Transverse helical cardiac anchor for minimally invasive heart valve repair

Information

  • Patent Grant
  • 11918468
  • Patent Number
    11,918,468
  • Date Filed
    Tuesday, June 21, 2022
    a year ago
  • Date Issued
    Tuesday, March 5, 2024
    a month ago
Abstract
Disclosed herein are various embodiments of cardiac anchors configured to be inserted into a heart wall of a patient to anchor a suture as an artificial chordae under an appropriate tension for proper valve function. Such cardiac anchors are particularly suitable for use in intravascular, transcatheter procedures.
Description
TECHNICAL FIELD

The present invention relates to minimally invasive delivery of a suture into the heart. More particularly, the disclosed embodiments relate to inserting and anchoring one or more sutures as artificial chordae tendineae for a flailing or prolapsing leaflet in a beating heart.


BACKGROUND

The mitral and tricuspid valves inside the human heart include an orifice (annulus), two (for the mitral) or three (for the tricuspid) leaflets and a subvalvular apparatus. The subvalvular apparatus includes multiple chordae tendineae, which connect the mobile valve leaflets to muscular structures (papillary muscles) inside the ventricles. Rupture or elongation of the chordae tendineae results in partial or generalized leaflet prolapse, which causes mitral (or tricuspid) valve regurgitation. A commonly used technique to surgically correct mitral valve regurgitation is the implantation of artificial chordae (usually 4-0 or 5-0 Gore-Tex sutures) between the prolapsing segment of the valve and the papillary muscle.


This technique for implantation of artificial chordae was traditionally done by an open heart operation generally carried out through a median sternotomy and requiring cardiopulmonary bypass with aortic cross-clamp and cardioplegic arrest of the heart. Using such open heart techniques, the large opening provided by a median sternotomy or right thoracotomy enables the surgeon to see the mitral valve directly through the left atriotomy, and to position his or her hands within the thoracic cavity in close proximity to the exterior of the heart for manipulation of surgical instruments, removal of excised tissue, and/or introduction of an artificial chordae through the atriotomy for attachment within the heart. However, these invasive open heart procedures in which the heart is stopped beating produce a high degree of trauma, a significant risk of complications, an extended hospital stay, and a painful recovery period for the patient. Moreover, while heart valve surgery produces beneficial results for many patients, numerous others who might benefit from such surgery are unable or unwilling to undergo the trauma and risks of such open heart techniques.


Techniques for minimally invasive thoracoscopic repair of heart valves while the heart is still beating have also been developed. U.S. Pat. No. 8,465,500 to Speziali, which is incorporated by reference herein, discloses a thoracoscopic heart valve repair method and apparatus. Instead of requiring open heart surgery on a stopped heart, the thoracoscopic heart valve repair methods and apparatus taught by Speziali utilize fiber optic technology in conjunction with transesophageal echocardiography (TEE) as a visualization technique during a minimally invasive surgical procedure that can be utilized on a beating heart. More recent versions of these techniques are disclosed in U.S. Pat. Nos. 8,758,393 and 9,192,374 to Zentgraf, which are also incorporated by reference herein and disclose an integrated device that can enter the heart chamber, navigate to the leaflet, capture the leaflet, confirm proper capture, and deliver a suture as part of a mitral valve regurgitation (MR) repair. In some procedures, these minimally invasive repairs are generally performed through a small, between the ribs access point followed by a puncture into the ventricle through the apex of the heart. Although far less invasive and risky for the patient than an open heart procedure, these procedures still require significant recovery time and pain.


Some systems have therefore been proposed that utilize a catheter routed through the patient's vasculature to enter the heart and attach a suture to a heart valve leaflet as an artificial chordae. While generally less invasive than the approaches discussed above, transcatheter heart valve repair can provide additional challenges. For example, with all artificial chordae replacement procedures, in addition to inserting a suture through a leaflet, the suture must also be anchored at a second location, such as at a papillary muscle in the heart, with a suture length, tension and positioning of the suture that enables the valve to function naturally. If the suture is too short and/or has too much tension, the valve leaflets may not properly close. Conversely, if the suture is too long and/or does not have enough tension, the valve leaflets may still be subject to prolapse. Proper and secure anchoring of the suture away from the leaflet is a critical aspect of any heart valve repair procedure for inserting an artificial chordae.


In the case of transcatheter procedures for heart valve repair procedures, some cardiac anchors that are used are similar to the kind of longitudinal helical or cork screw type anchors used for securing pacing and defibrillation leads as shown, for example, in U.S. Pat. No. 9,877,833. Unfortunately, properly and securely anchoring of the suture for transcatheter heart valve repair procedures is further complicated because it can be difficult for the flexible catheter required for routing through the patient's vasculature to apply sufficient force to stably insert traditional anchors perpendicularly into the heart wall, e.g., the myocardium. This complication can be particularly true in the case of mitral valve repairs that require access to the left ventricle for insertion of the anchor in that following a typical intravascular access to the right atrium, the flexible catheter must additionally be routed across the septum into the left atrium and then down across the valve into the left ventricle.


SUMMARY

Disclosed herein are various embodiments of cardiac anchors configured to be inserted into a heart wall of a patient to anchor a suture as an artificial chordae under an appropriate tension for proper valve function. Such cardiac anchors are particularly suitable for use in intravascular, transcatheter procedures. In particular, the anchors disclosed herein are beneficial in mitral valve repairs to have sufficient force and proper alignment for anchoring in the left ventricle. In some embodiments, the cardiac anchor delivery and implantation tools and techniques provide sufficient force and alignment after transseptal access to the left atrium and crossing of the mitral valve into the left ventricle in order to effectively secure the anchor without damage to the myocardial wall in the left ventricle.


In one embodiment, a cardiac anchor is configured to be implanted transversely into and along a patient's heart wall to anchor a suture extending from a valve leaflet of the heart as an artificial chordae. The anchor can include an anchor body including an actuation head at a proximal end of the anchor body configured to be engaged by an actuation tool to enact rotation of the anchor body. The anchor can further include a coil extending around at least a portion of the anchor body and distally of the anchor body. The coil can have a distal tip configured to be driven into the heart wall. A stabilizing element can extend from the anchor body distally through the coil such that the stabilizing extends distally beyond the coil to align the coil at a predetermined orientation relative to the heart wall. In an embodiment, the stabilizing element can include a flexible shaft and a blunt tip can be positioned at a distal end of the flexible shaft.


In one embodiment, a method of anchoring a suture in a patient's heart as an artificial chordae includes intravascularly accessing a patient's heart and inserting a suture into a heart valve leaflet of the patient's heart. A portion of the suture can be attached to a cardiac anchor that can include an actuation head at a proximal end of an anchor body, a coil extending distally of the anchor body having a distal tip, and a stabilizing element extending from the anchor body distally through the coil. The anchor can be advanced to a heart wall of the heart with an anchor delivery catheter and an actuation mechanism engaged with the actuation head to rotate the anchor. Actuating the anchor can drive the stabilizing element against the heart wall orient the coil in a predetermined orientation relative to the heart wall such that further actuation of the anchor to rotate the coil will cause the distal tip of the coil to enter the heart wall and further rotation of the coil causes the coil to become embedded along the heart wall in a predetermined orientation relative to the heart wall.


In embodiments, the actuation mechanism of the anchor delivery catheter includes an anchor driver having a distal end that mates with corresponding geometry within a proximal portion of the anchor body. In some embodiments, the anchor driver is configured to mate with the proximal portion of the anchor body such that the anchor driver is coaxially aligned with the flexible shaft and the anchor body while rotatably driving the anchor body which in turn causes the anchor coil to be rotated. In some embodiments, the anchor driver is configured to be mated with the anchor body such that the anchor body and the anchor driver maintain coaxial alignment during operation of the anchor driver in order to better facilitate control of the orientation of the flexible shaft relative to the myocardial wall. In some embodiments, the anchor driver rotates only the anchor body and does not rotate the flexible shaft. In some embodiments, a stiffening tube coaxial surrounds both the anchor driver and the flexible shaft to provide better alignment and control of delivery of the anchor coil.


The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

Subject matter hereof may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying figures, in which:



FIG. 1 is a schematic representation of a method for inserting a leaflet capture catheter into a beating heart of a patient according to an embodiment.



FIGS. 2A-2K depict various steps in a method of anchoring a suture in a beating heart of a patient to function as an artificial chordae according to an embodiment.



FIGS. 3A-3C depict an anchor system for an artificial chordae according to an embodiment.



FIGS. 4A-4F schematically depict a procedure for anchoring an artificial chordae according to an embodiment.



FIGS. 5A-5B schematically depict steps in a procedure for anchoring an artificial chordae according to an embodiment.



FIGS. 6A-B schematically depict different insertion methods for an anchor for an artificial chordae.



FIGS. 7A-7F an anchor system for an artificial chordae according to an embodiment.





While various embodiments are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the claimed inventions to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the subject matter as defined by the claims.


DETAILED DESCRIPTION OF THE DRAWINGS

The present disclosure is generally directed to inserting and anchoring one or more sutures as artificial chordae into one or more heart valve leaflets through an intravascular, transcatheter approach. A heart valve leaflet may be captured and a suture inserted through the leaflet in any manner known in the art. Examples of such leaflet capture catheters are disclosed in copending U.S. Patent Publication Nos. 2019/0290260 and 2020/0093478, each of which is hereby incorporated by reference herein. Other transcatheter procedures for inserting an artificial chordae are disclosed in U.S. Patent Publication No. 2016/0143737 and U.S. patent application Ser. No. 16/745,074, each of which is hereby incorporated by reference herein.


Access into the heart to the valve being repaired can be gained through an intravascular, transcatheter approach. If the valve being repaired is the mitral valve, the valve may further be accessed transseptally. FIG. 1 depicts a schematic representation of an embodiment of an access approach for a heart valve repair system accessing the mitral valve 10. FIG. 1 depicts a guide catheter 14 accessing the interior of the heart via the femoral vein. In some embodiments, such a system can further include an outer guide catheter and an inner guide catheter. In such embodiments, the outer guide catheter can be inserted into the femoral vein at the patient's groin and advanced through the femoral vein into the inferior vena cava 19 and then into the right atrium 16. In various embodiments, the outer guide catheter can be steerable in a single plane and can have an outer diameter of about or less than about 30 french, such as, for example 24 french. The septum 18 can then be punctured using an appropriate puncture tool and the outer guide catheter advanced into the septum 18 or through the septum 18 into the left atrium 20. The inner guide catheter can then be axially advanced through the outer guide catheter into the left atrium 20. In some embodiments, the inner guide catheter can have two plans of steerability and can be maneuvered along with and/or beyond the outer guide catheter to establish a stable position superior to the mitral valve 10 and to provide a desired trajectory for operation of a leaflet capture catheter to repair the valve. In other embodiments, anchors as described herein may be implanted through other intravascular approaches as well as non-intravascular approaches.


Referring to FIGS. 2A-2K, a procedure for anchoring a suture inserted as an artificial chordae in a transcatheter procedure on a beating heart of a patient following insertion of the suture into a leaflet is schematically depicted. In this embodiment, a loop of suture has been inserted through the leaflet and the two free ends of the suture then inserted through the loop to form a girth hitch knot around the edge of the leaflet. Further detail regarding attaching a suture to a leaflet in this manner can be found in U.S. Patent Publication No. 2017/0290582, which is hereby incorporated by reference herein.


In embodiments, following insertion of the suture 20 into the leaflet 11, the deployment catheter used to insert the suture is withdrawn through the guide catheter 14 and the two free ends 22 of the suture 20 are also withdrawn external to the body. The suture ends 22 are then attached to a cardiac anchor contained in an anchor driving catheter 30. Alternatively, the anchor could be pre-attached to the suture prior to insertion of the suture into the leaflet. The anchor driving catheter 30 is inserted into the guide catheter 14, routed through the catheter into the body and advanced past the leaflet 11 to the heart wall 13 below the valve at, for example, a papillary muscle as shown in FIGS. 2B-2D. The anchor driving catheter 30 is then used to insert a cardiac anchor 100 into the myocardium as shown in FIGS. 2D-2G and as described in more detail below.


In various embodiments, after insertion of the cardiac anchor 100 into the heart tissue, the anchor driving catheter 30 is withdrawn to a position superior of the valve as shown in FIG. 2H and the length and tension of the suture ends 22 extending from the leaflet 11 are tested and adjusted until it is determined that normal valve function has been achieved. This determination can be made through use of ultrasonic imaging, for example. The tension is adjusted through a tensioning strand 24 of the suture depicted in FIG. 2H. Once the proper length and tension has been determined using, for example, transesophageal echocardiography or other non-invasive methods, the anchor driving catheter 30 is advanced back down along the tensioning strand 24 and to sever the strand at the anchor 100. The entire catheter system, including the anchor driving catheter 30 and the guide catheter 14 is then withdrawn from the patient's body. Referring to FIG. 2K, the suture 20 remains in the body extending between the leaflet 11 and the anchor 100 to function as an artificial chordae tendineae


Disclosed herein are various embodiments of cardiac anchors that can be employed in procedures such those described above to anchor a suture as an artificial chordae. Such anchors maintain positioning and length of the suture (i.e., tension) to ensure proper leaflet functionality during the cardiac cycle.


Referring now to FIGS. 3A-3C, one embodiment of a cardiac anchor 1000 that can be seated transversely along the heart wall to anchor a suture extending from a valve leaflet to function as an artificial chordae according to an embodiment is depicted. Anchor 1000 generally includes an anchor body 1003 having a screw head 1002 and an anchor dock 1004 and an anchor coil 1006. The screw head 1002 can be attached to the anchor dock 1004 and the coil 1006 can connect to and extend around an outer perimeter of the anchor body 1003 to provide a generally threaded configuration on the exterior of the anchor body 1003. Coil 1006 can include a sharp distal tip 1007 configured to be transversely driven into and along the heart tissue. Referring to FIG. 3B, anchor 1000 can also generally include an atraumatic or blunt tip 1010 connected to a flexible shaft 1012 that can extend from or through the anchor dock 1004 and/or screw head 1002. The flexible shaft 1012 can extend through the anchor coil 1006 such that the atraumatic tip 1010 extends distally of the coil 1006. In some embodiments, the flexible shaft 1012 is longitudinally fixed with respect to the screw head 1002, such that there is a set and constant distance between the atraumatic tip 1010 and the distal end of the coil 1006. In other embodiments, the flexible shaft 1012 can be configured to be slidable within the screw head 1002 to enable the distance between the atraumatic tip 1010 and the distal end of the coil 1006 to be adjusted as necessary. In such embodiments, connections through the delivery catheter 30 can be maintained to enable this functionality prior to release of the anchor from the sleeve 32.


Still referring to FIG. 3B, anchor 1000 can be anchored in the heart with an anchor delivery catheter 30. In embodiments, anchor delivery catheter 30 can cooperate with a sleeve 32 specially designed to interface with anchor 1000 and a flexible guide rail 34 for guiding the anchor 1000 through the catheter 30. FIG. 3C depicts further details of sleeve 32. Sleeve 32 can comprise a thin walled tube having internal threading that mates with the threads on both the anchor dock and/or screw head 1002, 1004 as well as threads on a screw driver 36 that interfaces with the screw head 1002. Sleeve 32 functions to maintain the screw driver 36 and anchor body 1003 positioning relative to each other while allowing a smooth and controlled deployment of the anchor coil 1006. The guide rail 34 can be a suture or other suitable guidewire material that functions to enable a suture lock to be passed through the system and to the anchor body 1003, as will be described below. The guide rail 34 can also provide a reactionary force during the locking of the sutures. In other embodiments, the anchor 100 can be delivered without the guide rail 34. The screw driver 36 can be connected to a torqueable cable 38. In one embodiment, cable 38 is a Nitinol wire. The screw driver 36 is rotated by twisting the torqueable cable 38. When the screw driver 36 is rotated while in contact with the screw head 1002, it causes smooth and controlled deployment of the anchor 1000 from the sleeve 32 into the heart tissue.


The anchor coil 1006 is configured to be deployed transversely into and along the tissue of the heart wall by rotation of the screw driver 36 to provide the anchoring point for the suture attached to the leaflet to function as an artificial chordae. As will be described in greater detail herein, the anchor coil 1006 is designed to be deployed at a transverse or generally parallel angle to the heart tissue rather than driving the anchor generally perpendicularly into the heart wall tissue. This configuration provides the advantage of requiring a greater pull out force for the anchor to become dislodged from the tissue and also reduces the risk of the anchor perforating through the ventricular wall. Generally parallel or transverse deployment also embeds more of the anchor into the tougher inner layer of the myocardium known as the endocardium. The atraumatic tip 1010 and flexible shaft 1012 set the trajectory of the anchor coil 1006 to ensure generally parallel or transverse insertion into the tissue.


In embodiments, the atraumatic tip 1010 is configured as a ball or sphere and the flexible shaft 1012 is configured as a flexible coil. As discussed below, upon deployment from the sleeve 32, the tip 1010 and shaft 1012 flex against the ventricle wall to automatically set the trajectory. This limits the need for the surgeon to actively manipulate the system to establish a proper trajectory because the anchor coil 1006 will naturally follow the trajectory set up by the tip 1010 and shaft 1012. In addition, the tip 1010 can be configured to be highly visible when employing non-invasive imaging techniques such as, for example, fluoroscopy or ultrasound, to enable precise positioning of the tip 1010 and corresponding coil 1006 within the heart. The shaft 1012 in combination with the tip 1010 also establishes a set and reliable depth of the penetration of the anchor coil 1006 into the tissue.


In some embodiments, the shaft 1012 may also have a variable flexibility along its length with the shaft being more flexible at distal portions of the shaft and less flexible at proximal portions. Such a configuration would require less force to bend it at the distal end and then gradually provide additional support and directionality as the anchor coil 1006 is driven into the tissue. In addition, in some embodiments the anchor coil 1006 may have a variable diameter along the length of the wire used to construct the coil with the coil having a smaller diameter at its distal end and a larger diameter at its proximal end. Such a configuration would have the effect of being more flexible during the initial insertion of the distal tip of the coil into tissue and then gradually providing additional directionality and rigidity to the anchor as it is inserted.


Referring now to FIGS. 4A-4F, steps for inserting such an anchor 1000 according to an embodiment are schematically depicted. After surgical access to the left side of the heart is gained endovascularly such as, for example, by the methods described above, the anchor delivery catheter 30 is advanced across the mitral valve 10 to the heart wall in the left ventricle 22 as shown in FIG. 4A. The catheter 30 will contain the sleeve 32, anchor 1000, etc. as depicted in FIG. 3C. The tip 1010 is advanced out of the sleeve by rotating the screw driver 36 with cable 38 and the tip 1010 will contact the heart wall to deflect the flexible shaft 1012 to orient the coil transversely across the heart wall. The screw driver 36 is then further torqued to rotate the anchor 1000 to at least partially embed the coil 1006 generally parallel along the heart wall as shown in FIG. 4C. The anchor catheter 30 and sleeve 32 can then be withdrawn and, in some embodiments, one or more sutures 20 attached to a valve leaflet 11. In other embodiments, suture(s) may be attached to leaflets before the anchor is transversely inserted into and along the heart wall. A suture lock delivery catheter 40 can then be employed to deliver a suture lock 42 along the guide rail 34 that locks the suture(s) 20 to the anchor body 1003 of the embedded anchor 1000. This hardware is then withdrawn and the suture(s) 20 remain in the heart extending between the leaflet 11 and the anchor 1000 as artificial chordae tendinae.



FIGS. 5A-5B schematically depict further details regarding the insertion of anchor coil 1006 into the heart wall. FIG. 5A depicts how the atraumatic tip 1010 contacts (but does not embed in) the heart wall, causing the flexible shaft 1012 to orient the anchor coil 1006 transversely along the heart wall. FIG. 5B depicts the anchor 1000 in a generally parallel orientation along the wall with the anchor coil 1006 transversely embedded in the heart wall. As noted above, the flexible shaft 1012 sets the depth of insertion of the anchor coil 1006 as shown in this figure because once the coil 1006 rotated to the position where it is contacting the shaft 1012, it cannot be inserted down any further.



FIGS. 7A-7F depict a cardiac anchor 1100 that can be seated transversely along the heart wall to anchor a suture extending from a valve leaflet to function as an artificial chordae according to another embodiment. Anchor 1100 generally includes an anchor body 1103 having an anchor coil 1106 extending therefrom. Anchor 1100 can also generally include an atraumatic or blunt tip 1110 connected to a flexible shaft 1112 that can extend through the anchor body 1103. The flexible shaft 1112 can extend through the anchor coil 1106 such that the atraumatic tip 1110 extends distally of the coil 1106. Anchor shaft 1112 can be releaseably connected to anchor body 1103 with a threaded portion 1114 that can be rotated with tether 1116 to screw into a corresponding threaded opening within anchor body 1103 as shown in FIG. 7E. An anchor driver 1120 can includes a drive end that mates with corresponding internal geometry in the proximal portion of anchor body 1103 to enable rotation of anchor body 1103 with anchor driver 1120. Anchor driver 120 can further includes a helical hollow strand (HHS) 1122 that extends out of the body and is twisted to provide the torque necessary to drive the anchor coil 1106 into the tissue. As can be seen in FIG. 7E, tether 1116 extends through anchor driver HHS 1122 and anchor driver 1120 to a connection within anchor body 1103 to an aperture in the proximal end of shaft 1102. A stiffening tube 326 can be threaded over tether 310 within anchor body 1103 to stiffen a small portion of the tether 1116 to provide better alignment to components that need to mate within the anchor body 1103.


In some embodiments, anchor 1100 can further include locking spring 1102 that can be delivered to the anchor body 1103 to lock a suture on the anchor body 1103. Once a suture extending from a leaflet has been tensioned, a pusher device can be delivered to the anchor 1100 to push the locking spring 1102 off of a spring carrier and onto the anchor body 1103 to clamp the suture between the locking spring 1102 and a locking shoulder 1105 of the anchor body 1103. Further details regarding suture locking in this manner can be found in U.S. patent application Ser. No. 16/745,074, which is hereby incorporated by reference in its entirety. Referring to FIG. 7D, as with the previous embodiment, the atraumatic tip 1110 contacts (but does not embed in) the heart wall, causing the flexible shaft 1112 to orient the anchor coil 1106 transversely and/or generally parallel along the heart wall. As noted above, the flexible shaft 1112 sets the depth of insertion of the anchor coil 1106 as shown in this figure because once the coil 1106 rotated to the position where it is contacting the shaft 1112, it cannot be inserted down any further.



FIG. 6B schematically depicts advantages of the systems and methods described herein with regard to the conventional perpendicular insertion of the prior art as depicted in FIG. 6A. In FIG. 6A, where the anchor 10 is driven straight into the myocardium 44 in an orientation generally perpendicular to the heart wall, not only is there a risk of the anchor coil 16 penetrating through and perforating the heart wall, but only a small portion of the anchor coil 16 interfaces with the strong inner myocardium 26 layer of the heart wall. In contrast, the generally parallel, transverse insertion of FIG. 6B essentially eliminates any risk of perforating the heart wall. In addition, generally all of the portions of the anchor coil 1006 that are transversely embedded in the heart wall 24 are inserted into and through the myocardium layer 26, creating a stronger set of anchor points that is more resistant to removal.


Various embodiments of systems, devices, and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the claimed inventions. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the claimed inventions.


Persons of ordinary skill in the relevant arts will recognize that the subject matter hereof may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the subject matter hereof may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the various embodiments can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted.


Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended.


Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.


For purposes of interpreting the claims, it is expressly intended that the provisions of 35 U.S.C. § 112(f) are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.

Claims
  • 1. A method of anchoring a suture in a heart of a patient as an artificial chordae, comprising: intravascularly accessing the heart;inserting a suture into a heart valve leaflet of the heart;attaching a portion of the suture to a cardiac anchor, the cardiac anchor including an actuation head at a proximal end of an anchor body, a coil extending distally of the anchor body having a distal tip, a flexible shaft extending from the anchor body distally through the coil, and a blunt tip at a distal end of the flexible shaft;advancing the anchor to a heart wall of the heart with an anchor delivery catheter;engaging an actuation mechanism with the actuation head to rotate the anchor;actuating the anchor to drive the blunt tip against the heart wall to cause the flexible shaft to flex against the heart wall and orient the coil generally parallel with the heart wall;further actuating the anchor to rotate the coil and cause the distal tip of the coil to transversely enter the heart wall such that further rotation of the coil causes the coil to become embedded in and along the heart wall.
  • 2. The method of claim 1, wherein the flexible shaft limits an insertion depth of the coil into the heart wall.
  • 3. The method of claim 1, wherein the flexible shaft defines a maximum insertion depth of the coil into the heart wall.
  • 4. The method of claim 1, wherein the flexible shaft is configured as a coil.
  • 5. The method of claim 1, wherein the blunt tip is configured as a spherical ball.
  • 6. The method of claim 1, wherein the coil defines a threaded exterior on the anchor body.
  • 7. The method of claim 1, wherein the coil defines a series of coil turns configured such that only a portion of each coil turn is embedded in the heart wall.
  • 8. The method of claim 1, wherein the blunt tip is configured to contact the heart wall without penetrating tissue of the heart wall.
  • 9. The method of claim 1, wherein intravascularly accessing the heart includes accessing the left ventricle of the heart.
  • 10. The method of claim 9, wherein accessing the left ventricle of the heart includes transseptal access to the left atrium.
  • 11. A method of anchoring a suture in a heart of a patient as an artificial chordae, comprising: intravascularly accessing the heart;inserting a suture into a heart valve leaflet of the heart;attaching a portion of the suture to a cardiac anchor, the cardiac anchor including an actuation head at a proximal end of an anchor body a coil extending distally of the anchor body having a distal tip;advancing the anchor to a heart wall of the heart with an anchor delivery catheter;engaging an actuation mechanism with the actuation head to rotate the anchor;actuating the anchor to orient the coil generally parallel with the heart wall;further actuating the anchor to rotate the coil and cause the distal tip of the coil to transversely enter the heart wall such that further rotation of the coil causes the coil to become embedded in and along the heart wall.
  • 12. The method of claim 11, wherein the coil defines a threaded exterior on the anchor body.
  • 13. The method of claim 11, wherein the coil defines a series of coil turns configured such that causing the coil to become embedded in and along the heart wall causes only a portion of each coil turn to be embedded in the heart wall.
  • 14. The method of claim 11, wherein intravascularly accessing the heart includes accessing the left ventricle of the heart.
  • 15. The method of claim 14, wherein accessing the left ventricle of the heart includes transseptal access to the left atrium.
  • 16. The method of claim 11, wherein actuating the anchor to orient the coil generally parallel with the heart wall includes driving a blunt tip of a flexible shaft extending from the anchor body distally through the coil against the heart wall to cause the flexible shaft to flex against the heart wall to orient the coil generally parallel with the heart wall.
  • 17. The method of claim 16, wherein the flexible shaft limits an insertion depth of the coil into the heart wall.
  • 18. The method of claim 16, wherein the flexible shaft defines a maximum insertion depth of the coil into the heart wall.
  • 19. The method of claim 16, wherein the blunt tip is configured as a spherical ball.
  • 20. The method of claim 16, wherein the blunt tip is configured to contact the heart wall without penetrating tissue of the heart wall.
RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 16/850,827 filed Apr. 16, 2020, which claims the benefit of U.S. Provisional Application No. 62/834,512 filed Apr. 16, 2019, which is hereby fully incorporated herein by reference.

US Referenced Citations (479)
Number Name Date Kind
2751908 Wallace Jun 1956 A
3664330 Deutsch May 1972 A
3667474 Lapkin Jun 1972 A
3842840 Schweizer Oct 1974 A
4258716 Sutherland Mar 1981 A
4351345 Carney Sep 1982 A
4759348 Cawood Jul 1988 A
4836204 Landymore et al. Jun 1989 A
4935027 Yoon Jun 1990 A
4957498 Caspari et al. Sep 1990 A
4967498 Caspari Sep 1990 A
4960424 Grooters Oct 1990 A
4967798 Hammer Nov 1990 A
4972874 Jackson Nov 1990 A
5053013 Ensminger Oct 1991 A
5059201 Asnis Oct 1991 A
5211650 Noda May 1993 A
5297536 Wilk Mar 1994 A
5304185 Taylor Apr 1994 A
5312423 Rosenbluth et al. May 1994 A
5336229 Noda Aug 1994 A
5350397 Palermo Sep 1994 A
5383877 Clarke Jan 1995 A
5431666 Sauer et al. Jul 1995 A
5452733 Sterman Sep 1995 A
5474519 Bloomer Dec 1995 A
5547455 McKenna et al. Aug 1996 A
5556411 Taoda et al. Sep 1996 A
5571215 Sterman Nov 1996 A
5601578 Murphy Feb 1997 A
5626607 Malecki May 1997 A
5653716 Malo et al. Aug 1997 A
5665100 Yoon Sep 1997 A
5667472 Finn et al. Sep 1997 A
5667473 Finn et al. Sep 1997 A
5667478 McFarlin et al. Sep 1997 A
5693091 Larson, Jr. et al. Dec 1997 A
5728113 Sherts Mar 1998 A
5762458 Wang et al. Jun 1998 A
5762613 Sutton et al. Jun 1998 A
5766163 Mueller et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5772597 Goldberger et al. Jun 1998 A
5772672 Toy et al. Jun 1998 A
5785658 Benaron et al. Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5830231 Geiges, Jr. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5857961 Vanden Hoek et al. Jan 1999 A
5897564 Schulze et al. Apr 1999 A
5908428 Scirica et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5919128 Fitch Jul 1999 A
5961440 Schweich, Jr Oct 1999 A
5972004 Williamson et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5984939 Yoon Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
6022360 Reimels et al. Feb 2000 A
6045497 Schweich, Jr Apr 2000 A
6050936 Schweich, Jr Apr 2000 A
6053933 Balazs et al. Apr 2000 A
6059715 Schweich, Jr May 2000 A
6077214 Mortier et al. Jun 2000 A
6093199 Brown Jul 2000 A
6117144 Nobles et al. Sep 2000 A
6129683 Sutton et al. Oct 2000 A
6149660 Laufer et al. Nov 2000 A
6152934 Harper et al. Nov 2000 A
6162168 Schweich, Jr Dec 2000 A
6162233 Williamson Dec 2000 A
6162234 Freedland Dec 2000 A
6165119 Schweich, Jr Dec 2000 A
6165120 Schweich, Jr Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6178346 Amundson et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6190357 Ferrari et al. Feb 2001 B1
6234079 Chertkow May 2001 B1
6234995 Peacock, III May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6270508 KlIeman et al. Aug 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6332863 Schweich, Jr. et al. Dec 2001 B1
6332864 Schweich, Jr. et al. Dec 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355050 Andreas et al. Mar 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6419626 Yoon Jul 2002 B1
6436107 Wang et al. Aug 2002 B1
6443922 Roberts et al. Sep 2002 B1
6451054 Stevens Sep 2002 B1
6461366 Seguin Oct 2002 B1
6508777 Macoviak et al. Jan 2003 B1
6514194 Schweich, Jr. et al. Feb 2003 B2
6533796 Sauer et al. Mar 2003 B1
6537198 Vidlund et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6551331 Nobles et al. Apr 2003 B2
6558416 Cosgrove et al. May 2003 B2
6562052 Nobles et al. May 2003 B2
6564805 Garrison et al. May 2003 B2
6582388 Coleman et al. Jun 2003 B1
6585727 Cashman et al. Jul 2003 B1
6589160 Schweich, Jr. et al. Jul 2003 B2
6602288 Cosgrove et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6622730 Ekvall et al. Sep 2003 B2
6626917 Craig Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6629534 Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6629984 Chan Oct 2003 B1
6645205 Ginn Nov 2003 B2
6679268 Stevens et al. Jan 2004 B2
6692605 Kerr et al. Feb 2004 B2
6695866 Kuehn et al. Feb 2004 B1
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6733509 Nobles et al. May 2004 B2
6740107 Loeb et al. May 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6746471 Mortier et al. Jun 2004 B2
6752713 Johnson, Jr. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6755777 Schweich, Jr. et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6770084 Bain et al. Aug 2004 B1
6793618 Schweich, Jr. et al. Sep 2004 B2
6802860 Cosgrove et al. Oct 2004 B2
6808488 Mortier et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6840246 Downing Jan 2005 B2
6858003 Evans et al. Feb 2005 B2
6875224 Grimes Apr 2005 B2
6893448 O'Quinn et al. May 2005 B2
6896686 Weber May 2005 B2
6908424 Mortier et al. Jun 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6929715 Fladda et al. Aug 2005 B2
6936054 Chu Aug 2005 B2
6955175 Stevens et al. Oct 2005 B2
6962605 Cosgrove et al. Nov 2005 B2
6978176 Lattouf Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991635 Takamoto et al. Jan 2006 B2
6997950 Chawla Feb 2006 B2
7004176 Lau Feb 2006 B2
7004952 Nobles et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7048754 Martin et al. May 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7083628 Bachman Aug 2006 B2
7083638 Foerster Aug 2006 B2
7090686 Nobles et al. Aug 2006 B2
7094244 Schreck Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7112207 Allen et al. Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115110 Frazier et al. Oct 2006 B2
7118583 O'Quinn et al. Oct 2006 B2
7122040 Hill et al. Oct 2006 B2
7179291 Rourke et al. Feb 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7217240 Snow May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7250028 Julian et al. Jul 2007 B2
7288097 Seguin Oct 2007 B2
7294148 McCarthy Nov 2007 B2
7381210 Zarbatany et al. Jun 2008 B2
7464712 Oz et al. Dec 2008 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7635386 Gammie Dec 2009 B1
7666204 Thornton et al. Feb 2010 B2
7815654 Chu Oct 2010 B2
7879048 Bain et al. Feb 2011 B2
7887552 Bachman Feb 2011 B2
7959679 Lambrecht Jun 2011 B2
8012151 Laufer Sep 2011 B1
8303622 Alkhatib Nov 2012 B2
8465500 Speziali Jun 2013 B2
8512362 Ewers et al. Aug 2013 B2
8545551 Loulmet Oct 2013 B2
8728097 Sugimoto May 2014 B1
8758393 Zentgraf Jun 2014 B2
8771296 Nobles et al. Jul 2014 B2
8938283 Zentgraf et al. Jan 2015 B2
8968338 Speziali Mar 2015 B2
9044221 Zentgraf et al. Jun 2015 B2
9192374 Zentgraf Nov 2015 B2
9364213 Speziali Jun 2016 B2
9393080 Zentgraf et al. Jul 2016 B2
9517337 Ollivier Dec 2016 B2
9668860 Kudlik et al. Jun 2017 B2
9700300 Speziali Jul 2017 B2
9877833 Bishop Jan 2018 B1
10022114 Gilmore Jul 2018 B2
10058321 Sampson Aug 2018 B2
10058323 Maisano Aug 2018 B2
10065032 Ollivier Sep 2018 B2
10080659 Zentgraf et al. Sep 2018 B1
10112045 Anderson Oct 2018 B2
10130474 Zentgraf et al. Nov 2018 B2
10213306 Colli Feb 2019 B2
10314586 Greenberg et al. Jun 2019 B2
10327743 St. Goar et al. Jun 2019 B2
10328272 Delanely, Jr Jun 2019 B2
10391306 Ma Aug 2019 B2
10420645 Del Nido Sep 2019 B2
10478302 Seguin Nov 2019 B2
10499941 Suri Dec 2019 B2
10507018 Zentgraf Dec 2019 B2
10548733 Purcell Feb 2020 B2
10582924 Speziali Mar 2020 B2
10588620 Caffes et al. Mar 2020 B2
10653524 Khairkhahan May 2020 B2
10695178 Zengraf et al. Jun 2020 B2
10709433 Flanagan Jul 2020 B2
10765715 Kang et al. Sep 2020 B2
10856987 Cabiri Dec 2020 B2
10925731 Bishop Feb 2021 B2
11160655 Keane Nov 2021 B2
11413146 Rabito Aug 2022 B2
20010005787 Oz Jun 2001 A1
20010016675 Mortier et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20020013571 Goldfarb et al. Jan 2002 A1
20020020732 Adams et al. Feb 2002 A1
20020029080 Mortier et al. Mar 2002 A1
20020049402 Peacock, III Apr 2002 A1
20020077524 Schweich, Jr Jun 2002 A1
20020091382 Hooven Jul 2002 A1
20020169359 McCarthy Nov 2002 A1
20020173694 Mortier et al. Nov 2002 A1
20020183766 Seguin Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20030004562 DiCarlo Jan 2003 A1
20030032979 Mortier et al. Feb 2003 A1
20030050529 Vidlund et al. Mar 2003 A1
20030050693 Quijano Mar 2003 A1
20030078599 O'Quinn et al. Apr 2003 A1
20030078600 O'Quinn et al. Apr 2003 A1
20030105519 Fasol Jun 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030163029 Sonnenschein et al. Aug 2003 A1
20030166992 Schweich, Jr Sep 2003 A1
20030167071 Martin et al. Sep 2003 A1
20030171641 Schweich, Jr Sep 2003 A1
20030181928 Vidlund et al. Sep 2003 A1
20030187457 Weber Oct 2003 A1
20030195529 Takamoto et al. Oct 2003 A1
20030199975 Gabbay Oct 2003 A1
20040003819 St. Goar Jan 2004 A1
20040030382 St. Goar Feb 2004 A1
20040039442 St. Goar Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040049207 Goldfarb et al. Mar 2004 A1
20040049552 Motoyama Mar 2004 A1
20040087975 Lucatero et al. May 2004 A1
20040087978 Velez et al. May 2004 A1
20040092962 Thornton et al. May 2004 A1
20040093023 Allen et al. May 2004 A1
20040097805 Verard et al. May 2004 A1
20040116767 Lebovic Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040167374 Schweich et al. Aug 2004 A1
20040167539 Kuehn et al. Aug 2004 A1
20040220593 Grennhalgh Nov 2004 A1
20040225300 Goldfarb et al. Nov 2004 A1
20040225304 Vidlund et al. Nov 2004 A1
20040236353 Bain et al. Nov 2004 A1
20040236354 Seguin Nov 2004 A1
20040236373 Anspach, III Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040249367 Saadat Dec 2004 A1
20040267083 McCarthy Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050021055 Toubia et al. Jan 2005 A1
20050021056 St. Goar Jan 2005 A1
20050021057 St. Goar Jan 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050044365 Bachman Feb 2005 A1
20050065396 Mortier et al. Mar 2005 A1
20050075723 Schroeder et al. Apr 2005 A1
20050075727 Wheatley Apr 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050125011 Spence et al. Jun 2005 A1
20050131277 Schweich Jun 2005 A1
20050131533 Alfieri et al. Jun 2005 A1
20050143620 Mortier et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050154402 Sauer et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050171601 Cosgrove Aug 2005 A1
20050216039 Lederman Sep 2005 A1
20050240202 Shennib et al. Oct 2005 A1
20050245932 Fanton Nov 2005 A1
20050250987 Ewers Nov 2005 A1
20050251187 Beane et al. Nov 2005 A1
20050251201 Roue Nov 2005 A1
20060020275 Goldfarb et al. Jan 2006 A1
20060036317 Vidlund et al. Feb 2006 A1
20060041306 Vidlund et al. Feb 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060089671 Goldfarb et al. Apr 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060106405 Fann May 2006 A1
20060127509 Eckman Jun 2006 A1
20060135993 Seguin Jun 2006 A1
20060149123 Vidlund et al. Jul 2006 A1
20060161040 McCarthy Jul 2006 A1
20060161193 Beane et al. Jul 2006 A1
20060184203 Martin et al. Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060212071 Ginn Sep 2006 A1
20060241340 Vidlund Oct 2006 A1
20060287657 Bachman Dec 2006 A1
20070002627 Youn Jan 2007 A1
20070027451 Desinger et al. Feb 2007 A1
20070038293 St.Goar et al. Feb 2007 A1
20070049952 Weiss Mar 2007 A1
20070050022 Vidlund et al. Mar 2007 A1
20070055303 Vidlund et al. Mar 2007 A1
20070088375 Beane et al. Apr 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070112244 McCarthy May 2007 A1
20070112425 Schaller May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118155 Goldfarb et al. May 2007 A1
20070118213 Loulmet May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070179511 Paolitto Aug 2007 A1
20070197858 Goldfarb et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070239272 Navia et al. Oct 2007 A1
20070265643 Beane et al. Nov 2007 A1
20070299468 Viola Dec 2007 A1
20080004485 Moreschi Jan 2008 A1
20080027468 Fenton et al. Jan 2008 A1
20080051703 Thornton et al. Feb 2008 A1
20080051807 St. Goar Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080065156 Hauser et al. Mar 2008 A1
20080065205 Nguyen et al. Mar 2008 A1
20080091059 Machold Apr 2008 A1
20080091264 Machold Apr 2008 A1
20080097482 Bain et al. Apr 2008 A1
20080097489 Goldfarb et al. Apr 2008 A1
20080109069 Coleman et al. May 2008 A1
20080125860 Webler May 2008 A1
20080125861 Webler et al. May 2008 A1
20080167714 St. Goar Jul 2008 A1
20080183194 Goldfarb et al. Jul 2008 A1
20080188873 Speziali Aug 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080208006 Farr Aug 2008 A1
20080228223 Alkhatib Sep 2008 A1
20080243245 Thamber et al. Oct 2008 A1
20090062819 Burkhart et al. Mar 2009 A1
20090093670 Annest Apr 2009 A1
20090105729 Zentgraf Apr 2009 A1
20090105751 Zentgraf Apr 2009 A1
20090125038 Ewers et al. May 2009 A1
20090131880 Speziali et al. May 2009 A1
20090156995 Martin et al. Jun 2009 A1
20090163934 Raschdorf, Jr Jun 2009 A1
20090192598 Lattouf et al. Jul 2009 A1
20090259304 O'Beirne et al. Oct 2009 A1
20090326578 Ewers Dec 2009 A1
20100030061 Canfield et al. Feb 2010 A1
20100030242 Nobles et al. Feb 2010 A1
20100042147 Janovsky et al. Feb 2010 A1
20100121349 Meier et al. May 2010 A1
20100160726 Windheuser Jun 2010 A1
20100174297 Speziali Jul 2010 A1
20100185172 Fabro Jul 2010 A1
20100217283 St. Goar Aug 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20110011917 Loulmet Jan 2011 A1
20110202127 Mauch Aug 2011 A1
20120071922 Shanley Mar 2012 A1
20120184971 Zentgraf et al. Jul 2012 A1
20130018393 Bengtson Jan 2013 A1
20130035757 Zentgraf et al. Feb 2013 A1
20130119108 Altman May 2013 A1
20130150710 Zentgraf et al. Jun 2013 A1
20130158600 Conklin et al. Jun 2013 A1
20140031926 Kudlik Jan 2014 A1
20140039324 Speziali Feb 2014 A1
20140114404 Gammie Apr 2014 A1
20140214152 Bielefeld Jul 2014 A1
20140275757 Goodwin Sep 2014 A1
20140276764 Shuman Sep 2014 A1
20140276979 Sauer Sep 2014 A1
20140364875 Zentgraf Dec 2014 A1
20150066138 Alexander Mar 2015 A1
20150148821 Speziali May 2015 A1
20150165189 Ollivier Jun 2015 A1
20150190207 Zentgraf et al. Jul 2015 A1
20150216662 Medema Aug 2015 A1
20150313620 Suri Nov 2015 A1
20150313713 Zentgraf et al. Nov 2015 A1
20150351741 Hawkins Dec 2015 A1
20150351910 Gilmore et al. Dec 2015 A1
20150366556 Khairkhahan et al. Dec 2015 A1
20160106420 Foerster et al. Apr 2016 A1
20160143737 Zentgraf et al. May 2016 A1
20160151183 Nishigishi Jun 2016 A1
20170157391 Ollivier Jun 2017 A1
20170245994 Khairkhahan et al. Aug 2017 A1
20170290582 Speziali Oct 2017 A1
20180125657 Dahlgren May 2018 A1
20180161035 Greenberg et al. Jun 2018 A1
20180243087 Kapadia Aug 2018 A1
20180280138 Colli Oct 2018 A1
20180289483 Kang et al. Oct 2018 A1
20180318083 Bolling Nov 2018 A1
20190053902 Zentgraf et al. Feb 2019 A1
20190133766 Zentgraf et al. May 2019 A1
20190224012 Colli Jul 2019 A1
20190290260 Caffes et al. Sep 2019 A1
20190290434 Stearns Sep 2019 A1
20190343626 Smirnov et al. Nov 2019 A1
20190343633 Garvin et al. Nov 2019 A1
20190343634 Garvin et al. Nov 2019 A1
20190381325 Regnier Dec 2019 A1
20190388218 Vidlund Dec 2019 A1
20200093478 Caffes et al. Mar 2020 A1
20200093644 Kraitzer Mar 2020 A1
20200107933 Oba Apr 2020 A1
20200121314 Speziali Apr 2020 A1
20200138430 Zentgraf May 2020 A1
20200188108 Grimm Jun 2020 A1
20200222186 Edmiston et al. Jul 2020 A1
20200281582 Caffes et al. Sep 2020 A1
20200297489 Bishop Sep 2020 A1
20200330228 Anderson Oct 2020 A1
20200383784 Albes Dec 2020 A1
20210220130 Rajagopal Jul 2021 A1
20210220138 Edmiston Jul 2021 A1
20220039833 Thai Feb 2022 A1
20220226117 Colli Jul 2022 A1
20220338990 Hamill Oct 2022 A1
20230101706 Morrison Mar 2023 A1
Foreign Referenced Citations (45)
Number Date Country
1039851 Jul 2005 EP
1637091 Mar 2006 EP
1845861 Oct 2007 EP
1408850 Sep 2009 EP
3441045 Feb 2019 EP
H 04307052 Oct 1992 JP
06142114 May 1994 JP
2004-531337 Oct 2004 JP
2007-535342 Dec 2007 JP
WO 199900059 Jan 1999 WO
WO 199930647 Jun 1999 WO
WO 200006026 Feb 2000 WO
WO 200006027 Feb 2000 WO
WO 200006028 Feb 2000 WO
WO 200016700 Mar 2000 WO
WO 200166018 Sep 2001 WO
WO 200195809 Dec 2001 WO
WO 2003001893 Jan 2003 WO
WO 2003059209 Jul 2003 WO
WO 2003079937 Oct 2003 WO
WO 2003082157 Oct 2003 WO
WO 2003082158 Oct 2003 WO
WO 2004021893 Mar 2004 WO
WO 2004043265 May 2004 WO
WO 2005039428 May 2005 WO
WO 2005087140 Sep 2005 WO
WO 2005094525 Oct 2005 WO
WO 2006012750 Feb 2006 WO
WO 2006032051 Mar 2006 WO
WO 2006065966 Jun 2006 WO
WO 2006078694 Jul 2006 WO
WO 2006116310 Nov 2006 WO
WO 2006127509 Nov 2006 WO
WO 2007002627 Jan 2007 WO
WO 2007027451 Mar 2007 WO
WO 2007062128 May 2007 WO
WO 2007081418 Jul 2007 WO
WO 2007117612 Oct 2007 WO
WO 2008010738 Jan 2008 WO
WO 2009052528 Apr 2009 WO
WO 2011070477 Jun 2011 WO
WO 2011137336 Nov 2011 WO
WO 2012167120 Dec 2012 WO
WO 2018236766 Dec 2018 WO
WO 2019217638 Jan 2020 WO
Non-Patent Literature Citations (25)
Entry
Interactive Cardio Vascular and Thoracic Surgery; Abstracts; Suppl 3 to vol. 7 (Sep. 2008) 52 pages.
Machine translation of JP 06142114.
Port Access System for Mitral Valve Repair Proves Its Value in Study; MedGadget Jul. 9, 2009 (2 pages).
PCT/US2020/028532, Search Report and Written Opinion, dated Jul. 1, 2020, 7 pages.
Application and File History for U.S. Appl. No. 11/813,695, filed Jul. 11, 2007, now U.S. Pat. No. 8,465,500. Inventor: Speziali.
Application and File History for U.S. Appl. No. 12/709,220, filed Feb. 19, 2010, now U.S. Pat. No. 8,968,338. Inventor: Speziali.
Application and File History for U.S. Appl. No. 13/898,709, filed May 21, 2013, now U.S. Pat. No. 9,364,213. Inventors: Speziali.
Application and File History for U.S. Appl. No. 13/339,865, filed Dec. 29, 2011, now U.S. Pat. No. 9,044,221. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 13/340,185, filed Dec. 29, 2011. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 14/707,945, filed May 8, 2015. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 12/254,808, filed Oct. 20, 2008, now U.S. Pat. No. 9,192,374. Inventor: Zentgraf.
Application and File History for U.S. Appl. No. 12/254,807, filed Oct. 20, 2008, now U.S. Pat. No. 8,758,393. Inventor: Zentgraf.
Application and File History for U.S. Appl. No. 14/310,069, filed Jun. 20, 2014. Inventor: Zentgraf.
Application and File History for U.S. Appl. No. 16/137,734, filed Sep. 21, 2018. Inventor: Zentgraf et al.
Application and File History for U.S. Appl. No. 16/191,565, filed Nov. 15, 2018. Inventor: Zentgraf et al.
Application and File History for U.S. Appl. No. 13/486,632, filed Jun. 1, 2012. Inventor Zentgraf et al.
Application and File History for U.S. Appl. No. 13/692,027, filed Dec. 3, 2012. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 14/947,399, filed Nov. 20, 2015. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 16/905,645, filed Jun. 18, 2020. Inventors: Zentgraf et al.
Application and File History for U.S. Appl. No. 14/614,570, filed Feb. 5, 2015. Inventors: Speziali.
Application and File History for U.S. Appl. No. 16/406,736, filed May 8, 2019. Inventors: Smirnov et al.
Application and File History for U.S. Appl. No. 16/406,764, filed May 8, 2019. Inventors: Garvin et al.
Application and File History for U.S. Appl. No. 16/406,799, filed May 8, 2019. Inventors: Garvin et al.
Application and File History for U.S. Appl. No. 16/818,639, filed Mar. 13, 2020. Inventors: Caffes et al.
Application and File History for U.S. Appl. No. 16/363,701, filed Mar. 25, 2019. Inventors: Caffes et al.
Related Publications (1)
Number Date Country
20220313437 A1 Oct 2022 US
Provisional Applications (1)
Number Date Country
62834512 Apr 2019 US
Continuations (1)
Number Date Country
Parent 16850827 Apr 2020 US
Child 17845490 US