The present invention relates to methods and devices directed toward providing transvascular retrograde access placement in central vessels. More particularly, these methods and devices direct an initial passage of a needle tipped guidewire from the inside of the vessel to the outside, followed by guided insertion of a secondary catheter over the needle tipped guidewire into the vessel.
All publications, patents and patent applications mentioned in this specification, either by an inventor common to this application or by other inventors, are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
Gaining direct access by way of a catheter to a central vein (one which goes directly to the heart) is a common procedure that is useful for a number of medical needs, including providing fluids and nutrition, administering drugs, and allowing access to the heart for cardiovascular measurements or the implantation of devices such as pacemakers. Conventional approaches for performing central venous catheterization, as shown in
While this conventional technique is usually accomplished with few or any complications and minimal pain to the patient, the technique, due to the essentially blind percutaneous puncture, inherently carries significant risks. These risks include potentially disabling or life-threatening injuries such as injury to adjacent vascular structures or nerves, occurrence of stroke secondary to vascular injury, or occurrence of pneumothorax or hemothorax secondary to lung injury. The risk of eventualities such as these are more likely when the technique is performed on children or on adult patients with challenging anatomy or conditions, such as emaciation or morbid obesity.
Safer and more cost-efficient alternative approaches to central vein access that obviate the need for blind percutaneous vein puncture would be a welcome addition to the possible approaches available to patients requiring central vein access. One such possible safer and more cost-efficient approach may include accessing the central blood vessel via a transvascular retrograde approach. The approach may be facilitated by devices and methods that provide accurate and controlled manipulation within the central blood vessel and while exiting the central blood vessel.
Reference is also made to U.S. application Ser. No. 12/366,517, entitled “Methods of Transvascular Retrograde Access Placement and Devices for Facilitating Therein”, filed Feb. 5, 2009; which is a continuation-in-part of U.S. application Ser. No. 11/424,131, entitled “Methods of Transvascular Retrograde Access Placement and Devices for Facilitating Therein”, filed Jun. 14, 2006; which is a continuation of U.S. application Ser. No. 11/381,229, filed May 2, 2006; all of which are incorporated by reference as if fully set forth herein.
Methods for performing transvascular retrograde access placement in a central blood vessel should be safe, accurate, and controlled. It is desirable that the methods, and the devices that facilitate them, include accurately positioning a portion of a vascular device, such as an angled catheter tip, into a desired position within a vessel. Once the portion of the device is positioned accurately within the vessel, it is desirable that a portion of the device or system, such as a needle tipped guidewire, may be moved through the device and/or through the vessel in a safe and controlled manner, such that it may exit the vessel in a safe and controlled manner.
Described herein are devices, systems and methods for performing transvascular retrograde access placement in a central blood vessel in a safe, accurate, and controlled manner. In general, the devices may include a catheter comprising an angled tip; a handle coupled to the catheter, the handle having a reference portion, wherein the position of the reference portion corresponds to the position of the angled tip; a locking mechanism, coupled to the handle, sized and configured to couple to a needle tipped guidewire; and a slider, coupled to the handle, sized and configured to advance the needle tipped guidewire through the catheter. In general, the methods may include positioning a catheter of a vascular device, the catheter comprising an angled tip, within the central blood vessel such that the angled tip faces a desired exit site on a wall of the central blood vessel and passing a needle tipped guidewire from the catheter through the desired exit site on the wall of the central blood vessel and skin of the patient.
One aspect of the invention provides a system for providing transvascular retrograde access in a central blood vessel of a patient. In some embodiments, the system includes a handle; a catheter extending from the handle; and a tissue piercing element extending from the handle through the catheter, the tissue piercing element comprising a sharp distal tip adapted to extend from a distal portion of the catheter, the catheter and handle being adapted to be separated from the tissue piercing element, a distal portion of the tissue piercing element being adapted to serve as a guide for introduction of a device into the central blood vessel. The distal end of the catheter may have an angled tip, and in some such embodiments the system may have a reference at a proximal end of the catheter indicating a bending direction of the angled tip.
In some embodiments, the handle comprises an actuator adapted to advance the tissue piercing element through an opening at the distal end of the catheter. The actuator may include a slider adapted to move within a slot in the handle. Alternatively or additionally, the actuator may include a spring and possibly a spring release element and/or an interlock having a first state adapted to prevent actuation of the actuator and a second state adapted to permit actuation of the actuator. The system may also have a lock having a first state adapted to prevent movement of the tissue piercing element with respect to the actuator and a second state adapted to permit movement of the tissue piercing element with respect to the actuator.
In some embodiments, the handle has a deflection actuator adapted to deflect a distal tip of the catheter away from a longitudinal axis of the catheter. In such embodiments the handle may also have a deflection indicator adapted to indicate an amount of deflection of the distal end of the catheter. Some embodiments of the system may also have an interlock adapted to prevent movement of the sharp tip of the tissue piercing element out of the distal portion of the catheter unless the distal portion of the catheter is deflected away from a longitudinal axis of the catheter.
Another aspect of the invention provides a method of providing transvascular retrograde access to a central blood vessel of a patient. Some embodiments of the method include the steps of inserting a distal end of a catheter into a blood vessel other than the central blood vessel, a proximal end of the catheter being connected to a handle disposed outside of the patient; advancing the distal end of the catheter into the central blood vessel; orienting the distal end of the catheter to an exit location within the central blood vessel; actuating a tissue piercer actuator of the handle to advance a tissue piercing element from the catheter through the central blood vessel at the exit location; and introducing a device over the tissue piercing element through the exit location into the central blood vessel.
In some embodiments, the orienting step includes the step of rotating the catheter with respect to the patient, such as by rotating the handle and catheter together. In some embodiments, the orienting step includes the step of bending the distal end of the catheter with respect to a longitudinal axis of the catheter, such as by moving a bending actuator of the handle. In such embodiments, the method may also include the step of preventing actuation of the tissue piercer actuator if catheter distal end is not bent.
In some embodiments, the step of actuating the tissue piercer includes the step of sliding the tissue piercer actuator within a slot in the handle. In some embodiments, the step of actuating the tissue piercer includes the step of releasing a spring within the handle, such as by actuating a spring release element to release the spring.
Some embodiments of the method include the step of actuating a spring release element to release the spring. In some embodiments, the method includes the step of locking the tissue piercing element to the tissue piercer actuator prior to actuating the tissue piercing actuator.
The invention will be explained in more detail below with reference to the drawings.
Described herein are devices, systems and methods for performing transvascular retrograde access placement in a central blood vessel in a safe, accurate, and controlled manner. In general, the devices may include a catheter comprising an angled tip; a handle coupled to the catheter, the handle having a reference portion, wherein the position of the reference portion corresponds to the position of the angled tip; a locking mechanism, coupled to the handle, sized and configured to couple to a needle tipped guidewire; and a slider, coupled to the handle, sized and configured to advance the needle tipped guidewire through the catheter. In general, the methods may include positioning a catheter of a vascular device, the catheter comprising an angled tip, within the central blood vessel such that the angled tip faces a desired exit site on a wall of the central blood vessel and passing a needle tipped guidewire from the catheter through the desired exit site on the wall of the central blood vessel and skin of the patient.
Embodiments of a method of the transvascular retrograde access placement, as provided herein, include the puncturing of a central blood vessel from the inside of the vessel with a penetrating device, such as a needle tipped guidewire or other similarly configured device, and exiting that penetrating device from a patient through the skin. By such an inside-to-outside approach, the ability of a surgeon to precisely determine the location of a pass-through site in the vascular wall is substantially enhanced over prior art methods that rely on a conventional outside-to-inside approach, as shown in
The devices, systems, methods, and any combination thereof for performing transvascular retrograde access placement in a central blood vessel described herein provide at least the following advantages. First, they may be safer and pose less risk to the patient. Furthermore, as described herein, the methods, and the devices that facilitate them, include accurately positioning a portion of a vascular device, such as an angled catheter tip, into a desired position within a vessel. Once the portion of the device is positioned accurately within the vessel, a second portion of the device or system, such as a needle tipped guidewire, may be moved through the device and/or through the vessel in a safe and controlled manner, such that it may exit the vessel in a safe and controlled manner.
Embodiments of the method and devices for implementing the method are directed toward various regions of the vascular system, in accordance with particular medical indications. One particular use of the methods of the invention is for central vein access, in which a central vein, such as a jugular vein or subclavian vein is accessed. The initial approach to the central vein, by way of a guidewire, followed by a vascular catheter, is by way entry into a primary vein, such as femoral vein or antecubital vein. Thereafter, a penetrating element, positioned by advancement from the primary vein site of entry to a desired site of exit in the central vein, creates an opening through the vessel wall and overlaying skin. That site of exit, in turn, becomes the site of re-entry for a central vein catheter. Inasmuch as what is initially formed as an exit site from the vessel can later be used as a site for entry for a central vein catheter, the site of opening/entry may also be neutrally referred to as a vascular pass-through site.
Embodiments of the invention, while generally described and depicted herein in the context of providing retrograde access into a central vein through an opening originally formed as an exit from the central vein, the invention may also be generally understood as providing methods of vascular entry through an exit-formed opening in blood vessels other than a central vein. This method embodiment includes positioning a vascular catheter within a blood vessel such that a portion of the vascular catheter faces a desired exit site on a wall of the blood vessel, passing a penetrating device that is advanced from the vascular catheter through the desired exit site on the wall of the blood vessel and a skin site of the patient overlaying the desired exit site, and passing an end of a secondary vascular catheter through the exit site and into the blood vessel. In various embodiments of this method, the blood vessel may be a vein, a central vein, or an artery. An example of an artery that is particularly difficult to access externally is the subclavian artery, thus there may be advantages to accessing the subclavian artery by such methods as described herein.
The primary blood vessel cannulation may be achieved by means of the Modified Seldinger Technique, wherein the desired vessel or cavity is punctured with a sharp hollow needle; a round-tipped guidewire is then advanced through the lumen of the needle, and the needle is withdrawn. An introducer is then inserted over the round-tipped guidewire, and into the vessel; a “sheath” or blunt cannula is passed through the introducer; and the guidewire and introducer are then withdrawn. The sheath can then be used to introduce catheters into the vessel.
In accordance with the methods of the present invention, the Modified Seldinger Technique typically is performed with an 18-gauge hollow needle about 2⅞ inches in length, and a 5 cc syringe secured to the end of the 18-gauge needle opposite of the needle-tip. As shown in
Then, with the vascular sheath 20 being substantially introduced into the patient, the short guidewire and the stiff introducer are removed and the vascular sheath 20 may be flushed by inserting heparinized saline solution into the vascular sheath 20 through the hemostatic valve. In various embodiments of the methods of the present invention, the Modified Seldinger Technique may be performed with other similarly sized and configured needles, syringes, sheaths, and/or wires.
Thereafter in furtherance of embodiments of the method, as shown in
Continuing with embodiments of the method, as shown in
Other embodiments of the methods of transvascular retrograde access placement procedure may be performed in a central blood vessel other than the jugular vein, wherein the needle, the needle-tipped guidewire, or any other similar device, may exit the patient through another area of the patient. For example, the transvascular retrograde access placement procedure may be performed in a subclavian vein, wherein a needle, a needle-tipped guidewire, or other similar device exits the patient through skin of the upper trunk just below a clavicle. In still other embodiments of the method, a blood vessel other than a central vein, such as a peripheral vein or an artery, may be accessed by re-entry into an opening created by outward penetration from within the vessel. The method may be particularly advantageous when external access to the vessel is complicated by normal anatomy (such being the case with the subclavian artery, for example), or by a complicating injury or medical condition.
Another embodiment of the method of transvascular retrograde access placement varies from the previously described methods in that rather than approaching the central vein by way of femoral vein cannulation, an antecubital blood vein or artery (located in the antecubital fossa of an arm) is cannulated. As shown in
As has been noted in the description focused on embodiments of the method of transvascular retrograde access placement, the present invention also provides systems, devices and device features, some of which will now be described in greater detail. One such device, as shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As described above, the needle tipped guidewire may be advanced to a desired position within the catheter, and the locking mechanism 44 may be tightened to secure the needle tipped guidewire to the slider 46 within the handle. The needle tipped guidewire 50 may then be advanced from the catheter 40 through the desired exit site on the wall of the central blood vessel and skin of the patient, as shown in
A shown in FIGS. 11 and 10A-10B, a system for performing transvascular retrograde access placement in a vessel of a patient may include, in addition to a vascular device as described above, a needle tipped guidewire 50 comprising a sharpened tip 52, wherein the needle is sized and configured to pass through a desired exit site on the wall of the central blood vessel and skin of the patient. In some embodiments, the needle tipped guidewire may have an outer diameter of 0.035″ or any other suitable diameter. The needle tipped guidewire 50 may be 180 to 220 cm in length. For example, the needle tipped guidewire may be 180 cm in length. Alternatively, the needle tipped guidewire may be any suitable length to be advance from a vessel insertion point to the exit point. For example, a needle tipped guidewire used in an antecubital vein, as shown in
The sharpened tip may be of any suitable length. For example, the tip 52 may have a length of 0.075″ to 0.095″, such as 0.085″ or any other suitable length. In some embodiments, the needle tipped guidewire may have a surface finish such as a black oxide, or any other suitable finish to facilitate passing through a desired exit site on the wall of the central blood vessel and skin of the patient.
Actuation handle 102 may be used to bend the distal end of catheter 102. In the configuration shown in
A collar 118 is attached to the piercing wire 106 within handle 104, and a spring 120 is disposed within the handle proximal to the collar. In the position shown in
A second optional safety feature is an interlock that prevents actuation of the piercing wire unless the catheter tip has been deflected.
Unless defined otherwise, all technical terms used herein have the same meanings as commonly understood by one of ordinary skill in the art of vascular catheterization. Specific methods, devices, and materials are described in this application, but any methods and materials similar or equivalent to those described herein can be used in the practice of the present invention. While embodiments of the invention have been described in some detail and by way of exemplary illustrations, such illustration is for purposes of clarity of understanding only, and is not intended to be limiting. Various terms have been used in the description to convey an understanding of the invention; it will be understood that the meaning of these various terms extends to common linguistic or grammatical variations or forms thereof. Moreover, any one or more features of any embodiment of the invention can be combined with any one or more a features of any other embodiment of the invention, without departing from the scope of the invention. Still further, it should be understood that the invention is not limited to the embodiments that have been set forth for purposes of exemplification, but is to be defined only by a fair reading of claims that are appended to the patent application, including the full range of equivalency to which each element thereof is entitled.
This application is a divisional of U.S. application Ser. No. 12/861,716, filed Aug. 23, 2010, which application claims the benefit under 35 USC 119 to U.S. Provisional Application No. 61/235,952, filed Aug. 21, 2009, the disclosure of which is incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4559039 | Ash et al. | Dec 1985 | A |
4790825 | Bernstein et al. | Dec 1988 | A |
4966163 | Kraus et al. | Oct 1990 | A |
5421348 | Larnard | Jun 1995 | A |
5492530 | Fischell et al. | Feb 1996 | A |
5685820 | Riek et al. | Nov 1997 | A |
5733248 | Adams et al. | Mar 1998 | A |
6047700 | Eggers et al. | Apr 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6475226 | Belef et al. | Nov 2002 | B1 |
6508777 | Macoviak et al. | Jan 2003 | B1 |
6554794 | Mueller et al. | Apr 2003 | B1 |
6655386 | Makower et al. | Dec 2003 | B1 |
6726677 | Flaherty et al. | Apr 2004 | B1 |
7008979 | Schottman et al. | Mar 2006 | B2 |
7374567 | Heuser | May 2008 | B2 |
7648517 | Makower et al. | Jan 2010 | B2 |
8409236 | Pillai | Apr 2013 | B2 |
20010000041 | Selmon et al. | Mar 2001 | A1 |
20010012924 | Milo et al. | Aug 2001 | A1 |
20010023346 | Loeb | Sep 2001 | A1 |
20020004666 | Schwager et al. | Jan 2002 | A1 |
20020029060 | Hogendijk | Mar 2002 | A1 |
20020120250 | Altman | Aug 2002 | A1 |
20020133168 | Smedley et al. | Sep 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20040039371 | Tockman et al. | Feb 2004 | A1 |
20040082850 | Bonner et al. | Apr 2004 | A1 |
20040133168 | Salcudean et al. | Jul 2004 | A1 |
20040181150 | Evans et al. | Sep 2004 | A1 |
20040181238 | Zarbatany et al. | Sep 2004 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050149097 | Regnell et al. | Jul 2005 | A1 |
20060009715 | Khairkhahan et al. | Jan 2006 | A1 |
20060009737 | Whiting et al. | Jan 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060247750 | Seifert et al. | Nov 2006 | A1 |
20070021767 | Breznock | Jan 2007 | A1 |
20080082136 | Gaudini | Apr 2008 | A1 |
20080215008 | Nance et al. | Sep 2008 | A1 |
20080249565 | Michler et al. | Oct 2008 | A1 |
20110178530 | Bly | Jul 2011 | A1 |
20120136247 | Pillai | May 2012 | A1 |
20120136366 | Pillai | May 2012 | A1 |
Number | Date | Country |
---|---|---|
WO 2004018029 | Mar 2004 | WO |
WO 2005053547 | Jun 2005 | WO |
Entry |
---|
Faul et al.; Vascular Disease Management; vol. 5; No. 5; pp. 128-133; Sep./Oct. 2008. |
Huang et al.; Evaluation of the needle technique for producing an arteriovenous fistula; Journal of Applied Physiology; vol. 77(6); pp. 2907-2911; Dec. 1994. |
Khanna et al.; Sharpening of hollow silicon microneedles to reduce skin penetration force; J. Micromech. Microeng.; vol. 20; No. 4, pp. 045011 (8 pgs.); Mar. 15, 2010. |
LuMEND, Inc.; Outback LTD re-entry catheter; Product Resources (http://www.lumend.com/Images/Technology/Product/brochure.pdf) This web address was available to applicant(s) at least as of (Jul. 19, 2006). |
Mewissen, Mark; Revascularization of long FP arterial occlusions; Endovascular Today; pp. 2-4; Mar. 2004. |
O'Callaghan et al.; Dynamics of stab wounds: force required for penetration of various cadaveric human tissues; Forensic Sci. Int'l; vol. 104; pp. 173-178; Oct. 11, 1999. |
Pillai, Lakshmikumar; U.S. Appl. No. 11/381,229 entitled “Methods of Transvascular Retrograde Access Placement and Devices for Facilitating Therein,” filed May 2, 2006. |
Number | Date | Country | |
---|---|---|---|
20130172922 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61235952 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12861716 | Aug 2010 | US |
Child | 13782931 | US |