1. Field of the Invention
Example embodiments relate in general to a method and apparatus for the monitoring of power readings and the calibration of neutron flux monitors in a nuclear reactor core, using Transverse In-Core Probes (TIP).
2. Related Art
A typical nuclear power plant includes neutron flux monitors, such as local power range monitors (LPRMs), which monitor neutron flux at many discrete points throughout the reactor. This information may be processed by core monitor software that determines the 3-Dimensional (3D) nodal powers used in monitoring, controlling and modeling reactor power levels. While LPRMs may accurately measure neutron flux, over time these instruments lose sensitivity at different rates, such that the gain electronics of these instruments must be individually recalibrated. A transverse in-core probe (TIP) system may be used in this recalibration process.
Conventionally, a TIP system includes a TIP detector attached to a TIP cable that is mechanically moved in and out of a nuclear reactor core, through dry tubes or other types of instrument tubes. Conventionally, instrument tubes house the LPRMs, and the instrument tubes allow the TIP cable to be drawn through the tube such that the TIP detector may be positioned directly next to the LPRM which is being calibrated. TIPs may take gamma flux readings, and these readings may be recorded at about every axial inch of cable movement, as the cable moves through the instrument tube. Conventionally, TIP detector gamma flux readings are taken at axial elevations throughout the core, and these readings are used to calibrate the LPRMs located at known axial and radial locations throughout the reactor core. This calibration of LPRMs may need to be repeated on a continual basis, every 60 days, or as otherwise determined by a plant maintenance schedule.
However, a concern that the exact location of a TIP detector is not known exists, because as TIP cables become compressed or worn overtime and as the cable is expelled through tortuous and long pathways throughout the reactor core, the exact length of the cable and the subsequent exact location of the TIP detector located on the TIP cable becomes uncertain. A recalibration of the LPRMs based on TIP detector readings that may be out-of-place can create inaccuracies in LPRM readings, which may affect the accurate control and monitoring of power levels in the core.
Example embodiments are directed to a transverse in-core probe (TIP) monitoring and calibration device, and a method of calibrating a monitoring device in a nuclear reactor core. The monitoring device may be an LPRM monitor, or another monitor that is capable of reading neutron flux. The TIP device includes a cable with a neutron absorber located a fixed distance apart from a TIP detector. The TIP detector is an instrument capable of reading flux, such as gamma or neutron flux. The neutron absorber may be affixed to the cable by an extension that is able to fit onto an existing or conventional TIP cable. The neutron absorber may be made of Boron-10, Cadmium, Hafnium, or any other material that absorbs neutrons and causes an appreciable decrease in the measurement of a neutron flux monitoring device when placed within close proximity of the device.
Methods of calibrating the device include passing the cable through a nuclear reactor core near the monitoring device while continuously recording the TIP detector readings, the monitoring device readings, and the length of cable expelled into the core. The recorded readings are used to determine the TIP detector measurement and monitoring device measurement to be used for calibration purposes. This is accomplished by using a peak dip in the monitoring device measurement as a reference point to determine the location of the neutron absorber (and thereby, the location of the TIP detector a fixed distance from the neutron absorber) relative to the monitoring device. Once the TIP detector measurements and monitoring device measurements have been determined, they may be compared to each other in order to calibrate the monitoring device by well-known methods.
The above and other features and advantages of example embodiments will become more apparent by describing in detail example embodiments with reference to the attached drawings. The accompanying drawings are intended to depict example embodiments and should not be interpreted to limit the intended scope of the claims. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted.
Detailed example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. Example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth herein.
Accordingly, while example embodiments are capable of various modifications and alternative forms, embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but to the contrary, example embodiments are to cover all modifications, equivalents, and alternatives falling within the scope of example embodiments. Like numbers refer to like elements throughout the description of the figures.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it may be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between”, “adjacent” versus “directly adjacent”, etc.).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
In step S30 of
In step S40 of
While
While a TIP detector is used in example embodiments of the present invention, it should be readily understood by a person of ordinary skill in the art that any detector located a fixed distance from a neutron absorber may be used, wherein the neutron absorber is used to provide a reference point to determine the location of the detector within a nuclear reactor core.
For purposes of these example embodiments, the terms “near”, or “close proximity” with respect to the distance between the monitoring device and the neutron absorber and/or TIP detector, may be defined as an inch or less, or it may be defined as several inches or more. The distance between the monitoring device and the neutron absorber (in essence, the distance between the monitoring device and the cable) are constrained only by the ability of the neutron absorber to appreciably affect the monitoring device readings. During the subsequent repositioning of the cable to ensure that the TIP detector is positioned near the monitoring device, this distance between the TIP detector and the monitoring device is constrained only by the accuracy of the calibration itself, as a more accurate calibration will be obtained by a smaller distance between the monitoring device and the TIP detector.
Example embodiments having thus been described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the intended spirit and scope of example embodiments, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
This application is a divisional of U.S. application Ser. No. 12/000,491 filed Dec. 13, 2007, the contents of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3666950 | Ferber et al. | May 1972 | A |
3751333 | Drummond et al. | Aug 1973 | A |
3774033 | Scott et al. | Nov 1973 | A |
3940318 | Arino et al. | Feb 1976 | A |
3998691 | Shikata et al. | Dec 1976 | A |
4140911 | Todt et al. | Feb 1979 | A |
4196047 | Mitchem et al. | Apr 1980 | A |
4284472 | Pomares et al. | Aug 1981 | A |
4462956 | Boiron et al. | Jul 1984 | A |
4475948 | Cawley et al. | Oct 1984 | A |
4493813 | Loriot et al. | Jan 1985 | A |
4532102 | Cawley | Jul 1985 | A |
4597936 | Kaae | Jul 1986 | A |
4617985 | Triggs et al. | Oct 1986 | A |
4639349 | Baratta et al. | Jan 1987 | A |
4663111 | Kim et al. | May 1987 | A |
4729903 | McGovern et al. | Mar 1988 | A |
4782231 | Svoboda et al. | Nov 1988 | A |
4818471 | Thomson et al. | Apr 1989 | A |
4859431 | Ehrhardt | Aug 1989 | A |
5053186 | Vanderheyden et al. | Oct 1991 | A |
5096656 | Moreau | Mar 1992 | A |
5145636 | Vanderhevden et al. | Sep 1992 | A |
5192490 | Burel | Mar 1993 | A |
5355394 | van Geel et al. | Oct 1994 | A |
5377105 | Smith | Dec 1994 | A |
5400375 | Suzuki et al. | Mar 1995 | A |
5513226 | Baxter et al. | Apr 1996 | A |
5596611 | Ball | Jan 1997 | A |
5615238 | Wiencek et al. | Mar 1997 | A |
5623109 | Uchida et al. | Apr 1997 | A |
5633900 | Hassal | May 1997 | A |
5682409 | Caine | Oct 1997 | A |
5758254 | Kawamura et al. | May 1998 | A |
5867546 | Hassal | Feb 1999 | A |
5871708 | Park et al. | Feb 1999 | A |
5910971 | Ponomarev-Stepnoy et al. | Jun 1999 | A |
6056929 | Hassal | May 2000 | A |
6160862 | Wiencek et al. | Dec 2000 | A |
6192095 | Sekine et al. | Feb 2001 | B1 |
6233299 | Wakabayashi | May 2001 | B1 |
6456680 | Abalin et al. | Sep 2002 | B1 |
6678344 | O'Leary et al. | Jan 2004 | B2 |
6751280 | Mirzadeh et al. | Jun 2004 | B2 |
6804319 | Mirzadeh et al. | Oct 2004 | B1 |
6895064 | Ritter | May 2005 | B2 |
6896716 | Jones, Jr. | May 2005 | B1 |
7157061 | Meikrantz et al. | Jan 2007 | B2 |
7235216 | Kiselev et al. | Jun 2007 | B2 |
20020034275 | Abalin et al. | Mar 2002 | A1 |
20030012325 | Kernert et al. | Jan 2003 | A1 |
20030016775 | Jamriska et al. | Jan 2003 | A1 |
20030103896 | Smith | Jun 2003 | A1 |
20030179844 | Filippone | Sep 2003 | A1 |
20040091421 | Aston et al. | May 2004 | A1 |
20040105520 | Carter | Jun 2004 | A1 |
20040196942 | Mirzadeh et al. | Oct 2004 | A1 |
20040196943 | Di Caprio | Oct 2004 | A1 |
20050105666 | Mirzadeh et al. | May 2005 | A1 |
20050118098 | Vincent et al. | Jun 2005 | A1 |
20060062342 | Gonzalez Lepera et al. | Mar 2006 | A1 |
20060126774 | Kim et al. | Jun 2006 | A1 |
20070133731 | Fawcett et al. | Jun 2007 | A1 |
20070133734 | Fawcett et al. | Jun 2007 | A1 |
20070297554 | Lavie et al. | Dec 2007 | A1 |
20080031811 | Ryu et al. | Feb 2008 | A1 |
20080076957 | Adelman | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
60256093 | Dec 1985 | JP |
Entry |
---|
Japanese Office Action dated Jun. 21, 2013 for corresponding Japanese Application No. 2008-310358 (full translation provided). |
Number | Date | Country | |
---|---|---|---|
20140064425 A1 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12000491 | Dec 2007 | US |
Child | 14036552 | US |