The present invention pertains generally to indwelling infusion catheters. More particularly, the present invention pertains to catheters that can be maneuvered to a pre-selected site in the venous system where an infusion member, at the distal end of the catheter, can be embedded into a target volume of tissue. The present invention is particularly, but not exclusively, useful as an indwelling catheter for infusing a fluid medicament into extracellular fluid in the tissue volume at a predetermined fluid flow rate and for a specified time duration.
Heretofore, when organs inside the body have required therapeutic treatment, the typical practice has been to orally or intravenously administer medicaments. Typically, these medicaments (i.e. drugs) transit to and from the target organ through the body's blood stream. In many instances, however, this unnecessarily exposes the entire body to the effect. And, it can be quite problematic due to the fact an efficacious concentration of the fluid medicament in one area of the body can be toxic in others.
Not infrequently, it happens that only a portion of an organ's tissue requires therapeutic treatment. Moreover, it may be desirable, and indeed necessary, to treat this portion of organ tissue with relatively high concentrations of a fluid medicament for an extended period of time. An effective way to do this is by infusing a fluid medicament directly into extracellular fluid in the target tissue. Fortunately, with such infusions the effect can remain somewhat localized as the medicament diffuses down its concentration gradient from the site of application to more distant sites in the tissue. Further, the effect may even be limited to only the particular organ and, thus, effectively isolated from the blood stream. Nevertheless, under such circumstances it is necessary that the administration of the fluid medicament be properly controlled.
Various types of catheter systems are commercially available for use in the vasculature of a patient. Typically, each catheter system is specially designed to perform a particular function, or functions, for a specific application. Of particular interest for the present invention are indwelling catheters that can remain in situ in the venous system of a patient's vasculature for extended periods of time.
In light of the above, it is an object of the present invention to provide a transvenous soaker catheter, and its method of use, that is able to selectively deliver substances (i.e. fluid medicaments) at adjustable concentrations into the extracellular fluid, at a particular location in a target organ. Another object of the present invention is to provide a transvenous soaker catheter that effectively limits the exposure of an administered fluid medicament to targeted organ tissue. Still another object of the present invention is to provide a transvenous soaker catheter, and its method of use, that minimizes system toxicity while allowing the local administration of much higher concentrations of a drug (i.e. fluid medicament) in a predetermined area. Yet another object of the present invention is to provide a transvenous soaker catheter, and its method of use, that is easy to use, is relatively simple to manufacture, and is comparatively cost effective.
In accordance with the present invention, a system for infusing a fluid medicament into a volume of tissue includes a catheter having a proximal end and a distal end. A source of the fluid medicament is attached in fluid communication with the proximal end of the catheter, and a controller is provided to establish a predetermined fluid flow rate for the flow of the fluid medicament from the source to the catheter. Also, the controller includes a timer that allows control over the time duration of the fluid medicament flow from the source to the catheter.
An infusion member is affixed to the distal end of the catheter. Preferably, the infusion member is an elongated needle like structure that extends in a distal direction from the distal end of the catheter. For one embodiment of the infusion member, it is formed with at least one laser pin hole. In another embodiment, at least one biodegradable fiber extends from the infusion member. For either embodiment, after the fluid medicament has been pumped through the catheter, the fluid medicament leaves the infusion member though the pin hole(s) or the biodegradable fiber(s).
As envisioned for the present invention, the infusion member can be associated with a stabilizing element at the distal end of the catheter. For example, a helical wire (i.e. cork-screw shaped wire) can be attached to the distal end of the catheter to surround the infusion member. As another example, the infusion member itself can be helical shaped.
In the operation of the present invention, the intravenous soaker catheter is maneuvered through the venous system until the infusion member is positioned at an intended target site. The infusion member is then embedded into tissue at the target site, and stabilized. In many instances, the length of the infusion member will be sufficient to stabilize it at the target site. On the other hand, as indicated above, stabilization can also be accomplished by screwing a helical stabilization wire that is mounted on the catheter, into tissue at the target site. The infusion member itself may also be helical shaped and, thus, it can be similarly screwed into tissue at the target site for stabilization.
Once the catheter has been properly positioned, and the infusion member properly stabilized, the controller can be activated. Specifically, in accordance with instructions from the controller, the fluid pump can be operated to infuse fluid medicament from the fluid source into extracellular fluid in the target volume of fluid. This can be done at a predetermined fluid flow rate, for a predetermined time duration. As envisioned for the present invention, the infusion of fluid medicament can be continuously, or periodically, accomplished over extended periods of time (e.g. greater than five minutes).
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
Still referring to
Turning now to
An alternative to the infusion member 26 (shown in
Additional alternate embodiments of components for use with the system 10 are shown in
In the operation of the system 10 of the present invention, a fluid medicament is selected for use and provided as the fluid source 18. Controller 24 is then programmed for the controlled operation of the pump 20. Specifically, a fluid flow regimen is established for the pump 20, with a prescribed fluid flow rate, and scheduled operational time durations (periodic or continuous). Then, with an infusion member 26 affixed to its distal end 16, the catheter 12 is advanced through the venous system of a patient until the infusion member 26 has been positioned adjacent target tissue 36 at the selected site. The infusion member 26 is then embedded into the target tissue 36 (see
As indicated in
While the particular Transvenous Soaker Catheter as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.