24E show how an example electrode structure may be rolled up, deployed, and retracted into a tubular member.



FIGS. 25 and 26 show two example electrode structures.



FIGS. 27A-27E schematically illustrate a nerve stimulation apparatus according to another embodiment.



FIGS. 28A, 28B show an example method for locating an electrode structure in a blood vessel V to stimulate a target nerve.



FIGS. 29A-29H, 29L-29Q, and 30A-30H show various sensors which may be used with the nerve stimulation apparatus described herein as well as in other contexts.



FIGS. 31A to 31E shows an example shroud design which may be used with the nerve stimulation apparatus described herein as well as in other contexts.





DETAILED DESCRIPTION

Throughout the following description, specific details are set forth in order to provide a more thorough understanding of the invention. However, the invention may be practiced without these particulars. In other instances, well-known elements have not been shown or described in detail to avoid unnecessarily obscuring the invention. Accordingly, the specification and drawings are to be regarded in an illustrative, rather than restrictive.


Apparatus according to some embodiments provides intravascular electrode systems which include one or more electrodes supported on an elongated resiliently flexible support member. The support member may be used to introduce the electrodes into a blood vessel. As the support member is introduced into the blood vessel the support member bends to follow the path of the blood vessel. Restoring forces resulting from the resilience of the support member hold the one or more electrodes in place against the wall of the blood vessel. The electrode structure may comprise flexible electrically insulating pads that insulate electrodes from being in direct contact with blood in the main passage of the blood vessel.


In some embodiments the apparatus includes two or more electrodes at spaced-apart locations along the support member. Spacing between the electrodes may be selected to allow the electrodes to be located proximate to anatomical structures, for example nerves passing nearby the blood vessel. In an example embodiment, electrodes are spaced apart on a support structure and oriented so that an intravascular electrode system may be placed with electrodes located to stimulate a patient's left and right phrenic nerves. The electrodes may optionally have different circumferential orientations with respect to a longitudinal centerline of the support structure.


In some embodiments the support member is more flexible in one direction than in another. This can help to preserve a desired orientation of electrodes while the electrode system is being introduced into a blood vessel.


In some embodiments the electrode system comprises a catheter having one or more lumens. The catheter may provide the functionality of a central catheter of the type commonly used in intensive care units, for example. Such embodiments provide the advantage of electrodes that may be applied, for example, for stimulating nerves (e.g. for diaphragm pacing) and/or for monitoring electrical activity in the body of a patient in the same package as a central catheter that may be required in any event. In some embodiments, the catheter also serves as a support structure as described above.


Some embodiments comprise electrode structures comprising electrodes and asymmetrical electrically-insulating backing sheets. The backing sheets can electrically isolate the electrodes from blood in the lumen of a blood vessel, thereby allowing more efficient stimulation of extravascular structures such as nearby nerves. The asymmetrical arrangement of the backing sheet allows the backing sheet to be rolled into a compact configuration for insertion of the electrode structure into a blood vessel while providing a backing sheet that can provide electrical insulation for two or more electrodes. In some embodiments the backing sheet has a generally trapezoidal configuration. The backing sheet may be formed so that it tends to unroll from the rolled configuration. The backing sheet may be formed with a natural curvature similar to that of a wall of a blood vessel against which the backing sheet will be deployed. The backing sheet may be but need not be completely electrically insulating. Such a backing sheet can be advantageous as long as it provides a resistance to the flow of electricity substantially greater than the resistance that would be provided by blood in the blood vessel in the absence of the backing sheet. Such electrode structures may be applied in a wide range of intravascular applications.


Some embodiments provide electrode structures that include a retainer that holds a backing sheet in place. The retainer may comprise, for example, a formed piece of wire that extends through apertures in the backing sheet. In some embodiments the retainer comprises a pair of wire sections, which may be generally parallel, that are each woven through apertures in the backing sheet. Distal ends of the wire sections may be joined. The wire sections may be parts of a continuous wire. Distal ends of the wire sections may be bent back over the backing sheet. In some embodiments the retainer is electrically conductive and may be applied as one electrode, for example a reference electrode for electrical measurements and/or one of two or more electrodes for delivery of stimulation. The backing sheet may be rolled around the retainer for introduction into a blood vessel. Such electrode structures may be applied in a wide range of applications.


Some embodiments provide electrode structures in which a backing sheet for one or more electrodes is provided by a wall of an inflatable structure. The structure may be inflated to hold the electrodes against a wall of a blood vessel. The structure may, for example, be located on a side of a catheter or other support member. In some embodiments, inflation of the inflatable structure actuates a backing member carrying one or more electrodes to move toward engagement with a wall of a blood vessel.


Some embodiments provide intravascular electrode structures on which one or more electrodes is supported on a support member which include integrated position-measurement transducers for measuring a displacement of an electrode along a blood vessel into which the electrode is being inserted. The apparatus, including the position-measurement transducers may be intended to be disposable after a single use. Various embodiments of example position measurement transducers that can provide accurate position measurement in a suitable form factor and/or may be fabricated inexpensively are described below.


The following description describes examples of nerve stimulation apparatus and components suitable for application in nerve stimulation. In some cases the examples given are adapted for stimulation of phrenic nerves in a human or other mammals. The nerve stimulation apparatus described herein has a number of features which are particularly advantageous in combination with one another but can also be used individually, in other combinations, or in combination with the features described in US2010/00336451.



FIGS. 2A-2C are schematics of a nerve stimulation apparatus 10 according to an example embodiment of the invention. Nerve stimulation apparatus 10 comprises electrode structures 12A, 12B (collectively 12). Nerve stimulation apparatus 10 also comprises a tubular member 24. Tubular member 24 may be a catheter or cannula-type tubular member. For example, tubular member 24 may be a central venous catheter. Tubular member 24 is capable of being inserted into a lumen of a blood vessel.


Tubular member 24 has a distal end 26, a proximal end 28, an outer wall or sheath 30 that extends from distal end 26 to proximal end 28. Tubular member 24 may comprise one or more internal lumens (not specifically indicated in FIGS. 2A-2C—examples of such lumens are shown in other FIGS.) For example, tubular member 24 may be a multi-lumen catheter.


In the example embodiment, at least one lumen extends longitudinally from proximal end 28 to distal end 26. The lumens may have exit openings on wall 30 of tubular member 24. These openings may be spaced apart along the length of tubular member 24. The lumens may be used for removing blood samples, inserting medication, delivering fluids or nutrients, measuring chemical or physical parameters in blood, such as pH or temperature, and the like. For example, agents may be applied through one or more of the openings to prevent clot formation on electrode structures 12. In FIG. 2A, an example opening 34 is shown, which provides an exit port for electrode structure 12B. Opening 34 may be upstream from electrode structure 12B relative to a direction of blood flow in a blood vessel in which nerve stimulation apparatus 10 is deployed.


Tubular member 24 may be flexible. A range of materials may be used for construction of tubular member 24, including silicone, polyurethane, or other suitable polymers, stainless steel, and the like. Tubular member 24 may have markings for length determination. In some embodiments, tubular member 24 is more flexible in one bending direction than in another bending direction. In some embodiments, different sections of tubular member 24 have different levels of flexibility. For example, the distal part of tubular member 24 may be more flexible than the proximal part of tubular member 24.


Electrode structure 12A is positioned at or near distal end 26 of tubular member 24. Electrode structure 12B is positioned at a mid-portion of tubular member 24. Electrode structures 12A, 12B are movable between a retracted position (i.e., received in tubular member 24) and a deployed position (i.e., extending out of tubular member 24). When electrode structures 12A, 12B are in a retracted position, electrode structures 12A, 12B are located inside or mostly inside tubular member 24 (FIG. 2A). When electrode structure 12A, 12B are in a deployed position, electrode structure 12A extends out of a distal opening of tubular member 24, and electrode structure 12B extends out of tubular member 24 from an opening 34 on wall 30 (FIGS. 2B and 2C). Typically, electrode structure 12 is dimensioned so that, when in a deployed position inside a blood vessel, it will extend approximately 45° to 60° of the way around a wall of the blood vessel, although this is not mandatory.


In FIGS. 2A-2C, a representative electrode 20 is shown for each electrode structure 12. However, it should be noted that each electrode structure 12 may comprise a plurality of electrodes. For example, one or more electrodes may be used for stimulating a target nerve; and one or more additional electrodes may be used for ECG monitoring. In some embodiments, one electrode may function as a cathode and another electrode may function as an anode. Electrode structure 20 also comprises an insulating pad 42.


Each electrode structure 12 may be coupled to an elongated flexible shaft portion 14 which extends inside tubular member 24. Shaft portion 14 is not directly visible in FIGS. 2A-2C, but FIG. 2D schematically shows a shaft portion 14 coupled to electrode 12A, without tubular member 24. In FIG. 2D, elongated flexible shaft portion 14 has a distal end 16 and a proximal end 18. Electrode structure 12A is coupled to distal end 16 of shaft portion 14. Shaft portion 14 may comprise, for example, a single wire or tube or a plurality of wires or tubes. Shaft portion 14 may comprise one or more suitable leads (not specifically indicated in FIG. 2D, as leads may be hidden inside shaft portion 14) which may electrically couple one or more electrodes 20 to an apparatus for monitoring electrical activity and/or delivering electrical stimulation by way of electrodes 20. The leads and the electrodes 20 may be electrically coupled in a one-to-one relationship such that each electrode 20 is individually addressable. In some embodiments, some groups of two or more electrodes 20 are connected to a common lead. The leads may be carried in or along shaft portion 14.


At equilibrium, shaft portion 14 may have a configuration that is straight or curved. Shaft portion 14 may have an initial radius of curvature greater than a radius of curvature of the left brachiocephalic vein (BCV) and superior vena cava (SVC) into which nerve stimulation apparatus 10 may be introduced. Shaft portion 14 may be resilient and tending to return to its original configuration; thus, distal end 16 of shaft portion 14 tends to spring toward the far wall of the superior vena cava (SVC) when nerve stimulation apparatus 10 is inserted in a patient from the left side of the body (e.g., from LSV into BCV and SVC). This is convenient because the right phrenic nerve typically runs alongside the far wall of the superior vena cava (SVC) at this point.


In some embodiments, shaft portion 14 is more flexible in one direction than in another direction. For example, shaft portion 14 may be oriented such that it is easier to bend downwardly than sideways. This facilitates insertion and positioning of shaft portion 14 in SVC which extends downwardly from the BCV.


In some embodiments, different parts of shaft portion 14 have different levels of flexibility. For example, the distal part of shaft portion 14 may be more flexible than the proximal part of shaft portion 14. In some embodiments, flexibility of the shaft portion may vary along the length of the shaft portion. Shaft portion 14 may be made of stainless steel or other suitable material (e.g., Nitinol, high-density plastics, elastomers etc.). In some embodiments shaft portion 14 comprises a pair of flexible stainless steel tubes that are attached together by, for example, welding.


The operation of nerve stimulation apparatus 10 is schematically shown in FIGS. 3A-3C. Nerve stimulation apparatus 10 may be inserted into a person's subclavian vein and SVC as follows. The electrode structures 12A, 12B are initially located within tubular member 24. A percutaneous puncture is made into the patient's LSV. Tubular member 24 is then inserted through the puncture into the LSV. Such insertion could be done under local anaesthesia. General anaesthesia is typically not required. Tubular member 24 of nerve stimulation apparatus 10 is then advanced into the patient's left BCV and eventually into SVC. Care should be taken not to advance tubular member 24 into the right atrium of the heart. When the distal portion of tubular member 24 reaches the SVC, the distal portion of tubular member 24 bends downwardly. Electrode structures 12A, 12B are moved from a retracted position (FIG. 3B) to a deployed position (FIG. 3C). Electrode structures 12A, 12B are positioned adjacent the left and right phrenic nerves. As described below, monitoring may be performed during insertion to locate the electrode positions which allow for most effective stimulation of the phrenic nerve.


In the deployed position, electrode structures 12A, 12B extend out of tubular member 24. Electrodes 20 are pressed against a wall of the blood vessel, whereas the insulating pads 42 of the electrode structures 12A, 12B prevent the electrodes 20 from being in close electrical contact with the bulk of the blood flowing through the blood vessel. The curvature of nerve stimulation apparatus 10 may conform to the curvature of the patient's left BCV and SVC. The two electrode structures 12A, 12B may be arranged roughly at 90° to one another about the longitudinal axis of nerve stimulation apparatus 10, with electrode structure 12A oriented toward the right phrenic nerve and electrode structure 12B oriented toward the left phrenic nerve.


Testing may be done to locate electrode structures 12A, 12B at desired positions relative to the left and right phrenic nerve. Methods for locating an electrode structure relative to a target nerve are described below herein (see FIGS. 28A, 28B). Measurements can also be made to determine which electrode or electrodes of an electrode structure comprising multiple electrodes most effectively stimulate the target nerve.


Once nerve stimulation apparatus 10 has been properly inserted into a patient as described above, electrodes 20 are electrically coupled to a stimulation device (e.g., a pulse generator which may be optionally located outside the body) to apply electric current to the phrenic nerves, causing the diaphragm muscle to contract. The contraction of the diaphragm muscle causes inhalation of air into the lungs. When the electric stimulation of the phrenic nerves is stopped, the diaphragm muscle relaxes and exhalation occurs. This allows the patient to breathe more naturally. Nerve stimulation apparatus 10 may be used in combination with a control unit (e.g., a bedside control unit).


Nerve stimulation apparatus 10 may be removed from the patient's body. During removal, electrode structures 12A, 12B may be first moved from a deployed configuration (FIG. 3C) to a retracted configuration (FIG. 3B). Once the electrode structures 12A, 12B are retrieved into tubular member 24, the entire nerve stimulation apparatus 10 may be withdrawn from the patient's body. Alternatively, removing may not require retraction of electrode structure into the tubular member. Preferred methods for retrieving nerve stimulation apparatus 10 from the patient's body have a number of advantages which include one or more of: (1) nerve stimulation apparatus 10 can be repositioned easily for replacement or if the electrode moves with respect to target nerves, for example while the patient is being moved or transferred; (2) periodic removal of nerve stimulation apparatus prevents the build-up of plaques, or inflammation, or other undesirable physiological or pathological consequences as a result of implanting nerve stimulation apparatus in a blood vessel; (3) nerve stimulation apparatus 10 can be conveniently removed from the patient when nerve stimulation treatment is no longer needed.


Shaft portion 14 may take a number of different configurations. In the embodiment shown in FIG. 4A, a shaft portion 14A comprises a pair of tubes 14A1, 14A2 that are joined together in parallel. Tubes 14A1, 14A2 may be welded or affixed in another suitable manner together at certain spaced apart points or continuously along their length. Tubes 14A1, 14A2 may be made of stainless steel or other suitable material. The two-tube configuration in FIG. 4A allows shaft portion 14A to bend more easily in a plane extending between the two tubes than in a plane of the two tubes.


In the embodiment shown in FIG. 4B, a shaft portion 14B comprises a pair of tubes 14B1, 14B2 that are coupled together in a concentric fashion. Tube 14B1 has a smaller diameter than tube 14B2 and is insertable and movable in tube 14B2. Tube 14B1 is distal to tube 14B2. Tube 14B1 may be more flexible than tube 14B2.



FIGS. 5A and 5B are schematic views of a nerve stimulation apparatus 10C according to an example embodiment of the invention (in a deployed configuration and a retracted configuration respectively). In the FIGS. 5A and 5B embodiment, electrode structure 12AC is coupled to a distal end of shaft portion 14C, and electrode structure 12BC is coupled to a mid-portion of shaft portion 14C. The coupling between electrode structure 12B and shaft portion 14C may comprise a spring mechanism 35C. Electrode structure 12AC is retractable and extendable through a distal opening of tubular member 24C. Electrode structure 12BC is retractable and extendable through a side opening 34C of tubular member 24C.



FIGS. 6A and 6B are schematic views of a nerve stimulation apparatus 10D according to another example embodiment of the invention. In the embodiment shown in FIGS. 6A and 6B, nerve stimulation apparatus 10D comprises a first tubular member 24D and a second tubular member 36D. Electrode structure 12AD is coupled to a distal end of shaft portion 14D. However, electrode structure 12BD is disposed on first tubular member 24D. Also, first tubular member 24D passes through second tubular member 36D and electrode structure 12BD is retractable into second tubular member 36D. First and second tubular members 24D, 36D may be assembled in a telescoping fashion. Second tubular member 36D has a diameter greater than the diameter of first tubular member 24D. Second tubular member 36D is typically shorter than first tubular member 24D. The position of electrode structures 12AD, 12BD may be controlled independently from one another via shaft portion 14D and tubular member 24D respectively.



FIGS. 7A and 7B are schematic views of a nerve stimulation apparatus 10E according to another example embodiment of the invention. In the FIGS. 7A and 7B embodiment, electrode structure 12AE is coupled to a shaft portion 14E1, and electrode structure 12BE is disposed on a shaft portion 14E2 which is separate from shaft portion 14E1. Shaft portion 14E2 may be structurally different from shaft portion 14E1. Shaft portions 14E1, 14E2 may be independently controlled to deploy or retract electrode structures 12AE, 12BE, respectively. Also, first tubular member 24E passes through a second tubular member 36E. Electrode structure 12AE is retractable into first tubular member 24E. Electrode structure 12BE is retractable into second tubular member 36E. Second tubular member 36E has a diameter greater than the diameter of first tubular member 24E. Second tubular member 36E is typically shorter than first tubular member 24E.



FIG. 8 schematically shows a nerve stimulation apparatus 10F according to another example embodiment of the invention. In the FIG. 8 embodiment, electrode structure 12AF is coupled to a shaft portion 14F1, and electrode structure 12BF is disposed on a shaft portion 14F2 which is separate from shaft portion 14F1. Shaft portion 14F2 may be structurally different from shaft portion 14F1. Shaft portions 14F1, 14F2 may be independently controlled to deploy or retract electrode structures 12AF, 12BF, respectively. Tubular member 24F comprises a single lumen 32F. Both shaft portions 14F1 and 14F2 extend inside lumen 32F. Electrode structure 12AF may extend out of a distal opening of lumen 32F. Electrode structure 12BF may extend out of a side opening 34F of tubular member 24F.



FIG. 9 schematically shows a nerve stimulation apparatus 10G according to another example embodiment of the invention. Apparatus 10G is similar to apparatus 10F except that tubular member 24G of apparatus 10G comprises two lumens 32G1 and 32G2. The two lumens 32G1 and 32G2 are separated by a partition 33G. Shaft portion 14G1 extends in lumen 32G1 and electrode structure 12AG extends out of a distal opening of lumen 32G1. Shaft portion 14G2 extends in lumen 32G2 and electrode structure 12BG extends out of a side opening 34G of lumen 32G2.



FIG. 10A is a side view of a nerve stimulation apparatus 10H according to an example embodiment of the invention. FIG. 10B is an isometric view of apparatus 10H in combination with an introducer 38H and a hub 40H. FIGS. 10C, 10D are possible cross-sectional views of apparatus 10H. Nerve stimulation apparatus 10H comprises electrode structures 12AH, 12BH, and a tubular member 24H.


Nerve stimulation apparatus 10H may be coupled to an introducer 38H and a hub 40H. This may be done during use to facilitate entry of the nerve stimulation apparatus into a patient's blood vessel. It should be noted that other types of introducers and/or hubs different from the ones shown in FIG. 10B may also be used in conjunction with nerve stimulation apparatus 10H. Electrode structure 12AH is connected to a shaft portion 14H which extends inside tubular member 24H. Electrode structure 12BH is disposed on first tubular member 24H. The distance between electrode structure 12AH and 12BH may be in the range of 5-10 cm for example. The distance between electrode structure 12BH and the distal end of introducer 38H may be in the range of 0-5 cm for example.


Tubular member 24H is partially received in tubular member 36H of introducer 38H. When nerve stimulation apparatus 10H is applied to a patient, hub 40H and the wing portion of introducer 38H stay outside of the patient. Introducer 38H and/or hub 40H may comprise holes for suture. In their deployed configuration, electrode structures 12AH and 12BH have a transverse dimension that is greater than the transverse dimension of tubular member 24H. Apparatus 10H comprises a thermistor 64H or other temperature sensor.


Tubular member 24H may comprise a multi-lumen catheter. FIGS. 10C, 10D show possible cross sections of tubular member 24H. Tubular member 24H may have 1, 2, 3, 4, 5, or more lumens 32H. Shaft portion 14H and leads 45H may run inside one or more of the lumens 32H. Leads 45H may also run inside the bore of shaft portion 14H.



FIGS. 11A and 11B show a nerve stimulation apparatus 10I in combination with an introducer 38I and a hub 40I according to an example embodiment of the invention. FIGS. 11C and 11D are cross sectional views of nerve stimulation apparatus 10 along lines B-B and A-A respectively in FIG. 11B. Nerve stimulation apparatus 10I comprises a first tubular member 24I, a second tubular member 36I, an introducer 38I, a hub 40I, a first electrode structure 12AI, a second electrode structure 12BI, a first shaft portion 14I (not visible) and a second shaft portion 68I (not visible). Electrode structure 12AI is attached to a distal end of first shaft portion 14I. First shaft portion 14I is visible in FIGS. 11C and 11D (in cross section). Electrode structure 12AI is retractable into the distal end of tubular member 24I. Electrode structure 12BI is attached to second shaft portion 68I. Electrode structure 12BI is extendable out of the distal end of second tubular member 36I and is retractable into the distal end of tubular member 36I. Second shaft portion 68I is visible in FIG. 11C (in cross section). First tubular member 24I is longer than second tubular member 36I and passes through second tubular member 36I. First tubular member 24I comprises a plurality of lumens 32I, and second tubular member 36I surrounds the multi-lumen first tubular member 24I. Because electrode 12AI and 12BI are attached to two separate shaft portions 14I and 68I, respectively, electrode structures 12AI and 12BI can be independently controlled from outside the body.



FIG. 12 shows a nerve stimulation apparatus 10J according to an example embodiment of the invention. Apparatus 10J comprises a tubular member 24J. Electrode structure 12AJ extends out of the distal end of tubular member 24J whereas electrode 12BJ extends out of an opening 34J on tubular member 24J. Electrode structure 12AJ is attached to shaft portion 14J and electrode structure 12B is attached to shaft portion 68J. Shaft portions 14J and 68J are both inside tubular member 24J. Electrode structures 12AJ and 12BJ can be independently controlled from outside the body.



FIG. 13A shows a nerve stimulation apparatus 10K. In this embodiment, tubular member 24K has five lumens 32K. FIGS. 13B-13E show some possible cross sections of tubular member 24K taken at line A-A in FIG. 13A. Three lumens 32K may be used for drug infusion and are in fluid communication with openings 62AK, 62BK, 62CK located in a proximal, middle and distal portion of tubular member 24K. One lumen contains shaft portion 14K which is coupled to electrode structure 12AK. One lumen contains shaft portion 68K which is coupled to electrode structure 12BK. In FIG. 13B, each of the five lumens has the same size and has a circular cross section. In FIG. 13C, the lumens have different sizes, but all have circular cross sections. In FIG. 13D, the lumens have different sizes and non-circular cross sections. In FIG. 13E, the lumens have different sizes and are a mix of circular and non-circular cross sections.



FIG. 14A is another embodiment of a nerve stimulation apparatus 10L. FIGS. 14B and 14C show some possible cross sections of tubular member 24L in the FIG. 14A embodiment. In the FIG. 14A embodiment, tubular member 24L has three lumens 32L. One lumen 32L contains shaft portion 14L which is coupled to electrode structure 12AL. One lumen 32L contains shaft portion 68L which is coupled to electrode structure 12BL. One lumens may be used for drug infusion to opening 62L located in a middle portion of tubular member 24L. In FIG. 14B, each of the three lumens has the same size and has a circular cross section. In FIG. 14C, the lumens have non-circular cross sections.



FIG. 15 shows a nerve stimulation apparatus 10M. Apparatus 10M comprise a tubular member 24M. The proximal end of tubular member 24M is coupled to introducer 38M. Introducer 38M has a side port 39M. Both electrode structures 12AM, 12BM extend out of a distal opening of tubular member 24M. Electrode structure 12AM is coupled to shaft portion 14M. Electrode structure 12BM is coupled to shaft portion 68M. Electrode structures 12AM and 12BM can be independently controlled.



FIG. 16 shows a nerve stimulation apparatus 10N. Nerve stimulation apparatus 10N comprises a tubular member 36N, an electrode structure 12N and a shaft portion 14N (not visible). Electrode structure 12N extends out of a distal opening of tubular member 36N. Shaft portion 14N is inside tubular member 36N. Tubular member 36N may be a cannula or catheter-type tubular member. The length of tubular member 36N is sufficiently long to enter the vessel by about 1 cm such that nerve stimulation apparatus 10N is suitable for stimulating the left phrenic nerve when inserted into a patient's LSV and left BCV.



FIG. 17 shows a nerve stimulation apparatus 10O. Nerve stimulation apparatus 10O comprises a tubular member 24O, an electrode structure 12O and a shaft portion 14O (not visible). Electrode structure 12O is attached to a distal end of shaft portion 14O. Shaft portion 14O is not visible in FIG. 17 because shaft portion 14O is inside tubular member 24O. Tubular member 24O may be a catheter-type tubular member. The length of tubular member 24O may be 16-20 cm so that nerve stimulation apparatus 10O is suitable for stimulating the right phrenic nerve when inserted into a patient's LSV, left BCV and then enters SVC. It should be noted that apparatus 10N, 10O may be used in combination to stimulate both left and right phrenic nerves at the same time.



FIGS. 18A, 18B show an electrode structure 12P according to an example embodiment of the invention. FIG. 18A is a top plan view of electrode structure 12P. FIG. 18B is a bottom perspective view of electrode structure 12P. Electrode structure 12P comprises at least one electrode 20P and an insulating pad 42P. Pad 42P may be resiliently flexible. When electrode structure 12P is not confined inside a tubular member, pad 42P can automatically spring open to take a desired shape. When electrode structure 12P springs open, electrode structure 12P may have a dimension that is greater than the transverse dimension of the tubular member. To retrieve electrode structure 12P into a tubular member, electrode structure 12P can be collapsed and/or pulled back into the tubular member by pulling shaft portion 14P which is coupled to electrode structure 12P. Electrode 20P may be supported on pad 42P, but this is not mandatory. Pad 42P has a petal or leaf-like shape, although pad 42P may be of any other suitable shape. Pad 42P may be an insulating pad, thereby insulating electrode 20P from the blood in a blood vessel. Pad 42P may be made of an insulating material or materials. Suitable materials for making pad 42P include, without limitation, PTEF, silicone, PET, and nylon. Pad 42P may present a high-impedance to the flow of electrical current and therefore reduces the amount of current flowing through the blood when electrode structure 12P is deployed in a blood vessel.


It is not mandatory that pad 42P have an extremely high electrical resistance. It is sufficient if pad 42P has a resistance to the flow of electricity through pad 42P that is significantly greater than that presented by the blood in blood vessel V. Blood typically has a resistivity of about 120 to 190 Ωcm. In example embodiments, the blood in a blood vessel may provide an electrical resistance between closely-spaced electrical contacts that is inversely proportional to the dimensions of the lumen of the blood vessel. In large blood vessels the longitudinal electrical resistance between reasonable closely-spaced contacts can be a few tens of ohms for example. Pad 42P preferably provides an electrical resistance of at least a few hundred ohms, preferably a few kilo ohms or more to the flow of electrical current through the thickness of pad 42P. Pad 42P could have electrically conductive members such as leads and the like embedded within it or electrically-conductive electrode or other features on its inner surface and still be considered to be ‘insulating’.


For example, electrode 20P may be supported on pad 42P. Pad 42P can be rolled up and retracted into the tubular member to facilitate insertion or retrieval of electrode structure 12P within a blood vessel. When electrode structure 12P is deployed, pad 42P can spring open to take a shape that has a curvature that generally conforms to the wall of a blood vessel. This helps to bring electrode 20P which is on a side of pad 42P to be in close proximity of the blood vessel wall. Blood flow in the blood vessel may also assist in deploying electrode structure 12P and pressing pad 42P against the walls of a blood vessel. It should be noted that electrode structure 20P does not need to be fixed or fastened to the blood vessel wall, but rather can float inside the blood vessel against the wall.


In the embodiment of FIGS. 18A, 18B, electrode structure 12P also comprises a wire 44P which is connected to shaft portion 14P. Wire 44P passes through apertures 46P in pad 42P, thereby holding pad 42P in place. Wire 44P may provide structural support to pad 42P. Additionally, wire 44P may optionally serve as a ground electrode or a reference electrode. In FIG. 18B, a lead 45P extends from a bore in shaft portion 14P to a backside 56P of electrode 20P. Lead 45P may be coated with an insulating material (e.g., Teflon™ or other suitable insulating material). Sensors such as a thermistor, an oxygen sensor, and/or CO2 sensor (not shown) may be supported on electrode structure 12P. In some embodiments, electrode structures 12P may be used for plethysmography.


In the illustrated embodiment, electrode 20P is exposed on one side (e.g., the convex side, i.e., the side facing the blood vessel wall) of pad 42P. Pad 42P may, for example, comprise a reinforced silicone material. In one embodiment, pad 42P is a pad of Dacron-mesh-reinforced silicone. This material can be rolled up, has shape memory so that it tends to open up, and is resiliently flexible so that it can conform to the wall of a blood vessel. Blood flow in the blood vessel may also assist in deploying electrode structure 12P and supporting electrode structure 12P against the walls of a blood vessel.



FIG. 19A shows a schematic of a cross section of an electrode structure 12Q according to one example embodiment of the invention. In FIG. 19A embodiment, electrode 20Q comprises one or more ribbons 48Q of a suitable biocompatible metal. Pad 42Q on which the ribbons 48Q are supported comprises two layers. A top layer 50Q which faces the wall of the blood vessel has apertures 52Q and the ribbons 48Q pass through aperture 52Q such that a portion of the ribbons 48Q is exposed and able to contact or be in close proximity of a wall 54Q of the blood vessel. This is schematically shown in FIG. 19B. The bottom layer 56Q which faces the center of the blood vessel may be made of a suitable insulating material. Ribbons 48Q are electrically coupled to lead 45Q which is directly or indirectly coupled to a source of electricity (e.g., a stimulation generator). The bottom insulating layer 56Q may comprise a thin material such as Teflon™, polyurethane, or silicone.


The material of electrode 20Q is preferably relatively thin so that it does not make the electrode structure too stiff. For example, the electrode material may comprise metal ribbons 48Q that are 0.5 to 1 mm wide, or less than 0.5 mm wide. In other embodiments the electrodes may comprise areas of conductive polymer printed on or contained in the insulating material of the electrode structure.


Generally, the delivery of electrical stimulation to a target nerve is enhanced by:

    • locating electrode 20 against the internal wall of the blood vessel at a location close to the target nerve;
    • providing electrode 20 having a relatively large contact surface that can achieve a large contact area with the internal wall of the blood vessel;
    • curving the contact surface of electrode 20 to roughly match the curvature of the inner face of blood vessel; and/or providing insulating pad 42.


Experiments conducted by the inventors have shown that it is possible to achieve a similar level of stimulation of a target nerve using insulated electrodes by applying only one third of the electric current as compared to using uninsulated electrodes. The reduced electric current can result in less damage to tissues within a patient as well as a lower risk of unintended stimulation. Additionally, selectivity for a target nerve is improved. Low current and high selectivity for a target nerve is advantageous because it avoids activating non-target nerves which may be close by. For example, it is known that the vagus nerve is typically 2-3 cm medial with respect to the phrenic nerves in humans.



FIGS. 20A and 20B are perspective and side views of wire 44P according to one example embodiment. Wire 44P is connected to shaft portion 14P. Wire 44P may form a hair-pin configuration, extending from shaft portion 14P on one side of pad 42P (not shown in FIGS. 20A and 20B), passing through apertures 46P in pad 42P to the other side of pad 42P and then extending in the opposite direction.


Where shaft portion 14P comprises stainless steel tube(s), the wire 44P may, for example, be welded or otherwise attached to the stainless steel tube(s). Wire 44P may comprise a loop of 0.010 inch stainless steel (for example Elgiloy™). The wire of the loop may pass through apertures 46P in the insulating pad 42P on which electrode(s) 20P are supported as shown in FIGS. 18A, 18B. This positively retains pad 42P in place. Wire 44P may be passed through apertures 46P before being affixed to shaft portion 14P. In some embodiments, wire 44P provides one of a plurality of electrodes for monitoring bioelectrical activity and/or delivering electrical stimulation.



FIGS. 21A, 21B are top and bottom perspective views of an electrode structure 12R. Electrode structure 12R is similar to electrode structure 12P. In FIGS. 21A, 21B, pad 42R is flexible and partially rolled-up, and electrode 20R is located on the convex side of pad 42R.



FIG. 22 shows an electrode structure 12S according to one example embodiment. As shown in FIG. 22, pad 42S of electrode structure 12S is asymmetrical. This provides better coverage and provides the possibility of placing the electrodes 20S at more discrete locations around a blood vessel while still being able to compactly roll up the electrode structure 12S for insertion and retrieval. A plurality of electrodes 20S are provided on electrode structure 12S. Providing a plurality of electrodes 20S on each electrode structure allows selection of an electrode or a combination of electrodes to provide the most effective stimulation of a target nerve.



FIGS. 23A-23E show how an example electrode structure 12T may be rolled up and retracted into a tubular member 24T. In FIGS. 23A-E, pad 42T of electrode structure 12T is flexible enough that electrode structure 12T can be pulled into tubular member 24T by pulling shaft portion 14T (not visible) which is coupled to electrode structure 12T.



FIGS. 24A-24E show how an example electrode structure 12U may be rolled up, deployed, and retracted into a tubular member 24U. As shown in FIG. 24A, electrode structure 12U may initially be fully rolled up inside tubular member 24U (e.g., when nerve stimulation apparatus 10 is being inserted into a patient's blood vessel). The two halves of pad 42U of electrode structure 12U may be rolled up in the same direction.


As shown in FIGS. 24B and 24C, when nerve stimulation apparatus 10 is located in a desired position in the patient's blood vessel, electrode structure 12U may be deployed by moving electrode structure 12U out of tubular member 24U and opening pad 42U. As shown in FIGS. 24D and 24E, electrode structure 12U may be retrieved by turning or rotating shaft portion 14U from outside the body to roll up pad 42U. Once pad 42U is rolled up, electrode structure 12U can be retrieved into tubular member 24U. The entire tubular member 24U which contains electrode structure 12U can then be withdrawn from the patient's body.



FIGS. 25 and 26 show two example electrode structures 12V, 12W. The FIG. 25 electrode structure 12V has a pad 42V that has a gentle curl (in cross section). Electrodes 20V are located on a convex side of pad 42V. Pad 42V comprises a low-stiffness spring wire loop 70V. In FIG. 25, wire loop 70V is in its relaxed, expanded configuration. Wire loop 70V may be made of nitinol or stainless steel, for example. Wire loop 70V may be located on the side of pad 42V that is facing the center of the blood vessel (e.g., the concave side of pad 42V) and opposite from the side where electrodes 20V are located. Alternatively, wire loop 70V may be sandwiched inside a pocket formed by two insulating pad layers of pad 42V. Electrodes 20V are exposed on the side of pad 42V that is facing the wall of the blood vessel (e.g., the convex side of pad 42V). Wire 44V is woven and adhered to pad 42V to provide structural support and stiffness to pad 42V. Electrode structure 12V may be withdrawn into tubular member 24V by pulling on shaft portion 14V from outside the body. On reaching the edge of tubular member 24V, the low stiffness deformable spring wire loop 70V collapses and pad 42V enters tubular member 24V. The tubular member 24V together with electrode structure 12V is then withdrawn from the body.


The FIG. 26 electrode structure 12W is similar to the FIG. 25 electrode structure 12V except that wire loop 70V is replaced with deformable low-stiffness springy ribs 72W. Electrode structure 12W may be retrieved into tubular member 24 in a similar fashion as electrode structure 12V.



FIGS. 27A-27E schematically illustrate a nerve stimulation apparatus 10X according to another embodiment. FIG. 27A shows apparatus 10X coupled to a hub 40X. FIG. 27B shows apparatus 10X in position inside left BCV and SVC. Apparatus 10X comprises electrode structures 12AX, 12BX (collectively 12X). Electrode structures 12AX, 12BX may be the same or can be of different sizes and/or shapes. As shown in FIG. 27C, pad 42X of each electrode structure 12X comprises an inflatable balloon 58X. The inflatable balloon 58X may be made of a suitable polymer material (e.g., PET, nylon, silicone). The balloon 58X may be compliant, semi-compliant, or non-compliant. The balloon 58X may be inflated with a fluid (e.g, saline solution) and, once inflated, will take the desired shape. Electrodes 20X are disposed on one side of pad 42X. Electrodes 20X may be printed or glued on balloon 58X. Apparatus 10X also comprises a conduit for infusing fluid into balloon 58X, and the infusion of fluid into balloon 58X can be controlled from outside the body. FIG. 27D shows electrode structure 12X with balloon 58X in a deflated state. FIG. 27E shows electrode structure 12X with balloon 58X in a inflated state. Out of the package, balloon 58X is pleated and folded to wrap around shaft portion 14X. Balloon 58X is parked inside one of the lumens of apparatus 10X. To deploy electrode structure 12X, shaft portion 14X is pushed from the proximal end of apparatus 10X; balloon 58X pops out of an opening of tubular member 24X and then is inflated. To retrieve balloon 58X, balloon 58X is first deflated and then pulled into one of the lumens of apparatus 10X from the proximal end of apparatus 10X via shaft portion 14X.



FIGS. 28A, 28B show an example method for locating electrode structure 12 in a blood vessel V to a target nerve N. In this method, electrode structure 12 is inserted into blood vessel V while electrode structure 12 is retracted within tubular member 24. Electrode structure 12 is then extended out of tubular member 24 and positioned at location A. At this point, the amount of electric current required to stimulate nerve N is measured using a suitable device. This may be done, for example, by detecting muscle activity as a result of nerve stimulation, for example, diaphragm muscle activity as result of phrenic nerve stimulation. Electrode structure 12 is then retracted into tubular member 24. Then tubular member 24 is advanced in blood vessel V for a small distance (e.g., 0.1 mm, 0.2 mm, 0.5 mm, 1 mm, 2 mm, 5 mm, etc.) and electrode structure 12 is then extended out of tubular member 24 and positioned at Location B. Again, the amount of electric current required to stimulate nerve N is measured using a suitable device. These steps are repeated (e.g. at Location C, Location D, Location E) for as many times as necessary.


By making a set of such measurements, one can obtain a function indicating how the amount of electric current required to stimulate nerve N varies in relation to the position of electrode structure 12 along blood vessel V. FIG. 28B shows a schematic graph of such a function. In this graph, the amount of electric current required to stimulate nerve N is the lowest at Location C. Therefore, in this illustration, Location C is a desirable or optimal location to place electrode structure 12 as compared to Locations A, B, D and E. This method can be practised either manually or in conjunction with a suitable machine, such as a graphing calculator or a computer.


One aspect of the invention relates to sensors for sensing and/or monitoring the position of an electrode structure 12 inserted into a blood vessel and associated methods. The sensor may be optionally disposable. The sensor may be placed outside of the patient's body. The sensor may be fixed to the reference frame of the patient's body. As an electrode structure 12 is advanced and/or rotated in a blood vessel by a therapist, the sensor acquires positional data and can also relay data to a control unit where electrode position is monitored simultaneously with stimulation parameters and results of stimulation. The control unit calculates the best placement of electrodes 20 and can store this information or provide feedback to the therapist in real time or at later times.


A nerve stimulation system according to an embodiment of the present invention may comprise the following: an intravascular nerve stimulation apparatus having flexible tubular member(s) that can be inserted, advanced, and/or rotated in a blood vessel; one or more sensors that track the position of the intravascular electrodes; and a control unit that acquires position data and relays it to the therapist and/or stores it for later use. Typically, the sensor is coupled to a proximal part of a shaft portion of the nerve stimulation apparatus. The sensor may be placed outside of the body.



FIG. 29A schematically shows an example embodiment of a sensor 80A that is independent from an introducer or tubular member of an intravascular nerve stimulation apparatus 10. FIG. 29B schematically shows an example embodiment of a sensor 80B that is integrated with an introducer or tubular member of an intravascular nerve stimulation apparatus 10.


In some embodiments, the sensor is a pressure-sensitive variable resistance potentiometer sensor. Such a sensor is suitable for monitoring the position (depth) of an intravascular electrode inside a blood vessel. The sensor supplies a voltage output signal that is approximately linearly proportional to the position of the electrode. FIGS. 29C and 29D show an example sensor 80C in cross-sectional and perspective views. Sensor 80C comprises a pressure-sensitive linear potentiometer 81. A low-friction bead 82C (e.g., a Teflon bead) is fixed onto an elongate shaft portion 14. Potentiometer 81, bead 82, and part of shaft portion 14 are assembled within a guide chamber 84C to form sensor 80C. Sensor 80C may be fixed either to the patient, or to the tubular member or the introducer of a nerve stimulation apparatus. As the shaft portion 14 advances, the bead 82 slides along and exerts pressure on potentiometer 81, therefore changing its resistance. The point of contact of the bead 82 against the potentiometer 81 provides a signal that, provided that the shaft portion 14 does not buckle, is generally linearly proportional to the intravascular position of the electrode 20.


The length of the active region of the potentiometer 81 limits the distance over which the depth of the electrode 20 can be tracked. In some embodiments, a commercially available flexible potentiometer may be used with a 6 cm long active region which is sufficient to monitor the movement of an electrode in the vicinity of its target phrenic nerve. However, potentiometers of any desired length may be manufactured for this purpose. If shaft portion 14 has a circular cross-section and bead 82 is spherical and coaxial the shaft portion 14, the shaft portion 14 can be rotated while maintaining contact with the potentiometer 81 to obtain the angular positions of the shaft portion 14 and electrode 20. FIGS. 29F-H show an additional example embodiments of sensor 80D, wherein the guide chamber 84D has a generally triangular cross-section.


In some embodiments, sensor 80 is integrated with the hub of a nerve stimulation apparatus. An example sensors 80G is shown in FIG. 29L. The depth and the angular position of an intravascular electrode can be monitored by combining the use of a linear potentiometer as described above, plus a circular potentiometer to monitor rotation of the shaft portion. Alternatively, the angular position can be controlled by a series of “click stops” placed at convenient angles (e.g., one stop every 15° or 30°) over a desired angular range (e.g., +/−90° from a central default angular position of an electrode) and a multi-pole electrical switch can be connected to indicate each click stop. To monitor rotation of the shaft portion, the shaft portion proximal to the linear transducer can be modified to be of non-circular cross-section, for example square cross-section, and a dial can be incorporated with a square hole through which the shaft portion travels. The therapist can manually rotate either the shaft portion itself or its associated dial, and the rotational movement of the dial is sensed by an integrated sensor housed inside the hub of the nerve stimulation apparatus or alternatively by a multi-pole electrical switch with pre-set click stops. FIG. 29L shows an embodiment wherein the shaft portions 14 can be rotated by dials.



FIG. 29M shows an embodiment of a sensor 80H in which the shaft portion 14 is coupled by way of a string or other flexible element to a spring-loaded shaft fitted with a rotational sensor 90. The rotational sensor's rotational axis 91 is fitted with a rotational encoder (not shown in FIG. 29M), which can be converted into a linear displacement measurement. The shaft portion 14 is attached to rotational sensor 90 using a collar 92 and a wire 94. As the shaft portion 14 is moved, the collar 92 slides through a guide 96 which prevents the shaft portion 14 from moving in any axis other than the one in which the rotational sensor 90 keeps track of position. To make the assembly smaller, rotational sensor 90 may be put at an angle by having the wire 94 redirected by a pulley or a block 98. To move the shaft portion 14, the collar 92 can be fitted with a slider or the assembly can allow the user to move the shaft portion 14 directly.



FIGS. 29N and 29O are side and front views of a sensor 80J where the shaft portion 14 is fitted between a roller 100 and a guide 102. As the shaft portion 14 passes the roller 100, it creates a rotational motion of the roller 100 in the same direction. The rotational movement of the roller 100 is then converted to a linear movement through an encoder 104. Both roller 102 and encoder 104 are located co-axially on a rotational axis 106.



FIG. 29P shows a sensor 80K wherein shaft portion 14 is fitted with a collar 108 made out of an insulating material. The collar 108 has at least one conductive ring 110. Ring 110 slides through a guide 112 fitted with electrical contacts 114. As the collar 108 slides through the guide 112 and the ring 110 touches the electrical contacts 114 on each side, a current passes through the ring 110. The current may be converted to positional data, either by correlating position to resistance or by identifying the shorted contacts and associating them with a calibrated position.



FIG. 29Q shows a sensor 80L in which a shaft portion 14 is fitted with two resistive traces 116 connected at one end. Both resistive traces 116 are exposed, but the bridge connecting them is not. As the shaft portion 14 slides into ring guide 118, both traces 116 contact two halves of a metallic ring. A current is sent through one half, and received via the other half. The current goes through the traces 116 on the shaft portion 14. The voltage drop measured across the ring halves is proportional to the length of the traces 116 the current goes through. By calibrating the resistance, a position measurement can be obtained.


One or more angle sensors may be used with the apparatus described herein. FIG. 30A shows an example angle sensor 200 (in side view) in which a lead with a non-circular profile slides through a disc which is free to rotate. Angle sensor 200 comprises wiper 202 (FIG. 30B) and potentiometer 204 (FIG. 30C). When the lead is rotated, the sleeve rotates with the wiper 202 that applies a pressure on cylindrical membrane potentiometer 204.



FIGS. 30D to 30F shows an example angle sensor 208 in which a lead with a non-circular profile slides through a sleeve 210 which is free to rotate. FIG. 30D is a cross-sectional view of sensor 208. FIG. 30E is a side view of sensor 208. FIG. 30F is an exploded view of sensor 208. When the lead is rotated, the sleeve 210 rotates with a wiper part 211 that applies a pressure on a potentiometer. Sensor 208 comprises sleeve 210 with wiper 211, conductive membrane 212, space layers 214, resistive trace 216 and support structure 218.



FIGS. 30G and 30H show an angle senor 220 in which a lead with non-circular profile slides through a sleeve which is free to rotate. Sensor 220 comprises sleeve 222 having a conductive strip 224, a flexible PCB 226, and a support structure 228. The flexible PCB 226 comprises electrical contacts 234, measurement traces 232, and a perpendicular trace 230. When the lead is rotated, the sleeve 222 rotates and creates an electrical contact with a cylindrical board with multiple contacts. This part may be a flexible PCB 226 with a series of parallel exposed traces 232 and one perpendicular trace 230. The perpendicular trace is then energized and shorted with one of the other traces via a conductive strip on the rotating sleeve. A control unit then cycles through the contacts and looks for the traces that are energized to find the position. The conductive part shorting the traces can be shorting only the energized trace with another, or more than one. For example, the conductive part could short all traces but one, so that the control unit would look for the trace that is not energized.



FIGS. 31A-31D show a “cobra hood” expandable design which may be used in combination with the electrode structure of the nerve stimulating apparatus described herein as well as in other contexts. Such a design may be used, for example, to provide a backing member (e.g., petal) for one or more electrodes. For example, such a structure may be deployed to stimulate the left phrenic nerve. FIG. 31B is a schematic cross-sectional view of the cobra design wherein an expandable shroud 302 is in an unexpanded configuration. FIG. 31C is a schematic cross-sectional view of the cobra design wherein shroud 302 is in an expanded configuration. FIG. 31D is a schematic plan view of the cobra design wherein shroud 302 is in an unexpanded configuration. FIG. 31E is a schematic plan view of the cobra design wherein shroud 302 is in an expanded configuration.


Shroud 302 comprises a panel of material. The material is electrically insulating. In some embodiments the material is elastically stretchable. When shroud 302 is not deployed, shroud 302 is configured to be stored inside a tubular member 306 in an unexpanded configuration. One or more electrodes 304 may be located above or on top of shroud 302, oriented towards an inner surface of a blood vessel V.


Shroud 302 may be connected to and/or supported by a pair of flexible members such as rods or tubes 308 which run inside tubular member 306 when shroud 302 is not deployed. The flexible members may be resiliently flexible. Rods or tubes 308 may be made of stainless steel, Nitinol, or some other suitable material, for example. The distal ends of rods or tubes 308 may be anchored or fixed to tubular member 306 at anchor positions 310. In alternative embodiments, distal ends of rods or tubes 308 may move freely to some extent along the tubular member 306. Tubular member 306 comprises side openings 312.


Shroud 302 can be manipulated from outside the body to move between a collapsed configuration and an expanded configuration. When a user pushes the proximal ends of rods or tubes 308 towards the distal ends, portions of rods or tubes 308 along side openings 312 bulge out and extend out of side openings 312 of tubular member 306. This in turn stretches shroud 302 to open to an expanded configuration. When shroud 302 is expanded, it forms a petal-like backing member for electrodes 304. Shroud 304 may help to position electrodes 304 against the blood vessel wall. The electrically insulating shroud also functions as an electrically insulating backing sheet which helps to insulate electrodes 304 from the blood flowing in the lumen of the blood vessel.


To return shroud 302 into tubular member 306, the force applied to rods or tubes 308 is released. Rods or tubes 308 are returned to a straight configuration and retrieved into tubular member 306. This in turn brings shroud 302 into a collapsed configuration inside tubular member 306.


The “cobra” design shown in FIGS. 31A-31E may be altered to produce a “half cobra” design. In a “half cobra” design, one edge of shroud 302 is connected to and/or supported by a rod or tube 308; the other edge of shroud 302 is fixed inside tubular member 306 (e.g., fixed to an inside surface of tubular member 306). When rod or tube 308 is manipulated to bulge out, shroud 302 expands to one side to form a “half cobra” backing sheet in an expanded configuration. A device may comprise two “half cobra” shrouds side by side which together form a “full-cobra” backing sheet in operation.


Electrodes 304 could be located on tubular member 306. Instead of or in addition to electrodes 304 on tubular member 306, electrodes 304 could be on shroud 302. Where flexible members 308 are electrically conductive, portions of flexible member 308 may be exposed to provide electrodes.


The applications of the apparatus and methods described herein are not limited to phrenic nerves. The apparatus and methods described herein may be applied to provide surgically simple, low risk solutions for stimulating a wide range of peripheral or cranial nerves. For example, the methods and apparatus may be applied to stimulate the obturator nerve in the hip/groin area or the trigeminal nerve in the head.


The apparatus and methods may be applied to treatment of a wide variety of disorders such as pain of peripheral or craniofacial origin, sensory deficits, paralysis or paresis of central origin, autonomic disorders, and generally any medical condition that can be treated or alleviated using neuromodulation by electrical stimulation of a nerve that is in close proximity to a blood vessel into which a nerve stimulation apparatus can be deployed.


Various elements of the invention may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing. For example, elements described in one embodiment may be combined with elements described in other embodiments to yield further example embodiments.


The scope of the invention should not be limited by the embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.

Claims
  • 1. A nerve stimulation system, comprising: a catheter including at least one lumen configured to remove a fluid from a patient or deliver a fluid to the patient;a plurality of distal electrodes supported by the catheter, wherein the plurality of distal electrodes are configured for stimulating a phrenic nerve;a plurality of proximal electrodes supported by the catheter; andan electrode assembly including a metal ribbon and an insulative layer,wherein the plurality of distal electrodes, the plurality of proximal electrodes, or both, include an electrode configured to monitor the patient; andwherein the metal ribbon is electrically connected to at least one electrode, of the plurality of distal electrodes and plurality of proximal electrodes, radially outward of the insulative layer.
  • 2. The nerve stimulation system of claim 1, wherein the plurality of distal electrodes are configured for stimulating a right phrenic nerve, and the plurality of proximal electrodes are configured for stimulating a left phrenic nerve.
  • 3. The nerve stimulation system of claim 1, wherein one or more electrodes of the plurality of distal electrodes, the plurality of proximal electrodes, or both, is disposed on a polymer material extension.
  • 4. The nerve stimulation system of claim 1, wherein the at least one lumen is a first lumen, and the catheter further comprises one or more additional lumens.
  • 5. The nerve stimulation system of claim 1, wherein the insulative layer is a top insulative layer, the electrode assembly further includes a bottom insulative layer, and a portion of the metal ribbon is between the top insulative layer and the bottom insulative layer.
  • 6. The nerve stimulation system of claim 5, wherein the bottom insulative layer is comprised of Teflon™, polyurethane, or silicone.
  • 7. A nerve stimulation system, comprising: a catheter including at least one lumen;a distal electrode assembly including a plurality of distal electrodes supported by the catheter; anda proximal electrode assembly including a plurality of proximal electrodes supported by the catheter;wherein the distal electrode assembly, the proximal electrode assembly, or both, include a metal ribbon; andwherein the plurality of distal electrodes, the plurality of proximal electrodes, or both, is configured for stimulating a phrenic nerve, andwherein a portion of the metal ribbon is between a top insulative layer and a bottom insulative layer.
  • 8. The nerve stimulation system of claim 7, wherein the metal ribbon has a width less than 0.5 mm.
  • 9. The nerve stimulation system of claim 7, wherein the metal ribbon is electrically connected to at least one electrode above the top insulative layer.
  • 10. The nerve stimulation system of claim 7, wherein an aperture of the top insulative layer includes metal and the metal connects the metal ribbon to at least one electrode.
  • 11. The nerve stimulation system of claim 7, wherein the bottom insulative layer is comprised of Teflon™, polyurethane, or silicone.
  • 12. A nerve stimulation system, comprising: a catheter including at least one lumen;an electrode assembly including a plurality of electrodes, a metal ribbon, and an insulative layer; andwherein at least a portion of the plurality of electrodes is configured for stimulating a phrenic nerve; andwherein an aperture of the insulative layer includes metal and the metal connects the metal ribbon to at least one electrode of the plurality of electrodes.
  • 13. The nerve stimulation system of claim 12, wherein the insulative layer is a top insulative layer, the electrode assembly further includes a bottom insulative layer, and a portion of the metal ribbon is between the top insulative layer and the bottom insulative layer.
  • 14. The nerve stimulation system of claim 13, wherein the bottom insulative layer is comprised of Teflon™, polyurethane, or silicone.
  • 15. The nerve stimulation system of claim 13, further comprising a polymer material extension disposed on an exterior of the catheter, wherein one or more electrodes of the plurality of electrodes is disposed on the polymer material extension.
  • 16. The nerve stimulation system of claim 15, wherein the polymer material extension comprises one or more layers of polymer material.
  • 17. The nerve stimulation system of claim 12, wherein the catheter is more flexible in a first direction than in a second direction.
  • 18. The nerve stimulation system of claim 12, wherein at least one electrode of the plurality of electrodes is a printed electrode.
  • 19. The nerve stimulation system of claim 12, wherein at least one electrode of the plurality of distal electrodes or the plurality of proximal electrodes is configured to monitor a patient.
  • 20. The nerve stimulation system of claim 12, wherein the at least one lumen is configured to remove a fluid from a patient or deliver a fluid to the patient.
  • 21. The nerve stimulation system of claim 12, wherein the catheter is configured to be inserted into a blood vessel.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/383,285, filed Sep. 5, 2014, which is a 371 national stage application of PCT Patent Application No. PCT/CA2013/050159, filed Mar. 4, 2013, which claims priority from U.S. Provisional Patent Application No. 61/606,899, filed Mar. 5, 2012. The entirety of each of the above applications is incorporated herein by reference.

US Referenced Citations (665)
Number Name Date Kind
1693734 Waggoner Dec 1928 A
2532788 Sarnoff Dec 1950 A
2664880 Wales, Jr. Jan 1954 A
3348548 Chardack Oct 1967 A
3470876 John Oct 1969 A
3769984 Muench Nov 1973 A
3804098 Friedman Apr 1974 A
3817241 Grausz Jun 1974 A
3835864 Rasor et al. Sep 1974 A
3847157 Caillouette et al. Nov 1974 A
3851641 Toole et al. Dec 1974 A
3896373 Zelby Jul 1975 A
3938502 Bom Feb 1976 A
3983881 Wickham Oct 1976 A
4054881 Raab Oct 1977 A
4072146 Howes Feb 1978 A
4114601 Abels Sep 1978 A
4173228 Childress et al. Nov 1979 A
4249539 Mezrich et al. Feb 1981 A
4317078 Weed et al. Feb 1982 A
4380237 Newbower Apr 1983 A
4407294 Vilkomerson Oct 1983 A
4416289 Bresler Nov 1983 A
4431005 McCormick Feb 1984 A
4431006 Trimmer et al. Feb 1984 A
4445501 Bresler May 1984 A
RE31873 Howes Apr 1985 E
4573481 Bullara Mar 1986 A
4586923 Gould et al. May 1986 A
4587975 Salo et al. May 1986 A
4643201 Stokes Feb 1987 A
4674518 Salo Jun 1987 A
4681117 Brodman et al. Jul 1987 A
4683890 Hewson Aug 1987 A
4697595 Breyer et al. Oct 1987 A
4706681 Breyer et al. Nov 1987 A
4771788 Millar Sep 1988 A
4819662 Heil, Jr. et al. Apr 1989 A
4827935 Geddes et al. May 1989 A
4830008 Meer May 1989 A
4840182 Carlson Jun 1989 A
4852580 Wood Aug 1989 A
4860769 Fogarty et al. Aug 1989 A
4905698 Strohl, Jr. et al. Mar 1990 A
4911174 Pederson et al. Mar 1990 A
4934049 Kiekhafer et al. Jun 1990 A
4944088 Doan et al. Jul 1990 A
4951682 Petre Aug 1990 A
4957110 Vogel et al. Sep 1990 A
4989617 Memberg et al. Feb 1991 A
5005587 Scott Apr 1991 A
5036848 Hewson Aug 1991 A
5042143 Holleman et al. Aug 1991 A
5056519 Vince Oct 1991 A
5115818 Holleman et al. May 1992 A
5146918 Kallok et al. Sep 1992 A
5170802 Mehra Dec 1992 A
5184621 Vogel et al. Feb 1993 A
5224491 Mehra Jul 1993 A
5243995 Maier Sep 1993 A
5265604 Vince Nov 1993 A
5267569 Lienhard Dec 1993 A
5314463 Camps et al. May 1994 A
5316009 Yamada May 1994 A
5324322 Grill, Jr. et al. Jun 1994 A
5330522 Kreyenhagen Jul 1994 A
5345936 Pomeranz et al. Sep 1994 A
5383923 Webster, Jr. Jan 1995 A
5411025 Webster, Jr. May 1995 A
5417208 Winkler May 1995 A
5451206 Young Sep 1995 A
5456254 Pietroski et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5476498 Ayers Dec 1995 A
5486159 Mahurkar Jan 1996 A
5507725 Savage et al. Apr 1996 A
5524632 Stein et al. Jun 1996 A
5527358 Mehmanesh et al. Jun 1996 A
5531686 Lundquist et al. Jul 1996 A
5549655 Erickson Aug 1996 A
5555618 Winkler Sep 1996 A
5567724 Kelleher et al. Oct 1996 A
5584873 Shoberg et al. Dec 1996 A
5604231 Smith et al. Feb 1997 A
5665103 Lafontaine et al. Sep 1997 A
5678535 Dimarco Oct 1997 A
5683370 Luther et al. Nov 1997 A
5709853 Iino et al. Jan 1998 A
5716392 Bourgeois et al. Feb 1998 A
5733255 Dinh et al. Mar 1998 A
5755765 Hyde et al. May 1998 A
5776111 Tesio Jul 1998 A
5779732 Amundson Jul 1998 A
5782828 Chen et al. Jul 1998 A
5785706 Bednarek Jul 1998 A
5788681 Weaver et al. Aug 1998 A
5813399 Isaza et al. Sep 1998 A
5814086 Hirschberg et al. Sep 1998 A
RE35924 Winkler Oct 1998 E
5824027 Hoffer et al. Oct 1998 A
5827192 Gopakumaran et al. Oct 1998 A
5916163 Panescu et al. Jun 1999 A
5944022 Nardella et al. Aug 1999 A
5954761 Machek et al. Sep 1999 A
5967978 Littmann et al. Oct 1999 A
5971933 Gopakumaran et al. Oct 1999 A
5983126 Wittkampf Nov 1999 A
6006134 Hill et al. Dec 1999 A
6024702 Iversen Feb 2000 A
6096728 Collins et al. Aug 2000 A
6120476 Fung et al. Sep 2000 A
6123699 Webster, Jr. Sep 2000 A
6126649 Vantassel et al. Oct 2000 A
6136021 Tockman et al. Oct 2000 A
6157862 Brownlee et al. Dec 2000 A
6161029 Spreigl et al. Dec 2000 A
6166048 Bencherif Dec 2000 A
6171277 Ponzi Jan 2001 B1
6183463 Webster, Jr. Feb 2001 B1
6198970 Freed et al. Mar 2001 B1
6198974 Webster, Jr. Mar 2001 B1
6201994 Warman et al. Mar 2001 B1
6208881 Champeau Mar 2001 B1
6210339 Kiepen et al. Apr 2001 B1
6212435 Lattner et al. Apr 2001 B1
6216045 Black et al. Apr 2001 B1
6236892 Feler May 2001 B1
6240320 Spehr et al. May 2001 B1
6249708 Nelson et al. Jun 2001 B1
6251126 Ottenhoff et al. Jun 2001 B1
6269269 Ottenhoff et al. Jul 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6295475 Morgan Sep 2001 B1
6360740 Ward et al. Mar 2002 B1
6397108 Camps et al. May 2002 B1
6400976 Champeau Jun 2002 B1
6415183 Scheiner et al. Jul 2002 B1
6415187 Kuzma et al. Jul 2002 B1
6438427 Rexhausen et al. Aug 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6449507 Hill et al. Sep 2002 B1
6463327 Lurie et al. Oct 2002 B1
6493590 Wessman et al. Dec 2002 B1
6508802 Rosengart et al. Jan 2003 B1
6526321 Spehr Feb 2003 B1
6569114 Ponzi et al. May 2003 B2
6584362 Scheiner et al. Jun 2003 B1
6585718 Hayzelden et al. Jul 2003 B2
6587726 Lurie et al. Jul 2003 B2
6602242 Fung et al. Aug 2003 B1
6610713 Tracey Aug 2003 B2
6630611 Malowaniec Oct 2003 B1
6643552 Edell et al. Nov 2003 B2
6651652 Ward Nov 2003 B1
6682526 Jones et al. Jan 2004 B1
6702780 Gilboa et al. Mar 2004 B1
6718208 Hill et al. Apr 2004 B2
6721603 Zabara et al. Apr 2004 B2
6757970 Kuzma et al. Jul 2004 B1
6778854 Puskas Aug 2004 B2
6779257 Kiepen et al. Aug 2004 B2
6844713 Steber et al. Jan 2005 B2
RE38705 Hill et al. Feb 2005 E
6881211 Schweikert et al. Apr 2005 B2
6885888 Rezai Apr 2005 B2
6907285 Denker et al. Jun 2005 B2
6934583 Weinberg et al. Aug 2005 B2
6981314 Black et al. Jan 2006 B2
6999820 Jordan Feb 2006 B2
7018374 Schon et al. Mar 2006 B2
7047627 Black et al. May 2006 B2
7071194 Teng Jul 2006 B2
7072720 Puskas Jul 2006 B2
7077823 McDaniel Jul 2006 B2
7082331 Park et al. Jul 2006 B1
7130700 Gardeski et al. Oct 2006 B2
7142903 Rodriguez et al. Nov 2006 B2
7149585 Wessman et al. Dec 2006 B2
7155278 King et al. Dec 2006 B2
7167751 Whitehurst et al. Jan 2007 B1
7168429 Matthews et al. Jan 2007 B2
7184829 Hill et al. Feb 2007 B2
7206636 Turcott Apr 2007 B1
7212867 Van Venrooij et al. May 2007 B2
7225016 Koh May 2007 B1
7225019 Jahns et al. May 2007 B2
7229429 Martin et al. Jun 2007 B2
7231260 Wallace et al. Jun 2007 B2
7235070 Vanney Jun 2007 B2
7269459 Koh Sep 2007 B1
7277757 Casavant et al. Oct 2007 B2
7283875 Larsson Oct 2007 B2
7340302 Falkenberg et al. Mar 2008 B1
7363085 Benser et al. Apr 2008 B1
7363086 Koh et al. Apr 2008 B1
7371220 Koh et al. May 2008 B1
7416552 Paul et al. Aug 2008 B2
7421296 Benser et al. Sep 2008 B1
7454244 Kassab et al. Nov 2008 B2
7519425 Benser et al. Apr 2009 B2
7519426 Koh et al. Apr 2009 B1
7522953 Gharib et al. Apr 2009 B2
7553305 Honebrink et al. Jun 2009 B2
7555349 Wessman et al. Jun 2009 B2
7569029 Clark Aug 2009 B2
7591265 Lee et al. Sep 2009 B2
7593760 Rodriguez et al. Sep 2009 B2
7613524 Jordan Nov 2009 B2
7636600 Koh Dec 2009 B1
7670284 Padget et al. Mar 2010 B2
7672728 Libbus et al. Mar 2010 B2
7672729 Koh et al. Mar 2010 B2
7676275 Farazi et al. Mar 2010 B1
7676910 Kiepen et al. Mar 2010 B2
7697984 Hill et al. Apr 2010 B2
7747323 Libbus et al. Jun 2010 B2
7771388 Olsen et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7794407 Rothenberg Sep 2010 B2
7797050 Libbus et al. Sep 2010 B2
7813805 Farazi Oct 2010 B1
7819883 Westlund et al. Oct 2010 B2
7840270 Ignagni et al. Nov 2010 B2
7853302 Rodriguez et al. Dec 2010 B2
7869865 Govari et al. Jan 2011 B2
7891085 Kuzma et al. Feb 2011 B1
7925352 Stack et al. Apr 2011 B2
7949409 Bly et al. May 2011 B2
7949412 Harrison et al. May 2011 B1
7962215 Ignagni et al. Jun 2011 B2
7970475 Tehrani et al. Jun 2011 B2
7972323 Bencini et al. Jul 2011 B1
7974693 Ben-David et al. Jul 2011 B2
7974705 Zdeblick et al. Jul 2011 B2
7979128 Tehrani et al. Jul 2011 B2
7994655 Bauer et al. Aug 2011 B2
8000765 Rodriguez et al. Aug 2011 B2
8019439 Kuzma et al. Sep 2011 B2
8021327 Selkee Sep 2011 B2
8036750 Caparso et al. Oct 2011 B2
8050765 Lee et al. Nov 2011 B2
8052607 Byrd Nov 2011 B2
8104470 Lee et al. Jan 2012 B2
8116872 Tehrani et al. Feb 2012 B2
8121692 Haefner et al. Feb 2012 B2
8135471 Zhang et al. Mar 2012 B2
8140164 Tehrani et al. Mar 2012 B2
8147486 Honour et al. Apr 2012 B2
8160701 Zhao et al. Apr 2012 B2
8160711 Tehrani et al. Apr 2012 B2
8195297 Penner Jun 2012 B2
8200336 Tehrani et al. Jun 2012 B2
8206343 Racz Jun 2012 B2
8224456 Daglow et al. Jul 2012 B2
8233987 Gelfand et al. Jul 2012 B2
8233993 Jordan Jul 2012 B2
8239037 Glenn et al. Aug 2012 B2
8244358 Tehrani et al. Aug 2012 B2
8244359 Gelfand et al. Aug 2012 B2
8244378 Bly et al. Aug 2012 B2
8255056 Tehrani Aug 2012 B2
8256419 Sinderby et al. Sep 2012 B2
8265736 Sathaye et al. Sep 2012 B2
8265759 Tehrani et al. Sep 2012 B2
8275440 Rodriguez et al. Sep 2012 B2
8280513 Tehrani et al. Oct 2012 B2
8315713 Burnes et al. Nov 2012 B2
8321808 Goetz et al. Nov 2012 B2
8335567 Tehrani et al. Dec 2012 B2
8340783 Sommer et al. Dec 2012 B2
8348941 Tehrani Jan 2013 B2
8369954 Stack et al. Feb 2013 B2
8374704 Desai et al. Feb 2013 B2
8388541 Messerly et al. Mar 2013 B2
8388546 Rothenberg Mar 2013 B2
8391956 Zellers et al. Mar 2013 B2
8401640 Zhao et al. Mar 2013 B2
8401651 Caparso et al. Mar 2013 B2
8406883 Barker Mar 2013 B1
8406885 Ignagni et al. Mar 2013 B2
8412331 Tehrani et al. Apr 2013 B2
8412350 Bly Apr 2013 B2
8428711 Lin et al. Apr 2013 B2
8428726 Ignagni et al. Apr 2013 B2
8428730 Stack et al. Apr 2013 B2
8433412 Westlund et al. Apr 2013 B1
8442638 Libbus et al. May 2013 B2
8457764 Ramachandran et al. Jun 2013 B2
8467876 Tehrani Jun 2013 B2
8473068 Farazi Jun 2013 B2
8478412 Ignagni et al. Jul 2013 B2
8478413 Karamanoglu et al. Jul 2013 B2
8478426 Barker Jul 2013 B2
8483834 Lee et al. Jul 2013 B2
8504158 Karamanoglu et al. Aug 2013 B2
8504161 Kornet et al. Aug 2013 B1
8509901 Tehrani Aug 2013 B2
8509902 Cho et al. Aug 2013 B2
8509919 Yoo et al. Aug 2013 B2
8512256 Rothenberg Aug 2013 B2
8522779 Lee et al. Sep 2013 B2
8527036 Jalde et al. Sep 2013 B2
8532793 Morris et al. Sep 2013 B2
8554323 Haefner et al. Oct 2013 B2
8560072 Caparso et al. Oct 2013 B2
8560086 Just et al. Oct 2013 B2
8571662 Hoffer Oct 2013 B2
8571685 Daglow et al. Oct 2013 B2
8615297 Sathaye et al. Dec 2013 B2
8617228 Wittenberger et al. Dec 2013 B2
8620412 Griffiths et al. Dec 2013 B2
8620450 Tockman et al. Dec 2013 B2
8626292 McCabe et al. Jan 2014 B2
8630707 Zhao et al. Jan 2014 B2
8644939 Wilson et al. Feb 2014 B2
8644952 Desai et al. Feb 2014 B2
8646172 Kuzma et al. Feb 2014 B2
8650747 Kuzma et al. Feb 2014 B2
8676323 Ignagni et al. Mar 2014 B2
8676344 Desai et al. Mar 2014 B2
8694123 Wahlstrand et al. Apr 2014 B2
8696656 Abboud et al. Apr 2014 B2
8706223 Zhou et al. Apr 2014 B2
8706235 Karamanoglu et al. Apr 2014 B2
8706236 Ignagni et al. Apr 2014 B2
8718763 Zhou et al. May 2014 B2
8725259 Kornet et al. May 2014 B2
8738154 Zdeblick et al. May 2014 B2
8755889 Scheiner Jun 2014 B2
8774907 Rothenberg Jul 2014 B2
8781578 McCabe et al. Jul 2014 B2
8781582 Ziegler et al. Jul 2014 B2
8781583 Cornelussen et al. Jul 2014 B2
8801693 He et al. Aug 2014 B2
8805511 Karamanoglu et al. Aug 2014 B2
8838245 Lin et al. Sep 2014 B2
8858455 Rothenberg Oct 2014 B2
8863742 Blomquist et al. Oct 2014 B2
8886277 Kim et al. Nov 2014 B2
8897879 Karamanoglu et al. Nov 2014 B2
8903507 Desai et al. Dec 2014 B2
8903509 Tockman et al. Dec 2014 B2
8909341 Gelfand et al. Dec 2014 B2
8914113 Zhang et al. Dec 2014 B2
8918169 Kassab et al. Dec 2014 B2
8918987 Kuzma et al. Dec 2014 B2
8923971 Haefner et al. Dec 2014 B2
8942823 Desai et al. Jan 2015 B2
8942824 Yoo et al. Jan 2015 B2
8948884 Ramachandran et al. Feb 2015 B2
8968299 Kauphusman et al. Mar 2015 B2
8972015 Stack et al. Mar 2015 B2
8983602 Sathaye et al. Mar 2015 B2
9008775 Sathaye et al. Apr 2015 B2
9026231 Hoffer May 2015 B2
9037264 Just et al. May 2015 B2
9042981 Yoo et al. May 2015 B2
9072864 Putz Jul 2015 B2
9072899 Nickloes Jul 2015 B1
9108058 Hoffer Aug 2015 B2
9108059 Hoffer Aug 2015 B2
9125578 Grunwald Sep 2015 B2
9138580 Ignagni et al. Sep 2015 B2
9138585 Saha et al. Sep 2015 B2
9149642 McCabe et al. Oct 2015 B2
9168377 Hoffer Oct 2015 B2
9174046 Francois et al. Nov 2015 B2
9205258 Simon et al. Dec 2015 B2
9216291 Lee et al. Dec 2015 B2
9220898 Hoffer Dec 2015 B2
9226688 Jacobsen et al. Jan 2016 B2
9226689 Jacobsen et al. Jan 2016 B2
9242088 Thakkar et al. Jan 2016 B2
9259573 Tehrani et al. Feb 2016 B2
9295846 Westlund et al. Mar 2016 B2
9314618 Imran et al. Apr 2016 B2
9333363 Hoffer et al. May 2016 B2
9345422 Rothenberg May 2016 B2
9370657 Tehrani et al. Jun 2016 B2
9398931 Wittenberger et al. Jul 2016 B2
9415188 He et al. Aug 2016 B2
9427566 Reed et al. Aug 2016 B2
9427588 Sathaye et al. Aug 2016 B2
9474894 Mercanzini et al. Oct 2016 B2
9485873 Shah et al. Nov 2016 B2
9498625 Bauer Nov 2016 B2
9498631 Demmer et al. Nov 2016 B2
9504837 Demmer et al. Nov 2016 B2
9532724 Grunwald et al. Jan 2017 B2
9533160 Brooke et al. Jan 2017 B2
9539429 Brooke et al. Jan 2017 B2
9545511 Thakkar et al. Jan 2017 B2
9561369 Burnes et al. Feb 2017 B2
9566436 Hoffer et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9597509 Hoffer et al. Mar 2017 B2
9615759 Hurezan et al. Apr 2017 B2
9623239 Francois et al. Apr 2017 B2
9623252 Sathaye et al. Apr 2017 B2
9662494 Young et al. May 2017 B2
9682235 O'Mahony et al. Jun 2017 B1
9694185 Bauer Jul 2017 B2
9717899 Kuzma et al. Aug 2017 B2
9724018 Cho et al. Aug 2017 B2
9744351 Gelfand et al. Aug 2017 B1
9776005 Meyyappan et al. Oct 2017 B2
9861817 Cho et al. Jan 2018 B2
9872989 Jung et al. Jan 2018 B2
9884178 Bouton et al. Feb 2018 B2
9884179 Bouton et al. Feb 2018 B2
9919149 Imran et al. Mar 2018 B2
9931504 Thakkar et al. Apr 2018 B2
9950167 Hoffer et al. Apr 2018 B2
9956132 Francois et al. May 2018 B2
9956396 Young et al. May 2018 B2
9968785 Hoffer et al. May 2018 B2
9968786 Bauer et al. May 2018 B2
10022546 Hoffer et al. Jul 2018 B2
10035017 Thakkar et al. Jul 2018 B2
10039920 Thakkar et al. Aug 2018 B1
10195429 Thakkar et al. Feb 2019 B1
10293164 Nash et al. May 2019 B2
10369361 Bauer et al. Aug 2019 B2
10391314 Hoffer et al. Aug 2019 B2
10406367 Meyyappan Sep 2019 B2
10413203 Saha et al. Sep 2019 B2
10448995 Olson Oct 2019 B2
10512772 Hoffer Dec 2019 B2
20010052345 Niazi Dec 2001 A1
20020026228 Schauerte Feb 2002 A1
20020056454 Samzelius May 2002 A1
20020065544 Smits et al. May 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020091419 Firlik Jul 2002 A1
20020128546 Silver Sep 2002 A1
20020188325 Hill et al. Dec 2002 A1
20030078623 Weinberg et al. Apr 2003 A1
20030195571 Burnes et al. Oct 2003 A1
20040003813 Banner et al. Jan 2004 A1
20040010303 Bolea et al. Jan 2004 A1
20040030362 Hill et al. Feb 2004 A1
20040044377 Larsson et al. Mar 2004 A1
20040064069 Reynolds et al. Apr 2004 A1
20040077936 Larsson et al. Apr 2004 A1
20040088015 Casavant et al. May 2004 A1
20040111139 McCreery Jun 2004 A1
20040186543 King et al. Sep 2004 A1
20040210261 King et al. Oct 2004 A1
20050004565 Vanney Jan 2005 A1
20050013879 Lin et al. Jan 2005 A1
20050021102 Ignagni et al. Jan 2005 A1
20050027338 Hill Feb 2005 A1
20050033136 Govari et al. Feb 2005 A1
20050033137 Oral et al. Feb 2005 A1
20050043765 Williams et al. Feb 2005 A1
20050065567 Lee et al. Mar 2005 A1
20050070981 Verma Mar 2005 A1
20050075578 Gharib et al. Apr 2005 A1
20050085865 Tehrani Apr 2005 A1
20050085866 Tehrani Apr 2005 A1
20050085867 Tehrani et al. Apr 2005 A1
20050085868 Tehrani et al. Apr 2005 A1
20050085869 Tehrani et al. Apr 2005 A1
20050096710 Kieval May 2005 A1
20050109340 Tehrani May 2005 A1
20050113710 Stahmann et al. May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050131485 Knudson et al. Jun 2005 A1
20050138791 Black et al. Jun 2005 A1
20050138792 Black et al. Jun 2005 A1
20050143787 Boveja et al. Jun 2005 A1
20050165457 Benser et al. Jul 2005 A1
20050182454 Gharib et al. Aug 2005 A1
20050187584 Denker et al. Aug 2005 A1
20050192655 Black et al. Sep 2005 A1
20050251238 Wallace et al. Nov 2005 A1
20050251239 Wallace et al. Nov 2005 A1
20050288728 Libbus et al. Dec 2005 A1
20050288730 Deem et al. Dec 2005 A1
20060030894 Tehrani Feb 2006 A1
20060035849 Spiegelman et al. Feb 2006 A1
20060058852 Koh et al. Mar 2006 A1
20060074449 Denker et al. Apr 2006 A1
20060122661 Mandell Jun 2006 A1
20060122662 Tehrani et al. Jun 2006 A1
20060130833 Younes Jun 2006 A1
20060142815 Tehrani et al. Jun 2006 A1
20060149334 Tehrani et al. Jul 2006 A1
20060155222 Sherman et al. Jul 2006 A1
20060167523 Tehrani et al. Jul 2006 A1
20060188325 Dolan Aug 2006 A1
20060195159 Bradley et al. Aug 2006 A1
20060217791 Spinka et al. Sep 2006 A1
20060024222 Bradley et al. Oct 2006 A1
20060224209 Meyer Oct 2006 A1
20060229677 Moffitt et al. Oct 2006 A1
20060247729 Tehrani et al. Nov 2006 A1
20060253161 Libbus et al. Nov 2006 A1
20060253182 King Nov 2006 A1
20060258667 Teng Nov 2006 A1
20060259107 Caparso et al. Nov 2006 A1
20060282131 Caparso et al. Dec 2006 A1
20060287679 Stone Dec 2006 A1
20070005053 Dando Jan 2007 A1
20070021795 Tehrani Jan 2007 A1
20070027448 Paul et al. Feb 2007 A1
20070087314 Gomo Apr 2007 A1
20070093875 Chavan et al. Apr 2007 A1
20070106357 Denker et al. May 2007 A1
20070112402 Grill et al. May 2007 A1
20070112403 Moffitt et al. May 2007 A1
20070118183 Gelfand et al. May 2007 A1
20070150006 Libbus et al. Jun 2007 A1
20070168007 Kuzma et al. Jul 2007 A1
20070173900 Siegel et al. Jul 2007 A1
20070191908 Jacob et al. Aug 2007 A1
20070196780 Ware et al. Aug 2007 A1
20070203549 Demarais et al. Aug 2007 A1
20070208388 Jahns et al. Sep 2007 A1
20070221224 Pittman et al. Sep 2007 A1
20070240718 Daly Oct 2007 A1
20070250056 Vanney Oct 2007 A1
20070250162 Royalty Oct 2007 A1
20070255379 Williams et al. Nov 2007 A1
20070265611 Ignagni et al. Nov 2007 A1
20070288076 Bulkes et al. Dec 2007 A1
20080039916 Colliou et al. Feb 2008 A1
20080065002 Lobl et al. Mar 2008 A1
20080125828 Ignagni et al. May 2008 A1
20080161878 Tehrani et al. Jul 2008 A1
20080167695 Tehrani et al. Jul 2008 A1
20080177347 Tehrani et al. Jul 2008 A1
20080183186 Bly et al. Jul 2008 A1
20080183187 Bly Jul 2008 A1
20080183239 Tehrani et al. Jul 2008 A1
20080183240 Tehrani et al. Jul 2008 A1
20080183253 Bly Jul 2008 A1
20080183254 Bly et al. Jul 2008 A1
20080183255 Bly et al. Jul 2008 A1
20080183259 Bly et al. Jul 2008 A1
20080183264 Bly et al. Jul 2008 A1
20080183265 Bly et al. Jul 2008 A1
20080188903 Tehrani et al. Aug 2008 A1
20080215106 Lee et al. Sep 2008 A1
20080288010 Tehrani et al. Nov 2008 A1
20080288015 Tehrani et al. Nov 2008 A1
20080312712 Penner Dec 2008 A1
20080312725 Penner Dec 2008 A1
20090024047 Shipley et al. Jan 2009 A1
20090036947 Westlund et al. Feb 2009 A1
20090118785 Ignagni et al. May 2009 A1
20090275956 Burnes et al. Nov 2009 A1
20090275996 Burnes et al. Nov 2009 A1
20090276022 Burnes et al. Nov 2009 A1
20090318993 Eidenschink Dec 2009 A1
20100022950 Anderson et al. Jan 2010 A1
20100036451 Hoffer Feb 2010 A1
20100077606 Black et al. Apr 2010 A1
20100094376 Penner Apr 2010 A1
20100114227 Cholette May 2010 A1
20100114254 Kornet May 2010 A1
20100198296 Ignagni et al. Aug 2010 A1
20100204766 Zdeblick et al. Aug 2010 A1
20100268311 Cardinal et al. Oct 2010 A1
20100269337 Dye Oct 2010 A1
20100319691 Lurie et al. Dec 2010 A1
20110060381 Ignagni et al. Mar 2011 A1
20110077726 Westlund et al. Mar 2011 A1
20110093032 Boggs, II et al. Apr 2011 A1
20110118815 Kuzma et al. May 2011 A1
20110230932 Tehrani et al. Sep 2011 A1
20110230935 Zdeblick Sep 2011 A1
20110230945 Ohtaka et al. Sep 2011 A1
20110270358 Davis et al. Nov 2011 A1
20110288609 Tehrani et al. Nov 2011 A1
20120029509 Smith Feb 2012 A1
20120035684 Thompson et al. Feb 2012 A1
20120053654 Tehrani et al. Mar 2012 A1
20120078320 Schotzko et al. Mar 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120158091 Tehrani et al. Jun 2012 A1
20120209284 Westlund et al. Aug 2012 A1
20120215278 Penner Aug 2012 A1
20120323293 Tehrani et al. Dec 2012 A1
20130018247 Glenn et al. Jan 2013 A1
20130018427 Pham et al. Jan 2013 A1
20130023972 Kuzma et al. Jan 2013 A1
20130030496 Karamanoglu Jan 2013 A1
20130030497 Karamanoglu et al. Jan 2013 A1
20130030498 Karamanoglu et al. Jan 2013 A1
20130060245 Grunewald et al. Mar 2013 A1
20130116743 Karamanoglu et al. May 2013 A1
20130123891 Swanson May 2013 A1
20130131743 Yamasaki et al. May 2013 A1
20130158625 Gelfand et al. Jun 2013 A1
20130165989 Gelfand et al. Jun 2013 A1
20130167372 Black et al. Jul 2013 A1
20130197601 Tehrani et al. Aug 2013 A1
20130237906 Park et al. Sep 2013 A1
20130268018 Brooke et al. Oct 2013 A1
20130289686 Masson et al. Oct 2013 A1
20130296964 Tehrani Nov 2013 A1
20130296973 Tehrani et al. Nov 2013 A1
20130317587 Barker Nov 2013 A1
20130333696 Lee et al. Dec 2013 A1
20140067032 Morris et al. Mar 2014 A1
20140088580 Wittenberger et al. Mar 2014 A1
20140114371 Westlund et al. Apr 2014 A1
20140121716 Casavant et al. May 2014 A1
20140128953 Zhao et al. May 2014 A1
20140148780 Putz May 2014 A1
20140316486 Zhou et al. Oct 2014 A1
20140324115 Ziegler et al. Oct 2014 A1
20140378803 Geistert et al. Dec 2014 A1
20150018839 Morris et al. Jan 2015 A1
20150034081 Tehrani et al. Feb 2015 A1
20150045810 Hoffer et al. Feb 2015 A1
20150045848 Cho et al. Feb 2015 A1
20150119950 Demmer et al. Apr 2015 A1
20150165207 Karamanoglu Jun 2015 A1
20150196354 Haverkost et al. Jul 2015 A1
20150196356 Kauphusman et al. Jul 2015 A1
20150202448 Hoffer et al. Jul 2015 A1
20150231348 Lee et al. Aug 2015 A1
20150250982 Osypka Sep 2015 A1
20150265833 Meyyappan et al. Sep 2015 A1
20150283340 Zhang et al. Oct 2015 A1
20150290476 Krocak et al. Oct 2015 A1
20150359487 Coulombe Dec 2015 A1
20150374252 De La Rama et al. Dec 2015 A1
20150374991 Morris et al. Dec 2015 A1
20160001072 Gelfand et al. Jan 2016 A1
20160144078 Young et al. May 2016 A1
20160193460 Xu et al. Jul 2016 A1
20160228696 Imran et al. Aug 2016 A1
20160239627 Cerny et al. Aug 2016 A1
20160256692 Baru Sep 2016 A1
20160310730 Martins et al. Oct 2016 A1
20160331326 Xiang et al. Nov 2016 A1
20160367815 Hoffer Dec 2016 A1
20170007825 Thakkar et al. Jan 2017 A1
20170013713 Shah et al. Jan 2017 A1
20170021166 Bauer et al. Jan 2017 A1
20170028191 Mercanzini et al. Feb 2017 A1
20170036017 Tehrani et al. Feb 2017 A1
20170050033 Wechter Feb 2017 A1
20170143973 Tehrani May 2017 A1
20170143975 Hoffer et al. May 2017 A1
20170196503 Narayan et al. Jul 2017 A1
20170224993 Sathaye et al. Aug 2017 A1
20170232250 Kim et al. Aug 2017 A1
20170252558 O'Mahony et al. Sep 2017 A1
20170291023 Kuzma et al. Oct 2017 A1
20170296812 O'Mahony et al. Oct 2017 A1
20170312006 McFarlin et al. Nov 2017 A1
20170312507 Bauer et al. Nov 2017 A1
20170312508 Bauer et al. Nov 2017 A1
20170312509 Bauer et al. Nov 2017 A1
20170326359 Gelfand et al. Nov 2017 A1
20170347921 Haber et al. Dec 2017 A1
20180001086 Bartholomew et al. Jan 2018 A1
20180008821 Gonzalez et al. Jan 2018 A1
20180110562 Govari et al. Apr 2018 A1
20180117334 Jung May 2018 A1
20180256440 Francois et al. Sep 2018 A1
Foreign Referenced Citations (40)
Number Date Country
1652839 Aug 2005 CN
102143781 Aug 2011 CN
0993840 Apr 2000 EP
1304135 Apr 2003 EP
0605796 Aug 2003 EP
2489395 Aug 2012 EP
2801509 Jun 2001 FR
H08510677 Nov 1996 JP
2003503119 Jan 2003 JP
2010516353 May 2010 JP
2011200571 Oct 2011 JP
2012000195 Jan 2012 JP
WO-9407564 Apr 1994 WO
WO-9508357 Mar 1995 WO
WO-9964105 Dec 1999 WO
WO-9965561 Dec 1999 WO
WO-0100273 Jan 2001 WO
WO-02058785 Aug 2002 WO
WO-03005887 Jan 2003 WO
WO-03094855 Nov 2003 WO
WO-2006110338 Oct 2006 WO
WO-2006115877 Nov 2006 WO
WO-2007053508 May 2007 WO
WO-2008092246 Aug 2008 WO
WO-2008094344 Aug 2008 WO
WO-2009006337 Jan 2009 WO
WO-2009134459 Nov 2009 WO
WO-2010029842 Mar 2010 WO
WO-2010148412 Dec 2010 WO
WO-2011094631 Aug 2011 WO
WO-2011158410 Dec 2011 WO
WO-2012106533 Aug 2012 WO
WO-2013131187 Sep 2013 WO
WO-2013188965 Dec 2013 WO
WO-2014008171 Jan 2014 WO
WO-2015075548 May 2015 WO
WO-2015109401 Jul 2015 WO
WO-2019154834 Aug 2019 WO
WO-2019154837 Aug 2019 WO
WO-2019154839 Aug 2019 WO
Non-Patent Literature Citations (62)
Entry
Antonica A., et al., “Vagal Control of Lymphocyte Release from Rat Thymus,” Journal of the Autonomic Nervous System, ELSEVIER, vol. 48(3), Aug. 1994, pp. 187-197.
Ayas N.T., et al., “Prevention of Human Diaphragm Atrophy with Short periods of Electrical Stimulation,” American Journal of Respiratory and Critical Care Medicine, Jun. 1999, vol. 159(6), pp. 2018-2020.
Borovikova, et al., “Role of the Vagus Nerve in the Anti-Inflammatory Effects of CNI-1493,” Proceedings of the Annual Meeting of Professional Research Scientists: Experimental Biology 2000, Abstract 97.9, Apr. 15-18, 2000.
Borovikova L.V., et al., “Role of Vagus Nerve Signaling in CNI-1493-Mediated Suppression of Acute Inflammation,” Autonomic Neuroscience: Basic and Clinical, vol. 85 (1-3), Dec. 20, 2000, pp. 141-147.
Borovikova L.V., et al., “Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin,” Nature, Macmillan Magazines Ltd, vol. 405, May 25, 2000, pp. 458-462.
Chinese Search Report for Application No. CN2013/80023357.5, dated Jul. 24, 2015.
Co-pending U.S. Appl. No. 15/606,867, filed May 26, 2017.
Daggeti, W.M. et al., “Intracaval Electrophrenic Stimulation. I. Experimental Application during Barbiturate Intoxication Hemorrhage and Gang,” Journal of Thoracic and Cardiovascular Surgery, 1966, vol. 51 (5), pp. 676-884.
Daggeti, W.M. et al., “Intracaval electrophrenic stimulation. II. Studies on Pulmonary Mechanics Surface Tension Urine Flow and Bilateral Ph,” Journal of Thoracic and Cardiovascular Surgery, 1970, vol. 60(1 ), pp. 98-107.
De Gregorio, M.A. et al., “The Gunther Tulip Retrievable Filter: Prolonged Temporary Filtration by Repositioning within the Inferior Vena Cava,” Journal of Vascular and Interventional Radiology, 2003, vol. 14, pp. 1259-1265.
Deng Y-J et al., “The Effect of Positive Pressure Ventilation Combined with Diaphragm Pacing on Respiratory Mechanics in Patients with Respiratory Failure; Respiratory Mechanics,” Chinese critical care medicine, Apr. 2011, vol. 23(4), pp. 213-215.
Escher, Doris J.W. et al., “Clinical Control of Respiration by Transvenous Phrenic Pacing,” American Society for Artificial Internal Organs: Apr. 1968—vol. 14—Issue 1—pp. 192-197.
Extended European Search Report for Application No. 14864542.7, dated Jun. 2, 2017, 8 pages.
Extended European Search Report for Application No. 15740415.3, dated Jul. 7, 2017.
European Search Report for Application No. 13758363, dated Nov. 12, 2015.
European Search Report for Application No. EP17169051.4, dated Sep. 8, 2017, 7 pages.
Fleshner M., et al., “Thermogenic and Corticosterone Responses to Intravenous Cytokines (IL-1β and TNF-α) are Attenuated by Subdiaphragmatic Vagotomy,” Journal of Neuroimmunology, vol. 86, Jun. 1998, pp. 134-141.
Frisch S., “A Feasibility Study of a Novel Minimally Invasive Approach for Diaphragm Pacing,” Master of Science Thesis, Simon Fraser University, 2009, p. 148.
Furman, S., “Transvenous Stimulation of the Phrenic Nerves,” Journal of Thoracic and Cardiovascular Surgery, 1971, vol. 62 (5), pp. 743-751.
Gaykema R.P.A. et al., “Subdiaphragmatic Vagotomy Suppresses Endotoxin-Induced Activation of Hypothalamic Corticotropin-Releasing Hormone Neurons and ACTH Secretion,” Endocrinology, The Endocrine Society, vol. 136 (10), 1995, pp. 4717-4720.
Gupta A.K., “Respiration Rate Measurement Based on Impedance Pneumography,” Data Acquisition Products, Texas Instruments, Application Report, SBAA181, Feb. 2011, 11 pages.
Guslandi M., “Nicotine Treatment for Ulcerative Colitis,” The British Journal of Clinical Pharmacology, Blackwell Science Ltd, vol. 48, 1999, pp. 481-484.
Hoffer J.A. et al., “Diaphragm Pacing with Endovascular Electrodes”, IFESS 2010—International Functional Electrical Stimulation Society, 15th Anniversary Conference, Vienna, Austria, Sep. 2010.
Huffman, William J. et al., “Modulation of Neuroinflammation and Memory Dysfunction Using Percutaneous Vagus Nerve Stimulation in Mice,” Brain Stimulation, 2018.
Ishii, K. et al., “Effects of Bilateral Transvenous Diaphragm Pacing on Hemodynamic Function in Patients after Cardiac Operations,” J. Thorac. Cardiovasc. Surg., 1990.
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Dec. 6, 2016, 4 pages.
Japanese Office Action in corresponding Japanese Application No. 2014-560202, dated Oct. 17, 2017, 5 pages.
Kawashima K., et al., “Extraneuronal Cholinergic System in Lymphocytes,” Pharmacology & Therapeutics, ELSEVIER, vol. 86, 2000, pp. 29-48.
Levine S., et al., “Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans,” New England Journal of Medicine, 2008, vol. 358, pp. 1327-1335.
Lungpacer: Therapy, News.< http://lungpacer.com>. Accessed Dec. 27, 2016.
Madretsma, G.S., et al., “Nicotine Inhibits the In-vitro Production of Interleukin 2 and Tumour Necrosis Factor-α by Human Mononuclear Cells,” Immunopharmacology, ELSEVIER, vol. 35 (1), Oct. 1996, pp. 47-51.
Marcy, T.W. et al., “Diaphragm Pacing for Ventilatory Insufficiency,” Journal of Intensive Care Medicine, 1987, vol. 2 (6), pp. 345-353.
Meyyappan R., “Diaphragm Pacing during Controlled Mechanical Ventilation: Pre-Clinical Observations Reveal a Substantial Improvement in Respiratory Mechanics”, 17th Biennial Canadian Biomechanics Society Meeting, Burnaby, BC, Jun. 6-9, 2012.
Nabutovsky, Y., et al., “Lead Design and Initial Applications of a New Lead for Long-Term Endovascular Vagal Stimulation,” PACE, Blackwell Publishing, Inc, vol. 30(1), Jan. 2007, pp. S215-S218.
Notification of Reasons for Rejection and English language translation issued in corresponding Japanese Patent Application No. 2015-517565, dated Mar. 28, 2017, 6 pages.
Onders R, et al., “Diaphragm Pacing with Natural Orifice Transluminal Endoscopic Surgery: Potential for Difficult-to-Wean Intensive Care Unit Patients,” Surgical Endoscopy, 2007, vol. 21, pp. 475-479.
Onders R.,, “A Diaphragm Pacing as a Short-Term Assist to Positive Pressure Mechanical Ventilation in Critical Care Patients,” Chest, Oct. 24, 2007, vol. 132(4), pp. 5715-5728.
Onders R.,, “Diaphragm Pacing for Acute Respiratory Failure,” Difficult Decisions in Thoracic Surgery, Chapter 37, Springer-Verlag, 2011, M.K. Ferguson (ed.), pp. 329-335.
Pavlovic D., et al., “Diaphragm Pacing During Prolonged Mechanical Ventilation of the Lungs could Prevent from Respiratory Muscle Fatigue,” Medical Hypotheses, vol. 60 (3), 2003, pp. 398-403.
Planas R.F., et al., “Diaphragmatic Pressures: Transvenous vs. Direct Phrenic Nerve Stimulation,” Journal of Applied Physiology, vol. 59(1), 1985, pp. 269-273.
Romanovsky, A.A., et al., “The Vagus Nerve in the Thermoregulatory Response to Systemic Inflammation,” American Journal of Physiology, vol. 273 (1 Pt 2), 1997, pp. R407-R413.
Salmela L., et al., “Verification of the Position of a Central Venous Catheter by Intra-Atrial ECG. When does this method fail?,” Acta Anasthesiol Scand, vol. 37 (1), 1993, pp. 26-28.
Sandborn W.J., “Transdermal Nicotine for Mildly to Moderately Active Ulcerative Colitis,” Annals of Internal Medicine, vol. 126 (5), Mar. 1, 1997, pp. 364-371.
Sandoval R., “A Catch/Ike Property-Based Stimulation Protocol for Diaphragm Pacing”, Master of Science Coursework project, Simon Fraser University, Mar. 2013.
Sarnoff, S.J. et al., “Electrophrenic Respiration,” Science, 1948, vol. 108, p. 482.
Sato E., et al., “Acetylcholine Stimulates Alveolar Macrophages to Release Inflammatory Cell Chemotactic Activity,” American Journal of Physiology, vol. 274 (Lung Cellular and Molecular Physiology 18), 1998, pp. L970-L979.
Sato, K.Z., et al., “Diversity of mRNA Expression for Muscarinic Acetylcholine Receptor Subtypes and Neuronal Nicotinic Acetylcholine Receptor Subunits in Human Mononuclear Leukocytes and Leukemic Cell Lines,” Neuroscience Letters, vol. 266 (1), 1999, pp. 17-20.
Schauerte P., et al., “Transvenous Parasympathetic Nerve Stimulation in the Inferior Vena Cava and Atrioventricular Conduction,” Journal of Cardiovascular Electrophysiology, vol. 11 (1), Jan. 2000, pp. 64-69.
Schauerte P.N., et al., “Transvenous Parasympathetic Cardiac Nerve Stimulation: An Approach for Stable Sinus Rate Control,” Journal of Cardiovascular Electrophysiology, vol. 10 (11), Nov. 1999, pp. 1517-1524.
Scheinman R.I., et al., “Role of Transcriptional Activation of IκBα in Mediation of Immunosuppression by Glucocorticoids,” Science, vol. 270, Oct. 13, 1995, pp. 283-286.
Sher, M.E., et al., “The Influence of Cigarette Smoking on Cytokine Levels in Patients with Inflammatory Bowel Disease,” Inflammatory Bowel Diseases, vol. 5 (2), May 1999, pp. 73-78.
Steinlein, O., “New Functions for Nicotinic Acetylcholine Receptors?,” Behavioural Brain Research, vol. 95, 1998, pp. 31-35.
Sternberg E.M., (Series Editor) “Neural-Immune Interactions in Health and Disease,” The Journal of Clinical Investigation, vol. 100 (11), Dec. 1997, pp. 2641-2647.
Sykes., A.P., et al., “An Investigation into the Effect and Mechanisms of Action of Nicotine in Inflammatory Bowel Disease,” Inflammation Research, vol. 49, 2000, pp. 311-319.
Toyabe S., et al., “Identification of Nicotinic Acetylcholine Receptors on Lymphocytes in the Periphery as well as Thymus in Mice,” Immunology, vol. 92, 1997, pp. 201-205.
Van Dijk A.P.M., et al., “Transdermal Nicotine Inhibits Interleukin 2 Synthesis by Mononuclear Cells Derived from Healthy Volunteers,” European Journal of Clinical Investigation, vol. 28, 1998, pp. 664-671.
Wanner, A. et al., “Trasvenous Phrenic Nerve Stimulation in Anesthetized Dogs,” Journal of Applied Physiology, 1973, vol. 34 (4), pp. 489-494.
Watkins L.R., et al., “Blockade of Interleukin-1 Induced Hyperthermia by Subdiaphragmatic Vagotomy: Evidence for Vagal Mediation of Immune-Brain Communication,” Neuroscience Letters, vol. 183, 1995, pp. 27-31.
Watkins L.R., et al., “Implications of Immune-to-Brain Communication for Sickness and Pain,” PNAS (Proceedings of the National Academy of Sciences of the USA), vol. 96 (14), Jul. 6, 1999, pp. 7710-7713.
Whaley K., et al., “C2 Synthesis by Human Monocytes is Modulated by a Nicotinic Cholinergic Receptor,” Nature, vol. 293, Oct. 15, 1981, pp. 580-582 (and reference page).
PCT Search Report dated Oct. 26, 2018 for PCT Application No. PCT/IB2018/000603, 7 pages.
PCT Search Report and Written Opinion dated Oct. 17, 2018 for PCT Application No. PCT/US2018/043661, 13 pages.
Related Publications (1)
Number Date Country
20200147366 A1 May 2020 US
Provisional Applications (1)
Number Date Country
61606899 Mar 2012 US
Continuations (1)
Number Date Country
Parent 14383285 US
Child 16676983 US