Transverse and/or commutated flux systems having laminated and powdered metal portions

Information

  • Patent Grant
  • 8952590
  • Patent Number
    8,952,590
  • Date Filed
    Tuesday, November 8, 2011
    13 years ago
  • Date Issued
    Tuesday, February 10, 2015
    9 years ago
Abstract
Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials in connection with powdered metal materials. For example, stacks of laminated materials may be coupled to powdered metal teeth to form portions of a stator in an electrical machine.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a non-provisional of U.S. Provisional No. 61/414,769 filed on Nov. 17, 2010 and entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS HAVING SEGMENTED STATOR LAMINATIONS.”


This application is also a non-provisional of U.S. Provisional No. 61/414,774 filed on Nov. 17, 2010 and entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEM COIL CONCEPTS.”


This application is also a non-provisional of U.S. Provisional No. 61/414,781 filed on Nov. 17, 2010 and entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS HAVING LAMINATED AND POWDERED METAL PORTIONS.”


This application is also a non-provisional of U.S. Provisional No. 61/453,075 filed on Mar. 15, 2011 and entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS HAVING LAMINATED AND POWDERED METAL PORTIONS.” The entire contents of all the foregoing applications are hereby incorporated by reference.


TECHNICAL FIELD

The present disclosure relates to electrical systems, and in particular to transverse flux machines and commutated flux machines.


BACKGROUND

Motors and alternators are typically designed for high efficiency, high power density, and low cost. High power density in a motor or alternator may be achieved by operating at high rotational speed and therefore high electrical frequency. However, many applications require lower rotational speeds. A common solution to this is to use a gear reduction. Gear reduction reduces efficiency, adds complexity, adds weight, and adds space requirements. Additionally, gear reduction increases system costs and increases mechanical failure rates.


Additionally, if a high rotational speed is not desired, and gear reduction is undesirable, then a motor or alternator typically must have a large number of poles to provide a higher electrical frequency at a lower rotational speed. However, there is often a practical limit to the number of poles a particular motor or alternator can have, for example due to space limitations. Once the practical limit is reached, in order to achieve a desired power level the motor or alternator must be relatively large, and thus have a corresponding lower power density.


Moreover, existing multipole windings for alternators and electric motors typically require winding geometry and often complex winding machines in order to meet size and/or power needs. As the number of poles increases, the winding problem is typically made worse. Additionally, as pole count increases, coil losses also increase (for example, due to resistive effects in the copper wire or other material comprising the coil). However, greater numbers of poles have certain advantages, for example allowing a higher voltage constant per turn, providing higher torque density, and producing voltage at a higher frequency.


Most commonly, electric motors are of a radial flux type. To a far lesser extent, some electric motors are implemented as transverse flux machines and/or commutated flux machines. It is desirable to develop improved electric motor and/or alternator performance and/or configurability. In particular, improved transverse flux machines and/or commutated flux machines are desirable, including those configured with laminated and/or powdered metal portions and combinations thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

With reference to the following description, appended claims, and accompanying drawings:



FIG. 1A illustrates an exemplary transverse flux machine in accordance with an exemplary embodiment;



FIG. 1B illustrates an exemplary commutated flux machine in accordance with an exemplary embodiment;



FIG. 2A illustrates an exemplary axial gap configuration in accordance with an exemplary embodiment;



FIG. 2B illustrates an exemplary radial gap configuration in accordance with an exemplary embodiment;



FIG. 3A illustrates an exemplary cavity engaged configuration in accordance with an exemplary embodiment;



FIG. 3B illustrates an exemplary face engaged configuration in accordance with an exemplary embodiment;



FIG. 3C illustrates an exemplary face engaged transverse flux configuration in accordance with an exemplary embodiment;



FIG. 4A illustrates a side lamination in accordance with an exemplary embodiment;



FIG. 4B illustrates side laminations having interlocking cuts in accordance with an exemplary embodiment;



FIG. 4C illustrates a generally ring-shaped structure comprising multiple side laminations having interlocking cuts in accordance with an exemplary embodiment;



FIGS. 4D and 4E illustrate a lamination stack in accordance with an exemplary embodiment;



FIGS. 5A-5D illustrate stator teeth in accordance with an exemplary embodiment;



FIG. 5E illustrates stator teeth width with respect to pole pitch in accordance with an exemplary embodiment;



FIGS. 6A and 6B illustrate a lamination stack having teeth coupled thereto in accordance with an exemplary embodiment;



FIGS. 6C and 6D illustrate a lamination stack having teeth coupled thereto in a dovetail fashion in accordance with an exemplary embodiment;



FIG. 6E illustrates a close-up view of multiple lamination stacks having teeth coupled thereto, the multiple lamination stacks coupled to form a generally ring-shaped stator half in accordance with an exemplary embodiment;



FIG. 6F illustrates a close-up view of multiple lamination stacks configured with cuts providing features for mechanical connection between lamination stacks in accordance with an exemplary embodiment;



FIG. 7A illustrates two ring-shaped stator halves for a transverse flux machine in accordance with an exemplary embodiment;



FIG. 7B illustrates a stator half and a dual-wound coil in accordance with an exemplary embodiment;



FIG. 7C illustrates a stator assembly comprising two stator halves at least partially surrounding a dual-wound coil in accordance with an exemplary embodiment;



FIG. 7D illustrates a polyphase stator assembly for a transverse flux machine in accordance with an exemplary embodiment;



FIG. 7E illustrates a polyphase transverse flux machine in accordance with an exemplary embodiment;



FIG. 8A illustrates an exemplary transverse flux machine in accordance with an exemplary embodiment;



FIG. 8B illustrates an exemplary transverse flux machine in accordance with an exemplary embodiment;



FIG. 8C illustrates a side view of an exemplary transverse flux machine in accordance with an exemplary embodiment;



FIGS. 8D and 8E illustrate flux flow in an exemplary transverse flux machine in accordance with an exemplary embodiment;



FIG. 9A illustrates teeth disposed on a ring in accordance with an exemplary embodiment;



FIG. 9B illustrates lamination stacks placed within the ring of FIG. 9A in accordance with an exemplary embodiment;



FIG. 9C illustrates lamination stacks and teeth coupled to form a stator half in accordance with an exemplary embodiment;



FIGS. 9D-9E illustrate block diagrams of methods of forming a stator half in accordance with an exemplary embodiment;



FIG. 10A illustrates an exemplary polyphase transverse flux machine configured as a bicycle motor in accordance with an exemplary embodiment;



FIG. 10B illustrates a rotor and housing for a transverse flux machine in accordance with an exemplary embodiment;



FIG. 10C illustrates a cut-away view of an exemplary polyphase transverse flux machine configured as a bicycle motor in accordance with an exemplary embodiment; and



FIGS. 11A and 11B illustrate performance of various electrical machines, including polyphase transverse flux machines configured in accordance with an exemplary embodiment.





DETAILED DESCRIPTION

The following description is of various exemplary embodiments only, and is not intended to limit the scope, applicability or configuration of the present disclosure in any way. Rather, the following description is intended to provide a convenient illustration for implementing various embodiments including the best mode. As will become apparent, various changes may be made in the function and arrangement of the elements described in these embodiments without departing from the scope of the appended statements.


For the sake of brevity, conventional techniques for electrical system construction, management, operation, measurement, optimization, and/or control, as well as conventional techniques for magnetic flux utilization, concentration, control, and/or management, may not be described in detail herein. Furthermore, the connecting lines shown in various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical electrical system, for example an AC synchronous electric motor, a generator, and/or the like.


Various shortcomings of prior electrical machines can be addressed by utilizing transverse flux machines and/or commutated flux machines configured in accordance with principles of the present disclosure. As used herein, a “transverse flux machine” and/or “commutated flux machine” may be any electrical machine wherein magnetic flux paths have sections where the flux is generally transverse to a rotational plane of the machine. In an exemplary embodiment, when a magnet and/or flux concentrating components are on a rotor and/or are moved as the machine operates, the electrical machine may be a pure “transverse” flux machine. In another exemplary embodiment, when a magnet and/or flux concentrating components are on a stator and/or are held stationary as the machine operates, the electrical machine may be a pure “commutated” flux machine. As is readily apparent, in certain configurations a “transverse flux machine” may be considered to be a “commutated flux machine” by fixing the rotor and moving the stator, and vice versa. Moreover, a coil may be fixed to a stator; alternatively, a coil may be fixed to a rotor.


There is a spectrum of functionality and device designs bridging the gap between a commutated flux machine and a transverse flux machine. Certain designs may rightly fall between these two categories, or be considered to belong to both simultaneously. Therefore, as will be apparent to one skilled in the art, in this disclosure a reference to a “transverse flux machine” may be equally applicable to a “commutated flux machine” and vice versa.


Moreover, transverse flux machines and/or commutated flux machines may be configured in multiple ways. For example, with reference to FIG. 2A, a commutated flux machine may be configured with a stator 210 generally aligned with the rotational plane of a rotor 250. Such a configuration is referred to herein as “axial gap.” In another configuration, with reference to FIG. 2B, a commutated flux machine may be configured with stator 210 rotated about 90 degrees with respect to the rotational plane of rotor 250. Such a configuration is referred to herein as “radial gap.” Similar approaches may be followed in transverse flux machines and are referred to in a similar manner.


With reference now to FIG. 3A, a flux switch 352 in a commutated flux machine may engage a stator 310 by extending at least partially into a cavity defined by stator 310. Such a configuration is referred to herein as “cavity engaged.” Turning to FIG. 3B, flux switch 352 in a commutated flux machine may engage stator 310 by closely approaching two terminal faces of stator 310. Such a configuration is referred to herein as “face engaged.” Similar engagement approaches may be followed in transverse flux machines and are referred to in a similar manner. In general, it should be noted that a particular electrical machine may be face engaged or cavity engaged, and may be an axial gap or radial gap configuration. For example, in an exemplary embodiment, with reference to FIG. 3C, a transverse flux machine 300 comprises a coil 320 at least partially surrounded by stator 310. Stator 310 is face engaged with rotor 350 in an axial gap configuration.


Yet further, many prior electric motors have offered limited torque density. As used herein, “torque density” refers to Newton-meters of continuous torque produced per kilogram of active electrical and magnetic materials in the motor. In an exemplary embodiment, continuous torque is defined as a level of output torque that produces a maximum (spatial) equilibrium temperature of 100 degrees Celsius in the motor stator, responsive to a load of duty type S1 as defined in International Electrotechnical Commission (IEC) standard 60034-1, given ambient temperature of 25 degrees Celsius and airflow of 8 kilometers per hour around the motor.


For example, many prior electric motors are configured with a torque density of between about 0.5 Newton-meters per kilogram and about 3 Newton-meters per kilogram. Consequently, a motor of sufficient torque and/or power for a particular application may be difficult or even impossible to fit in an available area, for example when a motor sized to produce sufficient torque becomes too massive to fit in a confined space. In the case of e-bikes, the associated space constraints (for example, the limited space available in a bicycle wheel hub) often result in inclusion of comparatively underpowered and/or overweight motors, for example motors having a maximum power output of about 500 to about 900 watts.


A transverse flux machine and/or commutated flux machine in accordance with principles of the present disclosure may be configured with any suitable components, structures, and/or elements in order to provide desired electrical, magnetic, and/or physical properties. For example, a transverse flux machine having a continuous, thermally stable torque density in excess of 30 Newton-meters per kilogram of active electrical and magnetic material may be achieved by utilizing powdered metal teeth in connection with lamination stacks. As used herein, “continuous, thermally stable torque density” refers to a torque density maintainable by a motor, without active cooling, during continuous operation over a period of one hour or more. Moreover, in general, a continuous, thermally stable torque density may be considered to be a torque density maintainable by a motor for an extended duration of continuous operation, for example one hour or more, without significant thermal performance degradation and/or damage.


Additionally, in accordance with principles of the present disclosure, a transverse flux machine and/or commutated flux machine may be configured to achieve a higher voltage constant. In this manner, the number of turns in the machine may be reduced, in connection with a higher frequency. A corresponding reduction in coil resistance and/or the number of turns in the coil may thus be achieved. Similarly, as the voltage may be higher, the current may be smaller, resulting in a more efficient machine.


Yet further, in accordance with principles of the present disclosure, a transverse flux machine and/or commutated flux machine may be configured to achieve a high flux switching frequency, for example a flux switching frequency in excess of 500 Hz. Because flux is switched at a high frequency, torque density may be increased.


An electrical machine, for example an electric motor, may be any system configured to facilitate the switching of magnetic flux. In various exemplary embodiments, an electric motor may comprise a transverse flux machine and/or a commutated flux machine. In general, a transverse flux machine and/or commutated flux machine comprises a rotor, a stator, and a coil. A flux switch may be located on the stator or the rotor. As used herein, a “flux switch” may be any component, mechanism, or device configured to open and/or close a magnetic circuit (i.e., a portion where the permeability is significantly higher than air). A magnet may be located on the stator or the rotor. Optionally, flux concentrating portions may be included on the stator and/or the rotor.


A coil may be at least partially enclosed and/or partially surrounded by the stator or the rotor. In an exemplary embodiment, a “partially enclosed” or “partially surrounded” coil may be considered to be a coil wherein more than 50% of the coil exterior is surrounded by the stator and/or rotor. In another exemplary embodiment, a “partially enclosed” or “partially surrounded” coil may be considered to be a coil wherein a magnet, a flux concentrator, and/or a flux switch surrounds the coil by greater than 180 degrees (i.e., more than halfway around the coil).


In accordance with an exemplary embodiment, and with renewed reference to FIG. 1A, an electrical machine, for example transverse flux machine (TFM) 100A, generally comprises a rotor 150A, a stator 110A, and a coil 120A. Rotor 150A comprises a plurality of interleaved magnets 154 and flux concentrators 152. Rotor 150A is configured to interact with stator 110A in order to facilitate switching of magnetic flux. Stator 110A is configured to be magnetically coupled to rotor 150A, and is configured to facilitate flow of magnetic flux via interaction with rotor 150A. Stator 110A at least partially encloses coil 120A. Coil 120A is configured to generate a current output responsive to flux switching and/or accept a current input configured to drive rotor 150A. Transverse flux machine 100A may also comprise various structural components, for example components configured to facilitate operation of transverse flux machine 100A. Moreover, transverse flux machine 100A may comprise any suitable components configured to support, guide, modify, and/or otherwise manage and/or control operation of transverse flux machine 100A and/or components thereof.


In accordance with an exemplary embodiment, and with reference to FIG. 1B, an electrical machine, for example commutated flux machine (CFM) 100B, generally comprises a stator 110B, a rotor 150B, and a coil 120B. Stator 110B comprises a plurality of interleaved magnets 114 and flux concentrators 112. Stator 110B at least partially encloses coil 120B. Stator 110B is configured to interact with rotor 150B in order to facilitate switching of magnetic flux. Stator 110B is configured to be magnetically coupled to rotor 150B, and is configured to facilitate flow of magnetic flux via interaction with rotor 150B. Coil 120B is configured to generate a current output responsive to flux switching and/or accept a current input configured to drive rotor 150B. Commutated flux machine 100B may also comprise various structural components, for example components configured to facilitate operation of commutated flux machine 100B. Moreover, commutated flux machine 100B may comprise any suitable components configured to support, guide, modify, and/or otherwise manage and/or control operation of commutated flux machine 100B and/or components thereof.


Turning now to FIGS. 4A-4C, in accordance with various exemplary embodiments a transverse flux machine and/or commutated flux machine may utilize one or more side laminations 412. Side lamination 412 may be configured with one or more slot-like “trenches” 411 on an edge thereof. Additionally, side lamination 412 may be configured with one or more grooves 409 separating trenches 411 from one another. Grooves 409 may be configured with portions and/or edges that are concave, convex, curved, linear, angular, and/or combinations of the same. Side lamination 412 may also be configured with interlocking and/or interlockable portions, for example by making an interlocking cut 413 therethrough, or by stamping a sheet of planar material to form a “puzzle-piece” shape on an edge of side lamination 412. Yet further, side lamination 412 may be configured with one or more holes 419 therethrough, for example in order to reduce weight. Multiple side laminations 412 may be utilized to form a generally ring-shaped structure, for example for use in a stator of a transverse flux machine.


With reference now to FIGS. 4D-4E, in an exemplary embodiment a lamination stack 414 may be formed from one or more side laminations 412. In an exemplary embodiment, all side laminations 412 in a lamination stack 414 are identical. In another exemplary embodiment, one or more side laminations 412, for example side laminations 412 at an edge of lamination stack 414, may be configured with different dimensions than other side laminations in lamination stack 414. For example, a particular lamination stack 414 may comprise a side lamination 412 having extensions 412X that extend generally into the area of trench 411. In this manner, retention of an object in trench 411 may be facilitated. Additionally, extensions 412X facilitate passing additional flux into and/or out of an object placed in trench 411 due to the increased area of lamination stack 414 around trench 411.


Additional details regarding side laminations, lamination stacks, segmented lamination stacks, materials for laminations and the like may be found in U.S. patent application Ser. No. 13/291,373 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS HAVING SEGMENTED STATOR LAMINATIONS” having the same filing date as the present application, the contents of which are hereby incorporated by reference in their entirety.


Turning now to FIGS. 5A-5D, in accordance with various exemplary embodiments a transverse flux machine and/or commutated flux machine may utilize one or more portions formed from powdered metal or other soft magnetic composite materials, for example tooth 516. Tooth 516 may be formed from powdered metal, metallic glasses, nanocrystalline composites, and/or combinations of the same, or other suitable material having desirable magnetic and structural properties.


In an exemplary embodiment, tooth 516 has a width of about 3 mm, a height of about 5 mm, and a length of about 10.25 mm. In another exemplary embodiment, tooth 516 has a width of about 4.5 mm, a height of about 5 mm, and a length of about 10.25 mm. In various exemplary embodiments, tooth 516 is configured with a width of between about 2 mm and about 15 mm, a height of between about 2 mm and about 15 mm, and a length of between about 7 mm and about 25 mm. Moreover, tooth 516 may be configured with any suitable dimensions, geometries, and/or materials in order to facilitate switching of magnetic flux in a transverse flux machine and/or commutated flux machine.


In an exemplary embodiment, tooth 516 has a volume of about 200 cubic millimeters. In another exemplary embodiment, tooth 516 has a volume of about 150 cubic millimeters. In various exemplary embodiments, tooth 516 has a volume of between about 100 cubic millimeters and about 2 cubic centimeters. In various exemplary embodiments, tooth 516 has a mass of between about 1 gram and about 15 grams. In various exemplary embodiments, tooth 516 has a density of between about 4 grams per cubic centimeter and about 8 grams per cubic centimeter. Moreover, tooth 516 may be configured with any suitable volume, density, and/or mass in order to facilitate switching of magnetic flux in a transverse flux machine and/or commutated flux machine.


In various exemplary embodiments, tooth 516 is configured with a switching surface 5165 intended to face an air gap in a transverse flux machine and/or a commutated flux machine. Switching surface 516S may be planar; alternatively, switching surface 516S may be convex and/or concave. Switching surface 516S may be configured with various lengths, widths, curves, and/or the like, as suitable. For example, in an exemplary embodiment the length and width of switching surface 516S may be selected based on dimensions of a portion of a rotor with which tooth 516 is intended to interface. For example, switching surface 516S may be configured to have a width about the same width as a flux concentrator in a rotor of a transverse flux machine. Moreover, switching surface 516S may be configured to have a width wider than the width of a flux concentrator in a rotor of a transverse flux machine.


For example, in an exemplary embodiment switching surface 516S is configured with a width about 1.2 times the width of a flux concentrator in a rotor. In another exemplary embodiment, switching surface 516S is configured with a width about 1.5 times the width of a flux concentrator in a rotor. In another exemplary embodiment, switching surface 516S is configured with a width about 1.875 times the width of a flux concentrator in a rotor. In various exemplary embodiments, switching surface 516S is configured with a width of between about 1 time to about 2 times the width of a flux concentrator in a rotor. Moreover, a desirable ratio of the width of switching surface 516S to the width of a flux concentrator in a rotor may vary, for example based on dimensions of an air gap in a transverse flux machine.


In various exemplary embodiments, switching surface 516S may be configured to have a desired configuration, for example a desired width, at least in part as a function of a pole pitch in a transverse flux machine and/or commutated flux machine. With reference now to FIG. 5E, in an exemplary embodiment switching surface 516S is configured with a width W related to a pole pitch P in an exemplary transverse flux machine 500. Transverse flux machine 500 comprises a rotor 550 having alternating magnets 554 and flux concentrators 552 interleaved therein. Pole pitch P is about the combined width of one magnet 554 and one flux concentrator 552. Transverse flux machine 500 further comprises a plurality of teeth 516. The width of switching surface 516S of teeth 516 may be represented as W.


In an exemplary embodiment, W is about 4.5 mm, P is about 5.7 mm, and transverse flux machine 500 is configured with 60 poles. In this exemplary embodiment, the ratio of W to P is about 0.79. In another exemplary embodiment, W is about 3 mm, P is about 4.75 mm, and transverse flux machine 500 is configured with 72 poles. In this exemplary embodiment, the ratio of W to P is about 0.63. In various exemplary embodiments, the ratio of W to P may be between about 0.5 and about 0.95. Moreover, the ratio of W to P may be selected based on one or more of a desired cogging torque in transverse flux machine 500, the diameter of rotor 550, the number of poles in transverse flux machine 500, the dimensions of an air gap in transverse flux machine 500, and/or the like, as suitable, in order to achieve one or more desired operational and/or performance characteristics of transverse flux machine 500. Moreover, stated generally, switching surface 516S may be configured to maximize the amount of flux switched between a rotor and a stator in a transverse flux machine and/or commutated flux machine.


In various exemplary embodiments, switching surface 516S may be configured for switching a sufficient amount of magnetic flux in order to saturate or nearly saturate other components of a magnetic flux path in a transverse flux machine and/or commutated flux machine. Moreover, switching surface 516S and/or other portions of tooth 516 may be configured to reduce flux leakage in a transverse flux machine and/or commutated flux machine.


In various exemplary embodiments, tooth 516 is configured to be generally rectangular in cross section at one end, and at least partially tapered in one or more dimensions toward another end. Moreover, in certain exemplary embodiments a portion of tooth 516 may be at least partially flared and/or dovetail-shaped, for example in order to facilitate mechanical, dovetail-like coupling to a lamination stack 414. Additionally, tooth 516 may be configured with various cutouts, trenches, extrusions, depressions, ridges, steps, notches, and/or other geometric features configured to allow tooth 516 to at least partially align with extensions 412X and/or other portions of a lamination stack 414. In an exemplary embodiment, with momentary reference to FIG. 5D, tooth 516 is configured with a generally U-shaped notch 516B along the rear side thereof, and U-shaped notch 516B aligns with extensions 412X in a lamination stack 414. In this manner, tooth 516 may be retained in trench 411 in lamination stack 414.


The shape of tooth 516 may be configured to maximize the engagement and transfer of flux over a mating surface of tooth 516, for example over switching surface 516S (where flux may be received from and/or transferred to a rotor), over the “bottom” (e.g., the side of tooth 516 opposite switching surface 516S, where flux may be received from and/or transferred to lamination stack 414) and/or the sides of tooth 516 (where flux may be received from and/or transferred to lamination stack 414).


Moreover, the shape of tooth 516 may be configured to maximize the engagement of flux over a mating surface of tooth 516 while generating a flow of flux around a coil in a desired direction. In various exemplary embodiments the shape of tooth 516 is configured to reduce hysteresis losses in a rotor, for example by extending a desired axial distance along a flux concentrator in a rotor. Additionally, in various exemplary embodiments, the shape of tooth 516 contributes to reduced eddy current losses in a coil, for example by at least partially shielding the coil from flux switching across an air gap in a transverse flux machine and/or commutated flux machine. In an exemplary embodiment, the shape of tooth 516 is selected to produce an electrical machine with a high torque density, for example by acting as a flux concentrator for flux transferred through lamination stack 414. Additionally, the shape of tooth 516 may be selected to produce an electrical machine with a smaller physical footprint, such as a reduced length along the axis of rotation of a transverse flux machine, by shortening the length of tooth 516. Yet further, the shape of tooth 516 may be configured to reduce cogging torque in a transverse flux machine and/or commutated flux machine.


Turning now to FIGS. 6A-6D, in accordance with various exemplary embodiments a tooth 616 may be placed in a trench 611 in a lamination stack 614. In an exemplary embodiment, one end of tooth 616 (e.g., a generally rectangular end) may be set generally flush with one side of lamination stack 614, and another end of tooth 616 (e.g., a generally tapered end) may extend beyond the other side of lamination stack 614 (as illustrated in FIGS. 6A and 6B). In another exemplary embodiment, one end of tooth 616 (e.g., an end having generally U-shaped notch 516B thereon, for example generally U-shaped notch 516B illustrated in FIG. 5D) may be set generally flush with one side of lamination stack 614, and another end of tooth 616 (e.g., a generally tapered end) may extend beyond the other side of lamination stack 614 (as illustrated in FIGS. 6C and 6D). In this exemplary embodiment, tooth 616 is set generally flush with one side of lamination stack 614 due to the complimentary geometries of notch 516B and extensions 612X. Moreover, tooth 616 may be coupled to lamination stack 614 and/or aligned with respect to lamination stack 614 in any suitable manner and/or configuration.


With reference now to FIG. 6E, in various exemplary embodiments multiple lamination stacks 614 may be utilized to form a generally ring-shaped structure. Teeth 616 are placed in trenches 611 in the lamination stacks 614, resulting in a generally ring-shaped structure having multiple switching surfaces 616S disposed along an edge thereof, for example along an outer edge and/or along an inner edge. In various exemplary embodiments, switching surfaces 616S disposed generally along an outer edge may desirably be utilized in a transverse flux machine and/or commutated flux machine having an outer rotor (i.e., a rotor that at least partially surrounds a stator). In various other exemplary embodiments, switching surfaces 616S disposed generally along an inner edge may desirably be utilized in a transverse flux machine and/or commutated flux machine having an inner rotor (i.e., a rotor that is at least partially surrounded by a stator). In the ring-shaped structure, switching surfaces 616S may be disposed to generally face the radial interior of the ring (for example, in connection with the use of an “inner” rotor in an axial gap configuration), the radial exterior of the ring (for example, in connection with the use of an “outer” rotor in an axial gap configuration), and/or an axial side of the ring (for example, in connection with the use of a rotor in a “side by side” rotor in a radial gap configuration). As used herein, a generally ring-shaped structure or other suitable structures composed of lamination stacks 614 and/or teeth 616 may be referred to as a “stator half”. Lamination stacks 614 comprising a stator half may be separated by cuts, for example interlocking cuts 615 having a suitable width, such as a width of about 0.03 inches, in order to reduce losses.


In various exemplary embodiments, cuts 615 may be configured to interlock portions of adjacent lamination stacks 614, for example as illustrated in FIG. 6E. In other exemplary embodiments, with reference now to FIG. 6F, cuts 615 may be configured to allow portions of a lamination stack 614 to at least partially interlock with other components, for example components configured to couple laminations stacks 614 together. Stated differently, in various exemplary embodiments, lamination stacks 614 may at least partially interlock or couple to one another; in other exemplary embodiments, lamination stacks 614 may at least partially interlock or couple to other components disposed between and/or linking lamination stacks 614.


In an exemplary embodiment, portions of cuts 615 in lamination stack 614 define generally “female” portions of lamination stack 614. A non-magnetic coupling component, for example a “double dovetail”-like insert 617 configured with two “male” portions, may then be coupled to the corresponding female portions of adjacent lamination stacks 614 order to couple adjacent lamination stacks 614. It will be appreciated that the respective location of male and female portions on lamination stack 614 and inserts 617 may also be reversed, as suitable. Moreover, any suitable combination of male and female portions may be utilized, as desired. While a dovetail-like interlocking is illustrated in FIG. 6F, it will be appreciated that various other interlocking and/or partially interlocking configurations and shapes may be utilized, as suitable. Moreover, inserts 617 may be formed from liquid crystal polymer, glass-filled engineering plastic, ceramic, electrically insulated and/or coated metal, and/or other suitable structural materials or combinations thereof.


Moreover, multiple lamination stacks 614 may be coupled together via the use of various non-magnetic coupling components such as inserts 617, for example in order to form a generally ring-shaped structure. Stated generally, cuts 615 may be configured to provide features for mechanical connection between lamination stacks 614, and/or between lamination stacks 614 and other components of a transverse flux machine and/or commutated flux machine, for example inserts 617.


In various exemplary embodiments, with continued reference to FIG. 6F, trenches 611 in lamination stack 614 may be separated by grooves 609. Grooves 609 may be configured with portions and/or edges that are concave, convex, curved, linear, angular, and/or combinations of the same. In various exemplary embodiments, grooves 609 are configured to be at least partially “hourglass” shaped, for example as illustrated in FIG. 6F. In this manner, grooves 609 may assist in mechanically retaining objects and/or material placed therein. For example, grooves 609 may be filled with epoxy or other adhesive during manufacturing of a particular transverse flux machine and/or commutated flux machine. After curing, the “hourglass” shape of grooves 609 resists mechanical separation of the cured adhesive from lamination stack 614, for example responsive to rotational, vibrational, or other forces in the transverse flux machine and/or commutated flux machine. Additionally, grooves 609 may facilitate coupling of lamination stack 614 to other components of a transverse flux machine and/or commutated flux machine.


In an exemplary embodiment, turning now to FIGS. 7A-7C, a first stator half 710-1 and a second stator half 710-2 may be utilized to form at least a portion of a stator assembly 710 for a transverse flux machine. Stator half 710-1 and 710-2 are placed with a coil 720 therebetween. Coil 720 may be a dual wound coil. Stator half 710-1 and 710-2 face one another, with tapered portions of teeth 716 extending into the gap therebetween. Stator half 710-1 and 710-2 are rotationally aligned to a desired position with respect to one another, for example in order to provide a desired timing for flux switching in stator assembly 710, to provide sufficient spacing between teeth 716 of stator half 710-1 and teeth 716 of stator half 710-2 in order to reduce flux leakage therebetween, to implement a sixth-phase offset, and/or the like.


With additional reference now to FIG. 7D, in various exemplary embodiments stator assembly 710 is configured as a polyphase stator assembly having phases 710A, 710B, and 710C. Each stator phase comprises a first stator half (for example, stator half 710-1) and a second stator half (for example, stator half 710-2) with a coil therebetween (for example, coil 720). Flux paths between a first stator half and a second stator half may be provided by one or more back return laminations 718. Back return laminations 718 may comprise any suitable flux conducting material and/or materials, such as steel, silicon steel, amorphous metals, metallic glass alloys, powdered metals such as powdered iron, and/or the like. Moreover, flux paths within polyphase stator assembly 710 may be provided via any suitable components, structures, and/or materials in order to facilitate switching of magnetic flux around one or more coils.


Additional details regarding back return laminations are disclosed in U.S. patent application Ser. No. 13/291,373 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS HAVING SEGMENTED STATOR LAMINATIONS” having the same filing date as the present application, the contents of which are hereby incorporated by reference in their entirety.


In an exemplary embodiment, with reference now to FIGS. 7D and 7E, an exemplary polyphase transverse flux machine 700 comprises polyphase stator assembly 710 and rotor 750. Rotor 750 comprises at least one flux concentrator 752 and at least one magnet 754, each of which may comprise any suitable shape. In an exemplary embodiment, both flux concentrator 752 and magnet 754 are substantially rectangular in three dimensions. In other exemplary embodiments, flux concentrator 752 and magnet 754 are tapered. In various exemplary embodiments, rotor 750 comprises a generally ring-shaped structure comprised of alternating magnets 754 and flux concentrators 752.


In rotor 750, magnets 754 may be configured to be “extended” with respect to flux concentrators 752, for example by magnets 754 extending a first distance in a direction away from a coil in transverse flux machine 700 while flux concentrators 752 extend a second, shorter distance in the direction away from the coil. Moreover, rotor 750 may be configured to be at least partially overhung with respect to polyphase stator assembly 710, for example by overhanging a first side of polyphase stator assembly 710 and a second side of polyphase stator assembly 710 in a direction parallel to an air gap between rotor 750 and polyphase stator assembly 710. Additional details regarding extended magnets and/or overhung rotors are disclosed in U.S. patent application Ser. No. 12/772,958 filed on May 3, 2010, now U.S. Pat. No. 8,053,944 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS CONFIGURED TO PROVIDE REDUCED FLUX LEAKAGE, HYSTERESIS LOSS REDUCTION, AND PHASE MATCHING”, the contents of which are hereby incorporated by reference in their entirety.


When transverse flux machine 700 is operated as a motor, responsive to a polyphase input current (for example, an AC input current differing in phase in each of dual wound coils 720A, 720B, and 720C, rotor 750 is driven to rotate with respect to polyphase stator assembly 710. When transverse flux machine 700 is operated as a generator, responsive to a mechanical force causing rotor 750 to rotate, an AC output current is induced in each of dual wound coils 720A, 720B, and 720C.


In various exemplary embodiments, transverse flux machine 700 is configured with a voltage constant KE (also referred to as back EMF constant) of between about 0.06 to about 0.3 in each phase in polyphase stator assembly 710, when KE is calculated as (volts phase-to-phase)/(RPMs). In certain exemplary embodiments, transverse flux machine 700 having a particular diameter is configured with a voltage constant KE of between about 0.03 to about 0.5. In contrast, various prior art electric motors having a similar diameter, for example electric motors configured for use as bicycle motors, are configured with a voltage constant KE of about 0.03 to about 0.015. Because transverse flux machine 700 may be configured with a higher voltage constant KE compared to various prior motors, transverse flux machine 700 can offer improved performance. Moreover, voltage constants in electrical machines may vary based at least in part on the diameter and/or width of an electrical machine. As such, the examples provided above are illustrative and not exhaustive.


In various exemplary embodiments, when transverse flux machine 700 is configured with three phases (each phase having an axial thickness of about 20 mm, for a total axial thickness of about 60 mm), and a diameter of about 120 mm, transverse flux machine 700 is configured with a motor constant KM of between about 3 Newton-meters per root watt (Nm/√W) and about 5 Newton-meters per root watt. In various other exemplary embodiments, when transverse flux machine 700 is configured with three phases (each phase having an axial thickness of about 35 mm, for a total axial thickness of about 105 mm), and a diameter of about 330 mm, transverse flux machine 700 is configured with a motor constant KM of between about 24 Newton-meters per root watt and about 36 Newton-meters per root watt Moreover, motor constants in electrical machines may vary based at least in part on the diameter of an electrical machine. As such, the examples provided above are illustrative and not exhaustive.


Because transverse flux machines and/or commutated flux machines configured in accordance with principles of the present disclosure, for example transverse flux machine 700, may be configured with a higher motor constant KM compared to various prior motors of similar diameters and number of phases, transverse flux machine 700 can offer improved performance. For example, transverse flux machine 700 can provide for extended operational times and/or vehicle ranges for a particular battery, use of less expensive battery chemistries having lower peak current draw capability (as transverse flux machine 700 often requires a lower current to produce a particular output torque when compared to various prior motors of similar diameters and number of phases), reduced and/or eliminated cooling components due to reduced thermal losses, and/or the like.


In various exemplary embodiments, transverse flux machine 700 is configured with between about 12 turns and about 24 turns in each of dual wound coils 720A, 720B, and 720C. In an exemplary embodiment, transverse flux machine 700 is configured to achieve an output torque of about 10 Newton-meters at a current level of about 100 amp-turns in each of dual wound coils 720A, 720B, and 720C. In another exemplary embodiment, transverse flux machine 700 is configured to achieve an output torque of about 5 Newton-meters at a current level of about 100 amp-turns in each of dual wound coils 720A, 720B, and 720C.


Yet further, in an exemplary embodiment, transverse flux machine 700 is configured to achieve an output torque of about 88 Newton-meters at a current level of about 1000 amp-turns in each of dual wound coils 720A, 720B, and 720C. In another exemplary embodiment, transverse flux machine 700 is configured to achieve an output torque of about 45 Newton-meters at a current level of about 1000 amp-turns in each of dual wound coils 720A, 720B, and 720C. Moreover, in various exemplary embodiments, transverse flux machine 700 is configured to achieve an output torque of between about 2 Newton-meters and about 50 Newton-meters at a current level of between about 50 amp-turns and about 500 amp-turns in each of dual wound coils 720A, 720B, and 720C. In certain exemplary embodiments, transverse flux machine 700 is configured to operate at a current level of between about 1 amp-turn and about 3000 amp-turns in each of dual wound coils 720A, 720B, and 720C.


Turning now to FIGS. 8A-8C, in accordance with various exemplary embodiments, an electrical machine, for example transverse flux machine 800, generally comprises a rotor 850, a stator assembly 810, and a coil 820. Moreover, transverse flux machine 800 may comprise multiple stator assemblies 810. For example, transverse flux machine 800 may comprise a single rotor 850, one or more coils 820, and one or more stator assemblies 810. Moreover, via use of a plurality of stator assemblies 810, transverse flux machine 800 may be configured to produce polyphase output and/or operate responsive to polyphase input, for example when each stator assembly 810 corresponds to a different phase.


Stator assembly 810 may be configured with any suitable shapes, geometries, and/or dimensions configured to facilitate the flow of flux around coil 820. In one exemplary embodiment, stator assembly 810 comprises stator half 810-1 and stator half 810-2. Stator half 810-1 and stator half 810-2 are coupled by one or more back return laminations 818 to provide flux paths around coil 820. In an exemplary embodiment, stator assembly 810 is configured to interface with rotor 850 in a face engaged configuration. In another exemplary embodiment, stator assembly 810 is configured to be cavity engaged with rotor 850.


In an exemplary embodiment, with reference again to FIG. 8A, stator assembly 810 may at least partially enclose coil 820. Coil 820 may be any suitable height, width, and/or length to generate an electrical current responsive to flux switching in stator assembly 810 and/or rotor 850. Coil 820 may also be any suitable height, width, and/or length configured to receive a current to drive rotor 850. In one exemplary embodiment, the interior surface of stator assembly 810 may be configured to generally mirror the shape and size of the exterior of coil 820. In another exemplary embodiment, stator assembly 810 may be configured to be slightly larger than coil 820. Moreover, in another exemplary embodiment, stator assembly 810 is “wrapped” around coil 820 so that the interior surface of stator assembly 810 is slightly larger than the height and width of coil 820 with a minimized gap between coil 820 and stator assembly 810. Coil 820 may have any suitable length, diameter and/or other dimensions and/or geometries, as desired. In an exemplary embodiment, coil 820 is substantially circular about an axis of rotation.


Coil 820 may have any suitable length, diameter and/or other dimensions and/or geometries, as desired. In an exemplary embodiment, coil 820 is substantially circular about an axis of rotation of transverse flux machine 800. In an exemplary embodiment, coil 820 is coupled to an interior surface of stator assembly 810. Coil 820 may be desirably spaced away from and/or magnetically insulated from rotor 850 and/or stator assembly 810. For example, coil 820 may be desirably spaced away from and/or magnetically insulated from rotor 850 and/or stator assembly 810 in order to reduce eddy currents and/or other induced effects in coil 820 responsive to flux switching.


In an exemplary embodiment, coil 820 is electrically coupled to a current source. The current source may be any suitable current source, but in various exemplary embodiments, the current source is alternating current.


In an exemplary embodiment, coil 820 is generally constructed from copper. However, coil 820 may be made out of any suitable electrically conductive material and/or materials such as silver, gold, aluminum, superconducting materials, and/or the like. Furthermore, coil 820 may be one solid piece, or may be made by coiling, layering, stacking, and/or otherwise joining many smaller strands or wires of electrically conductive material and/or low-loss materials together. In various exemplary embodiments, coil 820 may be dual wound, edge-wound or flat-wound, as suitable, in order to reduce eddy currents and/or other losses. Additional details regarding exemplary coil shapes and configurations are disclosed in U.S. patent application Ser. No. 12/611,737 filed on Nov. 3, 2009, now U.S. Pat. No. 7,868,508 entitled “POLYPHASE TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS”, and in U.S. patent application Ser. No. 13/291,385 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEM COIL CONCEPTS” having the same filing date as the present application, the contents of each which are hereby incorporated by reference in their entirety.


In accordance with an exemplary embodiment, stator assembly 810 and rotor 850 interact to create a magnetic flux circuit. Flux conduction is created, for example, by the switching opposite pole flux concentrators 852 of rotor 850 approaching switching surfaces 816S of teeth 816 in stator half 810-1 and 810-2 (e.g., switching surfaces 816S-1 and 816S-2). In an exemplary embodiment, opposite pole flux concentrators 852 are adjacent and interleaved in rotor 850. In various exemplary embodiments, a flux path is created through the switching elements of stator assembly 810. In an exemplary embodiment, AC synchronous flux flow is generated in response to similar flux conduction and flux paths being created simultaneously in adjacent flux concentrators 852. In another exemplary embodiment, asynchronous flux flow is generated in response to flux conduction and flux paths being created in adjacent flux concentrators 852 at slightly delayed intervals.


In an exemplary embodiment wherein transverse flux machine 800 operates as a generator, as rotor 850 moves from a first position to a second position relative to stator assembly 810, flux flows in an opposite direction within stator assembly 810, as compared to the first (prior) position of rotor 850. The change in flux direction in stator assembly 810 causes the flux to be conducted around coil 820 in alternating directions. The alternating flux direction results in generation of alternating electrical output in coil 820.


In various exemplary embodiments, rotor 850 is driven to rotate. Rotor 850 movement may be controlled by a control system which controls, for example, rotor RPM, axial positioning, acceleration, rotational direction, deceleration, starting, and/or stopping. In an exemplary embodiment, rotor 850 is driven in either rotational direction (clockwise or counterclockwise), for example depending on a preference of an operator and/or according to programming. The control system may further comprise programming memory, and a user interface, which may include graphics. The control system may include ports for coupling to additional electrical devices and/or may be coupled to additional electrical devices wirelessly. The control system may further comprise sensors for monitoring and measuring desired values of the system. These values may include one or more of phase matching, phase propagation, input waveforms, output waveforms, flux density, voltage constant, torque constant, webers of flux switched, RPM, amperes of current, wattage, system malfunctions, and/or the like. A power source may be coupled to the control system. This power source may be any suitable power source for operation of the control system, such as alternating current, direct current, capacitive charge, and/or inductance. In an exemplary embodiment, the power source is a DC battery.


Portions of rotor 850 and/or stator assembly 810 may comprise any suitable flux conducting material and/or materials, such as steel, silicon steel, amorphous metals, metallic glass alloys, powdered metals such as powdered iron, and/or the like. In an exemplary embodiment, portions of transverse flux machine 800, such as portions of stator assembly 810 and/or rotor 850, may be comprised of Metglas® brand amorphous metal products produced by Hitachi Metals America, for example Metglas® brand magnetic alloy 2605SA1 and/or the like. Moreover, portions of stator assembly 810 and/or rotor 850 may comprise nickel-iron alloys, for example “Carpenter 49” material manufactured by Carpenter Technology Corporation, and/or the like. Additionally, portions of stator assembly 810 and/or rotor 850 may comprise cobalt-iron alloys, for example “Hiperco 50” material manufactured by Carpenter Technology Corporation, and/or the like. Yet further, portions of stator assembly 810 and/or rotor 850 may comprise powdered metal and/or other soft magnetic composite materials. In general, portions of stator assembly 810 and/or rotor 850 may comprise any suitable material or materials having a desired electrical resistivity and/or magnetic permeability.


In an exemplary embodiment, portions of transverse flux machine 800, such as portions of magnets 854, may comprise permanent magnets, for example rare earth magnets. The magnetic material may comprise any suitable material, for example neodymium-iron-boron (NIB) material. In an exemplary embodiment, the rare earth permanent magnets have a suitable magnetic field, for example a field in the range of about 0.5 Tesla to about 2.5 Tesla.


In other exemplary embodiments, magnets 854 may comprise ceramic magnets, for example hard ferrites comprising iron and barium or strontium oxides. In an exemplary embodiment, magnets 854 may comprise FB9N-class material (SrO6Fe2O3) manufactured by TDK Corporation. In an exemplary embodiment, the ceramic magnets have a suitable magnetic field, for example a field in the range of about 0.1 Tesla to about 0.35 Tesla. In other exemplary embodiments, magnets 854 comprise inducted magnets and/or electromagnets. The inducted magnets and/or electromagnets may be made out of iron, iron alloys, metallic alloys, and/or the like, as well as other suitable materials as is known.


In various exemplary embodiments, teeth 816 are configured to reduce flux leakage in transverse flux machine 800. For example, in an exemplary embodiment teeth 816 taper towards one end in order to maintain a desired separation distance between teeth 816 in stator half 810-1 and teeth 816 in stator half 810-2. In this manner, more teeth 816 may be placed in transverse flux machine 800 while maintaining a desired minimum separation distance between teeth 816. In contrast, if teeth 816 were configured as generally non-tapering, rectangular structures, then the outer corners of adjacent teeth 816 would be closer to one another, increasing flux leakage therebetween.


In an exemplary embodiment, tooth 816 spans a distance LT from side S1 of stator assembly 810 to less than side S2 of stator assembly 810. In another exemplary embodiment, tooth 816 spans a distance LT from side S2 of stator assembly 810 to less than side S1 of stator assembly 810. In some exemplary embodiments, at least one tooth 816 spans distance DS from side S1 to side S2 of stator assembly 810.


In various exemplary embodiments, distance LT may be selected based on a number of poles in transverse flux machine 800. Stated generally, distance LT may vary in an inverse relationship with the number of poles in transverse flux machine 800. Moreover, teeth 816 in stator half 810-1 may be configured with a first distance LT, and teeth 816 in stator half 810-2 may be configured with a second distance LT. First distance LT and second distance LT may be the same, or they may differ from one another.


In an exemplary embodiment, tooth 816 spans distance LT, where distance LT is at least 20 mm. In various exemplary embodiments tooth 816 spans distance LT, where distance LT is between about 5 mm and about 50 mm. In other exemplary embodiments, tooth 816 spans distance LT, where distance LT is between about 4 mm and about 10 cm. Moreover, tooth 816 may span any suitable distance LT. In various exemplary embodiments, tooth 816 may extend from one side of stator assembly 810 to about the middle of stator assembly 810. In these embodiments, stator assembly 810 may be understood to be configured with a stator tooth overlap of about 0%. “0% overlap” may also be understood to mean alternating teeth 816 extending from the side of stator assembly 810 to a position other than about the middle of stator assembly 810, provided teeth 816 originating on side S1 of stator assembly 810 extend to about the same location as teeth 816 originating on the opposing side (e.g., side S2) of stator assembly 810. Moreover, stator assembly 810 may be configured with any suitable amount of stator tooth overlap, as desired. Additional details regarding stator tooth overlap are disclosed in U.S. patent application Ser. No. 12/772,958 filed on May 3, 2010, now U.S. Pat. No. 8,053,944 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS CONFIGURED TO PROVIDE REDUCED FLUX LEAKAGE, HYSTERESIS LOSS REDUCTION, AND PHASE MATCHING”, the contents of which are hereby incorporated by reference in their entirety.


In various exemplary embodiments, tooth 816 decreases in thickness (e.g., tapers and/or otherwise varies in one or more dimensions) as tooth 816 extends from one side of stator assembly 810 toward the other side of stator assembly 810. In an exemplary embodiment, tooth 816 is configured with a substantially constant thickness where tooth 816 contacts lamination stack 814, and with a varying thickness (e.g., taper) in the area where tooth 816 extends beyond the edge of lamination stack 814. In other exemplary embodiments, tooth 816 is configured with a constant thickness as tooth 816 extends from one side of stator assembly 810 toward another side of stator assembly 810.


In an exemplary embodiment, the size of the distance of the air gap between stator assembly 810 and rotor 850 is substantially constant across switching surface 816S. In an alternative embodiment, the size of the air gap between stator assembly 810 and rotor 850 may be variable over switching surface 816S.


In various exemplary embodiments, tooth 816 is configured to facilitate flow of flux in one or more directions, including a radial direction, a rotational direction, and/or an axial direction in transverse flux machine 800. In contrast, lamination stacks 814 are configured to facilitate flow of flux generally in a radial direction (and/or to a lesser degree, a rotational direction). Moreover, back return laminations 818 are configured to facilitate flow of flux generally in an axial direction (and/or to a lesser degree, a radial direction).


With additional reference now to FIGS. 8B and 8D, in various exemplary embodiments, in a first position of rotor 850, teeth 816-1 of stator half 810-1 receive flux via their respective switching surfaces 816S-1, and concentrate and distribute the flux across the side laminations of one or more lamination stacks 814. Similarly, teeth 816-2 of stator half 810-2 receive flux from the side laminations of one or more lamination stacks 814, and transfer flux to rotor 850 via their respective switching surfaces 816S-2. With additional reference now to FIG. 8E, in a second position of rotor 850, the direction of flux is generally reversed within transverse flux machine 800. In this manner, flux may be repeatedly switched at least partly around coil 820, for example as rotor 850 alternates between a first position and a second position.


In various exemplary embodiments, tooth 816 may be configured to act as a flux concentrator, increasing the amount of flux switched across switching surface 816S when compared to other materials and/or configurations. For example, in an exemplary embodiment, tooth 816 generally switches more flux across an air gap in a transverse flux machine than an alternative approach wherein portions of lamination stack 814 are extended to form a switch having similar area to switching surface 816S.


In accordance with principles of the present disclosure, components for transverse flux machines and/or commutated flux machines, including components forming a stator half (e.g., stator half, 710-1, 810-1, and/or the like) may be manufactured in a variety of ways. Turning now to FIGS. 9A-9C, in various exemplary embodiments, a ring 901 may be coupled to and/or integrally formed with one or more teeth 916 radiating towards the center of ring 901. In other exemplary embodiments, a ring 901 may be coupled to and/or integrally formed with one or more teeth 916 radiating outwardly therefrom. In an exemplary embodiment, ring 901 and teeth 916 are formed of powdered metal. In another exemplary embodiment, ring 901 comprises a plastic material having trenches configured for receiving one or more teeth 916 therein. Moreover, ring 901 may comprise composite materials, plastics, polymers, metals, and or the like, in order to facilitate positioning and/or retaining one or more teeth 916 and/or constructing a stator half. In certain exemplary embodiments, ring 901 comprises a material having a high dimensional tolerance, for example a tolerance of about +/−0.05 mm. In these exemplary embodiments, ring 901 may be utilized to precisely “time” teeth 916 within a transverse flux machine and/or commutated flux machine, for example in order to implement a sixth phase offset.


In an exemplary embodiment, ring 901 is coupled to 30 teeth 916. In another exemplary embodiment, ring 901 is integrally formed with 30 teeth 916. Moreover, more or fewer teeth 916 may be utilized, for example depending on a desired number of poles in a transverse flux machine and/or commutated flux machine.


In an exemplary embodiment, teeth 916 are distributed evenly around ring 901. In other exemplary embodiments, teeth 916 are distributed unevenly around ring 901, for example in order to implement a sixth phase offset or other desired phase offset.


Once teeth 916 are coupled to ring 901, lamination stacks 914 are placed inside ring 901. Teeth 916 slide into trenches on lamination stacks 914. Lamination stacks 914 may also interlock with one another. Epoxy or other suitable adhesive and/or structural material may be applied, infused, and/or otherwise utilized in order to secure teeth 916 to lamination stacks 914, and to secure lamination stacks 914 with respect to one another. In an exemplary embodiment, lamination stacks 914 and teeth 916 are coupled via a two part epoxy, for example Rhino brand 1310L-6 resin and 3138 hardener. Moreover, any suitable adhesive, structural material, and/or bonding agent may be utilized.


Once teeth 916 and lamination stacks 914 are secured with respect to one another, ring 901 may be removed, for example by cutting, grinding, machining, or other suitable process or method. The process of removing ring 901 may also be utilized to configure, shape, and/or prepare switching surfaces on teeth 916, for example by controlling the height to which teeth 916 extend beyond the edge of trenches in lamination stacks 914.


In other exemplary embodiments, one or more teeth 916 may be secured to a lamination stack 914. Subsequently, multiple lamination stacks 914 having teeth 916 therein may be linked together to form a stator half.


With reference now to FIGS. 9D and 9E, in an exemplary embodiment a method 970 for constructing a stator half comprises forming a ring with teeth thereon (step 971), placing a lamination stack in the ring (step 973), infusing a bonding agent to couple the lamination stack to a tooth (step 975), and removing the ring (step 977).


In another exemplary embodiment, a method 980 for constructing a stator half comprises forming a ring with slots therein (step 981), placing teeth in the slots (step 982), placing a lamination stack in the ring (step 983), infusing a bonding agent to couple the lamination stack to a tooth (step 985), and removing the ring (step 987).


In various exemplary embodiments, with reference now to FIGS. 10A-10C, transverse flux machines and/or commutated flux machines configured in accordance with principles of the present disclosure may be utilized as motors for light electric vehicles, for example as motors for electric bicycles.


In an exemplary embodiment, transverse flux machine 1000 may be generally configured with an outer form factor at least partially defined by rotor body 1056. Transverse flux machine 1000 may be coupled to a wheel, for example a bicycle wheel, via a plurality of spoke holes 1059. Transverse flux machine 1000 may also be coupled to gear cassette 1080 and/or other suitable components in order to allow transverse flux machine 1000 to interface with various driveline and/or control components of a bicycle or other LEV (e.g., brake calipers, foot pedals, chains, belts, and/or the like).


In various exemplary embodiments, transverse flux machine 1000 is configured to be located in the same location as and/or replace the hub of a wheel, such as an e-bike wheel. Stated another way, in certain exemplary embodiments transverse flux machine 1000 may be no wider along the axis of rotation than an available distance in a wheel, for example the distance between gear cassette 1080 and a brake disc of a bicycle. Moreover, in many exemplary embodiments transverse flux machine 100 may be configured to be lightweight, for example having a total mass of less than about 5 kilograms including all structural, mechanical, electrical, and magnetic components. Additionally, transverse flux machine 1000 may be configured to be compact, for example having a volume less than 2,000 cubic centimeters (cc), less than 1000 cc, and/or less than 750 cc. Yet further, transverse flux machine 1000 may be configured to utilize a suitable mass of active electrical and/or magnetic components, for example between about 3.3 kilograms and about 4 kilograms of active electrical and/or magnetic components.


In various exemplary embodiments, transverse flux machine 1000 may provide a continuous, thermally stable output torque of about 5 Newton-meters to about 30 Newton-meters, and a peak output torque of about 10 Newton-meters to about 100 Newton-meters. Yet further, transverse flux machine 1000 may be operative at a high efficiency, for example an efficiency above 90%, over a particular output torque range, for example between an output torque of about 15 Newton-meters to about 45 Newton-meters, and/or over a particular RPM range, for example between about 25 RPM and about 300 RPM. Stated generally, transverse flux machine 1000 may be more compact, torque dense, efficient, and/or powerful than various prior electrical machines, particularly electrical machines of a similar size and/or mass.


In various exemplary embodiments, transverse flux machine 1000 may be configured with various sensors, including torque sensors, strain gauges, Hall effect sensors, temperature sensors, and/or the like, in order to facilitate operation and/or characterization and assessment of transverse flux machine 1000. Additional details regarding utilization of transverse flux machines and/or commutated flux machines in electric bicycles and other light electric vehicles are disclosed in U.S. patent application Ser. No. 12/772,959 filed on May 3, 2010, now U.S. Patent Application Publication No. 2011/0169381 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS FOR ELECTRIC BICYCLES”, the contents of which are hereby incorporated by reference in their entirety.


In accordance with principles of the present disclosure, a transverse flux machine and/or commutated flux machine may desirably be utilized to provide mechanical output to robotic devices, prosthetic limbs, powered exoskeletons, industrial equipment, and/or the like. Moreover, a transverse flux machine and/or commutated flux machine may desirably be utilized to provide mechanical output to relatively lightweight vehicles such as bicycles, scooters, motorcycles, quads, golf carts, or other vehicles. Yet further, a transverse flux machine and/or commutated flux machine may desirably be utilized to power an automobile, a truck, bus, or other passenger vehicle. Additionally, a transverse flux machine and/or commutated flux machine may desirably be utilized in small engine applications, for example portable generators, power tools, and other electrical equipment. A transverse flux machine and/or commutated flux machine may also desirably be utilized to provide mechanical output to propeller-driven devices, for example boats, airplanes, and/or the like. A transverse flux machine and/or commutated flux machine may also desirably be utilized in various machine tools, for example rotating spindles, tables configured to move large masses, and/or the like. Yet further, a transverse flux machine and/or commutated flux machine may also be desirably utilized in large-scale power generation applications, for example in fixed installations providing 10 Kw or more of electrical power. In general, transverse flux machines and/or commutated flux machines may be utilized to provide electrical and/or mechanical input and/or output to and/or from any suitable devices.


Electrical machines configured in accordance with principles of the present disclosure, for example transverse flux machine 700, transverse flux machine 800 and/or transverse flux machine 1000, may be configured to operate at any suitable voltage and/or voltages. For example, in an exemplary embodiment, transverse flux machine 800 is configured to operate at a voltage of about 24 volts in coil 820. In another exemplary embodiment, transverse flux machine 800 is configured to operate at a voltage of about 48 volts in coil 820. In another exemplary embodiment, transverse flux machine 800 is configured to operate at a voltage of about 160 volts in coil 820. In another exemplary embodiment, transverse flux machine 800 is configured to operate at a voltage of about 600 volts in coil 820. Moreover, transverse flux machine 800 may be configured to operate at any suitable voltage and/or voltages, as desired.


Electrical machines configured in accordance with principles of the present disclosure, for example transverse flux machine 700, transverse flux machine 800 and/or transverse flux machine 1000, may be configured to operate in connection with any suitable controller and/or controllers. For example, in an exemplary embodiment, transverse flux machine 800 is configured to operate in connection with a pulse width modulation (PWM) controller. In various exemplary embodiments, transverse flux machine 800 is configured to operate in connection with a sinusoidal drive, a trapezoidal drive, and/or the like. Moreover, transverse flux machine 800 may be configured to operate in connection with field-oriented control, block commutation, and/or the like.


In accordance with various exemplary embodiments, turning now to FIGS. 11A and 11B, a polyphase transverse flux machine configured in accordance with principles of the present disclosure, for example transverse flux machine 1100 configured as a bicycle hub motor, may be configured with improved performance characteristics when compared to existing motors, such as prior art bicycle hub motors.


For example, with reference to FIG. 11A, a transverse flux machine (TFM) configured as a bicycle hub motor and configured in accordance with various principles of the present disclosure, for example transverse flux machine 1100-1 and/or transverse flux machine 1100-2, can achieve higher output torque at a similar level of resistive coil losses compared to a prior art motor. Stated another way, transverse flux machine 1100-1 and/or 1100-2 can achieve a similar level of output torque compared to a prior art motor while incurring lower resistive coil losses.


For example, a prior art bicycle motor achieves an output torque of about 15 Newton-meters while incurring resistive coil losses of about 50 watts. In contrast, TFM 1100-1 achieves an output torque of about 15 Newton-meters while incurring resistive coil losses of only about 12 watts. Moreover, TFM 1100-2 achieves an output torque of about 15 Newton-meters while incurring resistive coil losses of only about 4 watts. Because TFM 1100-1 and TFM 1100-2 incur lower resistive coil losses when operated at a similar level of output torque as a prior art motor, TFM 1100-1 and TFM 1100-2 operate at reduced temperatures.


Moreover, in various exemplary embodiments, TFM 1100-1 and TFM 1100-2 can offer torque output levels that a prior art motor simply cannot achieve. Moreover, TFM 1100-1 and 1100-2 may offer continuous, thermally stable output torque levels that exceed the peak torque achievable by a prior art motor. Continuing to reference FIG. 11A, the prior art motor is unable to generate output torque of beyond about 42 Newton-meters, and operation at this level of output torque results in massive resistive coil losses of more than 450 watts. Such large resistive coil losses will typically quickly result in thermal failure of the motor. In contrast, TFM 1100-1 achieves an output torque of about 42 Newton-meters while incurring resistive coil losses of about 60 watts. Yet further, TFM 1110-2 achieves an output torque of about 42 Newton-meters while incurring resistive coil losses of only about 22 watts.


Moreover, TFM 1100-2 achieves an output torque of about 60 Newton-meters while incurring resistive coil losses of about 50 watts. TFM 1100-2 is thermally stable at this level of resistive coil loss, and thus TFM 1100-2 may be configured with a continuous, thermally stable torque density exceeding the peak torque of a prior art bicycle hub motor.


As can be appreciated, utilizing an electric motor configured in accordance with principles of the present disclosure, for example TFM 1100-1 and/or TFM 1100-2 having the ability to produce higher torque at a given level of resistive coil losses compared to a prior art motor, allows an electric bicycle or LEV to travel further on a comparable battery charge, to climb a wider range of grades and engage headwinds more effectively, and to propel heavier riders and/or other loads.


Turning now to FIG. 11B, in various exemplary embodiments, TFM 1100-1 and TFM 1100-2 achieve higher output torque per amp-turn compared to a prior art motor. For example, when operated at about 100 amp-turns per coil, the prior art motor achieves about 7 Newton-meters of output torque. In contrast, when operated at about 100 amp-turns per coil, TFM 1100-1 achieves about 11 Newton-meters of output torque. Yet further, when operated at about 100 amp-turns per coil, TFM 1100-2 achieves about 14 Newton-meters of output torque.


Moreover, when operated at about 500 amp-turns per coil, the prior art motor achieves about 33 Newton-meters of output torque. In contrast, when operated at about 500 amp-turns per coil, TFM 1100-1 achieves about 43 Newton-meters of output torque. Yet further, when operated at about 500 amp-turns per coil, TFM 1100-2 achieves about 54 Newton-meters of output torque.


Because TFM 1100-1 and/or TFM 1100-2 achieve higher output torque per amp-turn compared to a prior art motor, TFM 1100-1 and/or TFM 1100-2 may operate at a higher continuous, thermally stable torque level as compared to the prior art motor.


Principles of the present disclosure may suitably be combined with various other principles related to transverse flux machines and/or commutated flux machines. For example, principles of the present disclosure may suitably be combined with principles for stators in transverse flux machines and commutated flux machines, for example principles for partial stators and/or gapped stators, as disclosed in U.S. patent application Ser. No. 12/611,728 filed on Nov. 3, 2009, now U.S. Pat. No. 7,851,965 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEM STATOR CONCEPTS”, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles for rotors in transverse flux machines and/or commutated flux machines, for example tape wound rotors and/or multipath rotors, as disclosed in U.S. patent application Ser. No. 12/611,733 filed on Nov. 3, 2009, now U.S. Pat. No. 7,923,886 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEM ROTOR CONCEPTS”, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of polyphase transverse flux machines and/or polyphase commutated flux machines as disclosed in U.S. patent application Ser. No. 12/611,737 filed on Nov. 3, 2009, now U.S. Pat. No. 7,868,508 entitled “POLYPHASE TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS”, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of extended magnets, overhung rotors, and/or stator tooth overlap in transverse flux machines and/or commutated flux machines as disclosed in U.S. patent application Ser. No. 12/772,958 filed on May 3, 2010, now U.S. Pat. No. 8,053,944 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS CONFIGURED TO PROVIDE REDUCED FLUX LEAKAGE, HYSTERESIS LOSS REDUCTION, AND PHASE MATCHING”, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of utilization of transverse flux machines and/or commutated flux machines in electric bicycles as disclosed in U.S. patent application Ser. No. 12/772,959 filed on May 3, 2010, now U.S. Patent Application Publication No. 2011/0169381 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS FOR ELECTRIC BICYCLES”, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of phase offset in transverse flux machines and/or commutated flux machines as disclosed in U.S. patent application Ser. No. 12/772,962 filed on May 3, 2010, now U.S. Patent Application Publication No. 2011/0169366 entitled “TRANSVERSE AND/OR COMMUTATED SYSTEMS HAVING PHASE OFFSET”, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of electrical isolation and/or segmentation in transverse flux machines and/or commutated flux machines as disclosed in U.S. patent application Ser. No. 13/291,373 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEMS HAVING SEGMENTED STATOR LAMINATIONS” having the same filing date as the present application, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of coils, including dual wound coils in transverse flux machines and/or commutated flux machines as disclosed in U.S. patent application Ser. No. 13/291,385 entitled “TRANSVERSE AND/OR COMMUTATED FLUX SYSTEM COIL CONCEPTS” having the same filing date as the present application, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of isolated torque sensing systems as disclosed in U.S. Provisional Patent Application No. 61/453,000 filed Mar. 15, 2011 entitled “ISOLATED TORQUE SENSOR”, the contents of which are hereby incorporated by reference in their entirety.


Principles of the present disclosure may also suitably be combined with principles of adjustable Hall effect sensor systems as disclosed in U.S. Provisional Patent Application No. 61/453,006 filed Mar. 15, 2011 and entitled “ADJUSTABLE HALL EFFECT SENSOR SYSTEM”, the contents of which are hereby incorporated by reference in their entirety.


Moreover, principles of the present disclosure may suitably be combined with any number of principles disclosed in any one of and/or all of the U.S. patents and/or patent applications incorporated by reference herein. Thus, for example, a particular transverse flux machine and/or commutated flux machine may incorporate use of segmented stator laminations, use of rainbow-like back return laminations, use of a dual wound coil, use of a lamination stack with powdered metal teeth, use of a sixth-phase offset, use of extended magnets, use of an overhung rotor, use of stator tooth overlap, use of a tape wound rotor, use of a multipath rotor, use of a partial stator, use of a polyphase design, use of a torque sensor, use of an adjustable Hall effect sensor system, and/or the like. All such combinations, permutations, and/or other interrelationships are considered to be within the scope of the present disclosure.


While the principles of this disclosure have been shown in various embodiments, many modifications of structure, arrangements, proportions, the elements, materials and components, used in practice, which are particularly adapted for a specific environment and operating requirements may be used without departing from the principles and scope of this disclosure. These and other changes or modifications are intended to be included within the scope of the present disclosure and may be expressed in the following claims.


The present disclosure has been described with reference to various embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present disclosure. Likewise, benefits, other advantages, and solutions to problems have been described above with regard to various embodiments. However, benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims.


As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, as used herein, the terms “coupled,” “coupling,” or any other variation thereof, are intended to cover a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection. When language similar to “at least one of A, B, or C” is used in the claims, the phrase is intended to mean any of the following: (1) at least one of A; (2) at least one of B; (3) at least one of C; (4) at least one of A and at least one of B; (5) at least one of B and at least one of C; (6) at least one of A and at least one of C; or (7) at least one of A, at least one of B, and at least one of C.

Claims
  • 1. An electrical machine, comprising: a rotor configured to rotate around an axis of rotation;a coil wound about the axis of rotation; anda stator comprising: a lamination stack coupled to a tooth,a first stator half, comprising a plurality of said lamination stacks with interlocking features forming a generally ring-shaped structure; anda plurality of teeth coupled to the generally ring-shaped structure,wherein, in a first position of the rotor, flux is transferred from the plurality of teeth to the rotor;wherein, in a second position of the rotor, flux is transferred from the rotor to the plurality of teeth;a back return lamination coupling the first stator half to a second stator half;wherein the lamination stack comprises silicon steel,wherein the tooth comprises powdered metal, andwherein the electrical machine is at least one of a transverse flux machine or a commutated flux machine.
  • 2. The electrical machine of claim 1, wherein the tooth is configured with a dovetail shape to mechanically couple to the lamination stack.
  • 3. The electrical machine of claim 1, wherein the lamination stack comprises a trench wherein the tooth is disposed.
  • 4. The electric machine of claim 1, wherein the stator comprises a plurality of teeth on the outside of the generally ring-shaped structure.
  • 5. The electrical machine of claim 1, wherein the rotor is face engaged with the stator.
  • 6. The electrical machine of claim 1, wherein the lamination stack is configured with a groove having an hourglass shape, and wherein the groove is configured to mechanically retain a cured epoxy therein.
  • 7. The electrical machine of claim 1, wherein the coil is configured with a resistance of less than about 0.1 ohm.
  • 8. The electrical machine of claim 1, wherein the dimensions of the tooth are selected to cause at least a portion of the lamination stack to fully saturate with magnetic flux.
  • 9. The electric-al machine of claim 1, wherein the tooth is tapered in order to reduce flux leakage.
  • 10. The electrical machine of claim 1, wherein the stator comprises a plurality of teeth configured according to a sixth-phase offset.
  • 11. The electrical machine of claim 1, wherein the electrical machine is a polyphase machine.
  • 12. The electrical machine of claim 1, wherein the electrical machine is configured with a continuous, thermally stable torque density in excess of 30 Newton-meters per kilogram.
  • 13. The electrical machine of claim 12, wherein the electrical machine is configured with a diameter of less than six inches.
  • 14. The electrical machine of claim 1, wherein the electrical machine is configured to support a magnetic flux switching frequency in the electrical machine in excess of 1000 Hz.
  • 15. An electrical machine, comprising a rotor configured to rotate around an axis of rotation;a coil wound about the axis of rotation; anda stator comprising a pair of lamination stacks, each coupled to an associated tooth, each lamination stack arranged on opposing axial sides of the coil, with a back return extending axially between the pair of lamination stacks;wherein each lamination stack comprises silicon steel,wherein each associated tooth comprises powdered metal, andwherein the electrical machine is at least one of a transverse flux machine or a commutated flux machine.
US Referenced Citations (341)
Number Name Date Kind
1361136 Burke Dec 1920 A
1783527 Sundhaussen Dec 1930 A
1809197 Fendrich, Jr. Jun 1931 A
2078668 Kilgore Apr 1937 A
2122307 Welch Jun 1938 A
3403273 Higuchi Sep 1968 A
3437854 Oiso Apr 1969 A
3558941 Visconti Brebbia et al. Jan 1971 A
3700942 Alth Oct 1972 A
3710158 Bachle et al. Jan 1973 A
3774059 Cox Nov 1973 A
3869625 Sawyer Mar 1975 A
3984711 Kordik Oct 1976 A
3999107 Reuting Dec 1976 A
4021691 Dukshtau et al. May 1977 A
4114057 Esters Sep 1978 A
4127802 Johnson Nov 1978 A
4206374 Goddijn Jun 1980 A
4237396 Blenkinsop et al. Dec 1980 A
4237397 Mohr et al. Dec 1980 A
4255684 Mischler et al. Mar 1981 A
4255696 Field, II Mar 1981 A
4286180 Langley Aug 1981 A
4306164 Itoh et al. Dec 1981 A
4339875 Muller Jul 1982 A
4363988 Kliman Dec 1982 A
4388545 Honsinger et al. Jun 1983 A
4392072 Rosenberry Jul 1983 A
4459501 Fawzy Jul 1984 A
4501980 Welburn Feb 1985 A
4508984 Guedj Apr 1985 A
4605874 Whiteley Aug 1986 A
4611139 Godkin et al. Sep 1986 A
4620752 Fremerey et al. Nov 1986 A
4639626 McGee Jan 1987 A
4647802 Konecny Mar 1987 A
4658166 Oudet Apr 1987 A
4704555 Stokes Nov 1987 A
4794286 Taenzer Dec 1988 A
4797602 West Jan 1989 A
4801834 Stokes Jan 1989 A
4835840 Stokes Jun 1989 A
4850100 Stokes Jul 1989 A
4857786 Nihei et al. Aug 1989 A
4883999 Hendershot Nov 1989 A
4899072 Ohta Feb 1990 A
4900965 Fisher Feb 1990 A
4959577 Radomski Sep 1990 A
4990812 Nam Feb 1991 A
5015903 Hancock May 1991 A
5038066 Pawlak et al. Aug 1991 A
5051641 Weh Sep 1991 A
5062012 Maeda et al. Oct 1991 A
5097167 Kanayama et al. Mar 1992 A
5117142 von Zweygbergk May 1992 A
5130595 Arora Jul 1992 A
5132581 Kusase Jul 1992 A
5177054 Lloyd et al. Jan 1993 A
5195231 Fanning et al. Mar 1993 A
5208503 Hisey May 1993 A
5212419 Fisher et al. May 1993 A
5214333 Kawamura May 1993 A
5250865 Meeks Oct 1993 A
5262746 Masuda Nov 1993 A
5278470 Neag Jan 1994 A
5289072 Lange Feb 1994 A
5306977 Hayashi Apr 1994 A
5338996 Yamamoto Aug 1994 A
5370200 Takata Dec 1994 A
5382859 Huang et al. Jan 1995 A
5386166 Reimer et al. Jan 1995 A
5474148 Takata Dec 1995 A
5477841 Trost et al. Dec 1995 A
5485072 Fehringer Jan 1996 A
5530308 Fanning et al. Jun 1996 A
5543674 Koehler Aug 1996 A
5543677 Fakler Aug 1996 A
5633551 Weh May 1997 A
5650680 Chula Jul 1997 A
5696419 Rakestraw et al. Dec 1997 A
5712521 Detela Jan 1998 A
5717262 Muller et al. Feb 1998 A
5723921 Sugiura Mar 1998 A
5726514 Wurz et al. Mar 1998 A
5729065 Fremery et al. Mar 1998 A
5731649 Caamano Mar 1998 A
5773910 Lange Jun 1998 A
5777418 Lange et al. Jul 1998 A
5780953 Umeda et al. Jul 1998 A
5814907 Bandera Sep 1998 A
5839530 Dietzel Nov 1998 A
5879265 Bek Mar 1999 A
5886449 Mitcham Mar 1999 A
5889348 Muhlberger et al. Mar 1999 A
5894183 Borchert Apr 1999 A
5909339 Hong Jun 1999 A
5925965 Li et al. Jul 1999 A
5942828 Hill Aug 1999 A
5954779 Dietzel Sep 1999 A
5973436 Mitcham Oct 1999 A
5994802 Shichijyo et al. Nov 1999 A
5994814 Kawabata Nov 1999 A
6028377 Sakamoto Feb 2000 A
6043579 Hill Mar 2000 A
6060810 Lee et al. May 2000 A
6066906 Kalsi May 2000 A
6097118 Hull Aug 2000 A
6097126 Takura Aug 2000 A
6118159 Willer Sep 2000 A
6121712 Sakamoto Sep 2000 A
6133655 Suzuki et al. Oct 2000 A
6133664 Torok et al. Oct 2000 A
6133669 Tupper Oct 2000 A
6137202 Holmes et al. Oct 2000 A
6154013 Caamano Nov 2000 A
6163097 Smith et al. Dec 2000 A
6175177 Sabinski et al. Jan 2001 B1
6177748 Katcher et al. Jan 2001 B1
6181035 Acquaviva Jan 2001 B1
6194799 Miekka et al. Feb 2001 B1
6215616 Phan et al. Apr 2001 B1
6229238 Graef May 2001 B1
6232693 Gierer et al. May 2001 B1
6236131 Schafer May 2001 B1
6246561 Flynn Jun 2001 B1
6276479 Suzuki et al. Aug 2001 B1
6278216 Li Aug 2001 B1
6288467 Lange et al. Sep 2001 B1
6300702 Jack et al. Oct 2001 B1
6304010 Sugiura Oct 2001 B1
6333582 Asao Dec 2001 B1
6342746 Flynn Jan 2002 B1
6365999 Muhlberger et al. Apr 2002 B1
6445105 Kliman et al. Sep 2002 B1
6448687 Higashino et al. Sep 2002 B2
6455970 Shafer et al. Sep 2002 B1
6472792 Jack et al. Oct 2002 B1
6492758 Gianni et al. Dec 2002 B1
6508321 Mueller Jan 2003 B1
6545382 Bennett Apr 2003 B1
6603060 Ohashi et al. Aug 2003 B1
6603237 Caamano Aug 2003 B1
6629574 Turner Oct 2003 B2
6657329 Kastinger et al. Dec 2003 B2
6664704 Calley Dec 2003 B2
6700271 Detela Mar 2004 B2
6707208 Durham et al. Mar 2004 B2
6717297 Sadarangani et al. Apr 2004 B2
6750582 Neet Jun 2004 B1
6765321 Sakamoto Jul 2004 B2
6774512 Takagi et al. Aug 2004 B2
6791225 Campbell et al. Sep 2004 B2
6794791 Ben Ahmed et al. Sep 2004 B2
6806602 Hilzinger Oct 2004 B2
6815863 Jack et al. Nov 2004 B1
6835941 Tanaka Dec 2004 B1
6841908 Hasegawa Jan 2005 B2
6847135 Kastinger et al. Jan 2005 B2
6849985 Jack et al. Feb 2005 B2
6853112 Nakamura et al. Feb 2005 B2
6866111 Dube Mar 2005 B2
6867530 Gamm et al. Mar 2005 B2
6879080 Caamano Apr 2005 B2
6882066 Kastinger Apr 2005 B2
6882077 Neet Apr 2005 B2
6885124 Neet Apr 2005 B2
6885129 Oohashi et al. Apr 2005 B1
6888272 Kastinger May 2005 B2
6891299 Coupart et al. May 2005 B2
6924576 Zierer et al. Aug 2005 B2
6924579 Calley Aug 2005 B2
6940197 Fujita et al. Sep 2005 B2
6949855 Dubois et al. Sep 2005 B2
6952068 Gieras Oct 2005 B2
6960860 DeCristofaro Nov 2005 B1
6960862 Hill Nov 2005 B2
6979925 Schwamm Dec 2005 B2
6989622 Chen et al. Jan 2006 B1
7015603 Barrho et al. Mar 2006 B2
7026737 Angerer et al. Apr 2006 B2
7030529 Dommsch et al. Apr 2006 B2
7030534 Caamano Apr 2006 B2
7034425 Detela Apr 2006 B2
7064469 Jack et al. Jun 2006 B2
7067954 Kuribayashi et al. Jun 2006 B2
7071593 Matsushita et al. Jul 2006 B2
7124495 Gieras Oct 2006 B2
7126313 Dooley Oct 2006 B2
7129602 Lange et al. Oct 2006 B2
7135802 Seki et al. Nov 2006 B2
7208856 Imai et al. Apr 2007 B2
7211922 Isoda et al. May 2007 B2
7216732 Angerer May 2007 B2
7230361 Hirzel Jun 2007 B2
7242118 Sakamoto Jul 2007 B2
7245055 Jack Jul 2007 B2
7250704 Sortore et al. Jul 2007 B1
7259483 Komiya et al. Aug 2007 B2
7261186 Deplazes Aug 2007 B2
7265472 Mitcham Sep 2007 B2
7268456 Harada et al. Sep 2007 B2
7275844 Watanabe Oct 2007 B2
7279820 Grundl et al. Oct 2007 B2
7358639 Caamano Apr 2008 B2
7385329 Hill Jun 2008 B2
7385330 Trzynadlowski et al. Jun 2008 B2
7420312 Kitamura et al. Sep 2008 B2
7466057 Imai et al. Dec 2008 B2
7474030 Mitcham Jan 2009 B2
7560840 Lange Jul 2009 B2
7568714 Sasnowski et al. Aug 2009 B2
7579742 Rittenhouse Aug 2009 B1
7585258 Watson et al. Sep 2009 B2
7592735 Hamada Sep 2009 B2
7602095 Kusase et al. Oct 2009 B2
7626308 Kang Dec 2009 B2
7638919 Pulnikov et al. Dec 2009 B2
7679253 Neet Mar 2010 B2
7719156 Muhlberger May 2010 B2
7800275 Calley Sep 2010 B2
7816830 Dickes Oct 2010 B2
7851965 Calley Dec 2010 B2
7859141 Sadarangani Dec 2010 B2
7863797 Calley Jan 2011 B2
7868508 Calley et al. Jan 2011 B2
7868511 Calley Jan 2011 B2
7876019 Calley Jan 2011 B2
7923886 Calley et al. Apr 2011 B2
7952252 Kang May 2011 B2
7973446 Calley et al. Jul 2011 B2
20010001528 Ragaly May 2001 A1
20010030479 Mohler Oct 2001 A1
20010030486 Pijanowski Oct 2001 A1
20010030487 Higashino et Oct 2001 A1
20020070627 Ward et al. Jun 2002 A1
20020113520 Kastinger et al. Aug 2002 A1
20020135242 Kawai Sep 2002 A1
20020171315 Kastinger Nov 2002 A1
20020175586 Hill Nov 2002 A1
20020190585 Sakamoto Dec 2002 A1
20030048018 Sadarangani Mar 2003 A1
20030102751 Bryant Jun 2003 A1
20030122439 Horst Jul 2003 A1
20030122440 Horst Jul 2003 A1
20030122442 Jack et al. Jul 2003 A1
20040027021 Karrelmeyer Feb 2004 A1
20040036370 Hilzinger Feb 2004 A1
20040046478 Zierer et al. Mar 2004 A1
20040061396 Narita et al. Apr 2004 A1
20040135458 Neet Jul 2004 A1
20040140730 Barrho et al. Jul 2004 A1
20040145269 Barrho et al. Jul 2004 A1
20040150288 Calley Aug 2004 A1
20040189138 Jack Sep 2004 A1
20040191519 Kejzelman et al. Sep 2004 A1
20040207281 Detela Oct 2004 A1
20040207283 Oohashi Oct 2004 A1
20040212267 Jack et al. Oct 2004 A1
20040222706 Ickinger Nov 2004 A1
20040232793 Fujita et al. Nov 2004 A1
20040232799 Chen et al. Nov 2004 A1
20040239207 Kloepzig et al. Dec 2004 A1
20040251759 Hirzel Dec 2004 A1
20040251761 Hirzel Dec 2004 A1
20040262105 Li et al. Dec 2004 A1
20050006978 Bradfield Jan 2005 A1
20050012427 Seki et al. Jan 2005 A1
20050029879 Endo Feb 2005 A1
20050062348 Ohnishi et al. Mar 2005 A1
20050062352 Kastinger Mar 2005 A1
20050088056 Kuribayashi Apr 2005 A1
20050116575 Zepp et al. Jun 2005 A1
20050121983 Ehrhart Jun 2005 A1
20050139038 Kjellen et al. Jun 2005 A1
20050156479 Fujita et al. Jul 2005 A1
20050156480 Imai Jul 2005 A1
20050212381 Gilmour et al. Sep 2005 A1
20050242679 Walter et al. Nov 2005 A1
20060012259 Kerlin Jan 2006 A1
20060012263 Smith et al. Jan 2006 A1
20060055280 Isoda Mar 2006 A1
20060082237 Kerlin Apr 2006 A1
20060087180 Woo et al. Apr 2006 A1
20060091755 Carlisle May 2006 A1
20060131974 Sadarangani et al. Jun 2006 A1
20060131986 Hsu et al. Jun 2006 A1
20060186754 Kitamura et al. Aug 2006 A1
20060192453 Gieras et al. Aug 2006 A1
20060220477 Okumoto et al. Oct 2006 A1
20060261688 Akita et al. Nov 2006 A1
20070013253 Dubois et al. Jan 2007 A1
20070046137 Ooiwa Mar 2007 A1
20070046139 Ishizuka Mar 2007 A1
20070075605 Enomoto et al. Apr 2007 A1
20070138900 Imai et al. Jun 2007 A1
20070152528 Kang et al. Jul 2007 A1
20070176505 Trzynadlowski et al. Aug 2007 A1
20070188037 Lau Aug 2007 A1
20070252447 Ionel et al. Nov 2007 A1
20080007126 Popov et al. Jan 2008 A1
20080042507 Edelson Feb 2008 A1
20080169776 Acker Jul 2008 A1
20080179982 Kramer Jul 2008 A1
20080211326 Kang et al. Sep 2008 A1
20080211336 Sadarangani Sep 2008 A1
20080238237 Nishihama et al. Oct 2008 A1
20080246362 Hirzel Oct 2008 A1
20080265707 Bradfield Oct 2008 A1
20080309188 Calley Dec 2008 A1
20080315700 Ishikawa et al. Dec 2008 A1
20090021099 Shkondin Jan 2009 A1
20090026853 Groening Jan 2009 A1
20090026866 Groening et al. Jan 2009 A1
20090042051 Skarman et al. Feb 2009 A1
20090085415 Ionel et al. Apr 2009 A1
20090127942 Rahman et al. May 2009 A1
20090152489 Kjellen et al. Jun 2009 A1
20090206693 Calley et al. Aug 2009 A1
20090208771 Janecek Aug 2009 A1
20090243406 Jack et al. Oct 2009 A1
20090255924 Lovens Oct 2009 A1
20090284253 Finkler et al. Nov 2009 A1
20090295237 Gloor Dec 2009 A1
20090322165 Rittenhouse Dec 2009 A1
20100013341 Vollmer Jan 2010 A1
20100013343 Bi Jan 2010 A1
20100015432 Bergmark et al. Jan 2010 A1
20100019588 Makino et al. Jan 2010 A1
20100026135 Hussey Feb 2010 A1
20100038580 Ye et al. Feb 2010 A1
20100052467 Gieras Mar 2010 A1
20100109462 Calley et al. May 2010 A1
20100123426 Nashiki et al. May 2010 A1
20100253171 El-Refaie et al. Oct 2010 A1
20110025140 Pennander et al. Feb 2011 A1
20110025141 Nord et al. Feb 2011 A1
20110037329 Nord et al. Feb 2011 A1
20110050010 Calley et al. Mar 2011 A1
20110062723 Calley et al. Mar 2011 A1
20110133485 Gieras Jun 2011 A1
20110169357 Gieras Jul 2011 A1
Foreign Referenced Citations (73)
Number Date Country
1513856 Apr 1969 DE
3626149 Aug 1986 DE
3602687 Aug 1987 DE
8711725 Aug 1987 DE
3904516 Jun 1990 DE
3927453 Feb 1991 DE
4132340 Mar 1993 DE
19639670 Apr 1998 DE
19634949 May 1998 DE
19650572 Jun 1998 DE
19753261 Jun 1998 DE
19753320 Jun 1998 DE
199650697 Jun 1998 DE
19704392 Aug 1998 DE
19743906 Apr 1999 DE
19960737 Jul 2001 DE
10047675 Apr 2002 DE
10053265 May 2002 DE
10062073 Jun 2002 DE
10128646 Jan 2003 DE
10130702 Jan 2003 DE
10145820 Apr 2003 DE
102006026719 Jun 2006 DE
102005020952 Nov 2006 DE
102006048561 Apr 2008 DE
102006051234 May 2008 DE
102007018930 Oct 2008 DE
102008054381 Jun 2010 DE
102009060955 Jul 2011 DE
102009060956 Jul 2011 DE
102009060959 Jul 2011 DE
0544200 Nov 1992 EP
0707374 Apr 1996 EP
0718959 Jun 1996 EP
0796758 Sep 1997 EP
0833429 Apr 1998 EP
0998010 Mar 2000 EP
1063754 Dec 2000 EP
1117168 Jul 2001 EP
1227566 Jul 2002 EP
1921730 May 2008 EP
1923683 May 2008 EP
518298 Sep 1938 GB
2052176 Jan 1986 GB
60241758 Nov 1985 JP
61042248 Feb 1986 JP
2001025197 Jan 2001 JP
1007577330000 Sep 2007 KR
10-2008-006141 Sep 2008 KR
WO 9314551 Jul 1993 WO
WO 9934497 Jul 1999 WO
0130643 May 2001 WO
WO 02075895 Sep 2002 WO
03003548 Jan 2003 WO
2004111591 Dec 2004 WO
WO 2005091475 Sep 2005 WO
2006117210 May 2006 WO
2006091089 Aug 2006 WO
WO 2007024184 Mar 2007 WO
2008128659 Oct 2008 WO
2009027938 Mar 2009 WO
WO 2009116935 Sep 2009 WO
WO 2009116936 Sep 2009 WO
WO 2009116937 Sep 2009 WO
2009133295 Nov 2009 WO
2009156297 Dec 2009 WO
2010036221 Apr 2010 WO
2010048928 May 2010 WO
2010076081 Jul 2010 WO
2010094515 Aug 2010 WO
2011080285 Jul 2011 WO
2011080293 Jul 2011 WO
2011080294 Jul 2011 WO
Non-Patent Literature Citations (76)
Entry
Notice of Allowance dated Mar. 29, 2005 for U.S. Appl. No. 10/721,765.
Notice of Allowance dated Feb. 13, 2008 for U.S. Appl. No. 11/679,806.
Notice of Allowance dated May 30, 2003 for U.S. Appl. No. 10/273,238.
Notice of Allowance dated Nov. 3, 2009 for U.S. Appl. No. 12/149,931.
Notice of Allowance dated Dec. 30, 2009 for U.S. Appl. No. 12/149,931.
Office Action dated Sep. 28, 2007 for U.S. Appl. No. 11/679,806.
Office Action dated Nov. 30, 2009 for U.S. Appl. No. 12/149,935.
Office Action dated Sep. 13, 2004 for U.S. Appl. No. 10/721,765.
International Search Report and Written Opinion dated Aug. 15, 2008 for International Patent Application No. PCT/US2008/063301.
IPRP dated Nov. 10, 2009 for International Patent Application No. PCT/US2008/063301.
International Search Report and Written Opinion dated Aug. 20, 2008 for International Patent Application No. PCT/US2008/063236.
International Preliminary Report on Patentability dated Nov. 17, 2009 for International Patent Application No. PCT/US2008/063236.
International Search Report and Written Opinion dated Oct. 24, 2008 for International Patent Application No. PCT/US2008/063336.
International Preliminary Report on Patentability dated Nov. 17, 2009 for International Patent Application No. PCT/US2008/063336.
International Search Report and Written Opinion dated Aug. 15, 2008 for International Patent Application No. PCT/US2008/063287.
International Preliminary Report on Patentability dated Nov. 10, 2009 for International Patent Application No. PCT/US2008/063287.
International Search Report and Written Opinion dated Nov. 10, 2009 for International Patent Application No. PCT/US2008/063268.
International Preliminary Report on Patentability dated Nov. 10, 2009 for International Patent Application No. PCT/US2008/063268.
Technical Project Presentation—Development of a High-Performance Generator for Wind Turbines—by Andrzej M. Trzynadlowski, PhD, University of Nevada, Reno, FIEEE.
Technical Project Presentation—Development of a High-Performance Generator for Wind Turbines—Final Report—University of Nevada, Reno—Feb. 2004.
“Magnetic Field Calculation of Claw Pole Permanent Magnet Machines Using Magnetic Network Method”, by Y.G. Guo et al., Faculty of Engineering, University of Technology, Sydney.
“Applications of Power Electronics in Automotive Power Generation”,—by David J. Perreault et al., Laboratory for Electromagnetic and Electronic Systems, Massachusetts Institute of Technology, Jun. 21-22, 2006—Paris.
“Thermal Modeling of Lundell Alternators”, IEEE Transactions on Energy Conversion, vol. 20, No. 1, Mar. 2005.
“Iron Loss Calculation in a Claw-Pole Structure”, by A. Reinap et al., Lund University.
“Permanent Magnet Assisted Synchronous Reluctance Motor Design and Performance Improvement”,—A Dissertation by Peyman Niazi, Texas A&M University, Dec. 2005.
“New Design of Hybrid-Type Self-Bearing Motor for Small, High-Speed Spindle”,—by Hideki Kanebako et al., IEEE/ASME Transactions on Mechatronics, vol. 8, No. 1, Mar. 2003, retrieved Jan. 8, 2010.
“Evaluation of Rotor Conducting Screens on the Single-Phase Switched Reluctance Machine”,—by M.M. Mahmoud et al., School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, Scotland, United Kingdom, May 3, 2005.
“Analytical Interpretation and Quantification of Rotational Losses in Stator Cores of Induction Motors”,—IEEE Transactions on Magnetics, vol. 43, No. 10, Oct. 2007, retrieved Jan. 8, 2010.
Hasubek, B.E. et al.; “Design Limitations of Reduced Magnet Material Passive Rotor Transverse Flux Motors Investigated Using 3D Finite Element Analysis”; 2000; pp. 365-369, retrieved Oct. 24, 2008.
Dubois, Maxine R. et al.; “Clawpole Transverse-Flux Machine with Hybrid Stator”; pp. 1-6.
Henneberger, G. et al.; “On the Parameters Computation of a Single Sided Transverse Flux Motor”; Workshop on Electrical Machines' Parameters, Technical University of Cluj-Napoca, May 26, 2001; pp. 35-40.
Woolmer, MD, T.J., et al., “Analysis of the Yokeless and Segmented Armature Machine”, Electric Machines & Drives Conference, 2007. IEMDC apos; 07. IEEE International, May 3-5, 2007, pp. 704-708, vol. 1, Oxford University, Engineering Department, Parks Road, Oxford, UK.
Husband, S.M. et al.; “The Rolls-Royce Transverse Flux Motor Development”; Electric Machines and Drives Conference, vol. 3, pp. 1435-1440, IEEE, 2003.
Theory of SR Motor Operation (Power Point Presentation), copyright 2002 by George Holling and Rocky Mountain Technologies Inc.
Development of a PM Transverse Flux Motor With Soft Magnetic Composite Core—IEEE Transactions on Energy Conversion, vol. 21, No. 2., Jun. 2006.
Fundamental Modeling for Optimal Design of Transverse Flux Motors—Genevieve Patterson et al., University of Tokyo.
www.higenmotor.com/eng/aboutus/about06read.asp?id=notice&no=87 dated Jan. 15, 2010.
Lyng Eltorque QT 800—2.0 User Manual, version 1.0—dated Jul. 3, 2007.
Motors: Emerging Concepts by George Holling, Apr. 2007.
www.iem.rwth-aachen.de/index.pl/new materials and machines?makePrintable=1; retrieved Jan. 15, 2010.
Raser Technologies Company Brochure.
Response to Office Action filed Jan. 15, 2010 for Japanese Patent Application No. JPPA-2003-548374.
Office Action dated Mar. 2, 2010 for U.S. Appl. No. 12/149,931.
Restriction Requirement dated Apr. 5, 2010 for U.S. Appl. No. 12/149,934.
Restriction Requirement dated Apr. 22, 2010 for U.S. Appl. No. 12/149,936.
Office Action dated Apr. 28, 2010 for U.S. Appl. No. 12/149,935.
Notice of Allowance dated May 4, 2010 for U.S. Appl. No. 12/149,931.
International Search Report and Written Opinion dated Jun. 10, 2010 for International Application No. PCT/US2009/063145.
International Search Report and Written Opinion dated Jun. 10, 2010 for International Application No. PCT/US2009/063142.
International Search Report and Written Opinion dated Jun. 18, 2010 for International Application No. PCT/US2009/063147.
Office Action dated May 19, 2010 for U.S. Appl. No. 12/149,934.
Office Action dated Jul. 27, 2010 for U.S. Appl. No. 12/149,936.
Office Action dated Aug. 9, 2010 for U.S. Appl. No. 12/611,733.
Notice of Allowance dated Aug. 12, 2010 for U.S. Appl. No. 12/611,728.
Notice of Allowance dated Aug. 19, 2010 for U.S. Appl. No. 12/611,737.
Notice of Allowance dated Sep. 8, 2010 for U.S. Appl. No. 12/149,934.
Notice of Allowance dated Oct. 6, 2010 for U.S. Appl. No. 12/149,935.
Restriction Requirement dated Dec. 20, 2010 for U.S. Appl. No. 12/149,933.
Final Office Action dated Jan. 4, 2011 for U.S. Appl. No. 12/149,936.
Restriction Requirement dated Feb. 24, 2011 for U.S. Appl. No. 12/942,495.
Notice of Allowance dated Feb. 28, 2011 for U.S. Appl. No. 12/149,936.
“Two Dimensional Finite Analysis of Passive Rotor Transverse Flux Motors with Slanted Rotor Design” by B.E. Hasubek, et al., May 1999.
Notice of Allowance dated Nov. 2, 2010 for U.S. Appl. No. 12/847,991.
Notice of Allowance dated Dec. 9, 2010 for U.S. Appl. No. 12/611,733.
International Preliminary Report on Patentability dated May 3, 2011, PCT/US2009/063142.
International Preliminary Report on Patentability dated May 3, 2011, PCT/US2009/063145.
International Preliminary Report on Patentability dated May 3, 2011, PCT/US2009/063147.
Notice of Allowance dated May 23, 2011, U.S. Appl. No. 13/039,837.
Notice of Allowance dated Jul. 8, 2011, U.S. Appl. No. 12/772,958.
Restriction Requirement dated Jul. 7, 2011, U.S. Appl. No. 12/772,959.
Restriction Requirement dated Jul. 7, 2011 for U.S. Appl. No. 12/772,962.
Notice of Allowance dated May 24, 2011 for U.S. Appl. No. 12/149,933.
Office Action dated Sep. 12, 2011 for U.S. Appl. No. 12/772,962.
Office Action dated Sep. 14, 2011 for U.S. Appl. No. 12/772,959.
Office Action dated Sep. 20, 2011 for U.S. Appl. No. 13/112,619.
Non-Final Office Action dated Jun. 28, 2012 of U.S. Appl. No. 13/291,373, filed Nov. 8, 2011 (now US Patent No. 8405275 issued Mar. 26, 2013) (12 pages).
Related Publications (1)
Number Date Country
20120119599 A1 May 2012 US
Provisional Applications (4)
Number Date Country
61414769 Nov 2010 US
61414774 Nov 2010 US
61414781 Nov 2010 US
61453075 Mar 2011 US