Transverse process/laminar spacer

Information

  • Patent Grant
  • 7789898
  • Patent Number
    7,789,898
  • Date Filed
    Friday, April 15, 2005
    19 years ago
  • Date Issued
    Tuesday, September 7, 2010
    14 years ago
Abstract
An inter-transverse process spacer system comprises a first spacer device. The first spacer device comprises opposing end portions. The first spacer device is adapted for insertion between a first pair of adjacent transverse processes, and the opposing end portions of the first spacer device are adapted to engage the first pair of adjacent transverse processes. The inter-transverse process spacer system further comprises a first connection device connected to the first spacer device and adapted to engage at least one of the first pair of adjacent transverse processes.
Description
BACKGROUND

Severe back pain and nerve damage may be caused by injured, degraded, or diseased spinal joints and particularly, spinal discs. Current methods of treating these damaged spinal discs may include vertebral fusion, nucleus replacements, or motion preservation disc prostheses. Disc deterioration and other spinal deterioration may cause spinal stenosis, a narrowing of the spinal canal and/or the intervertebral foramen, that causes pinching of the spinal cord and associated nerves. Current methods of treating spinal stenosis include laminectomy or facet resection. Alternative and potentially less invasive options are needed to provide spinal pain relief.


SUMMARY

In one embodiment of the present disclosure, an inter-transverse process spacer system comprises a first spacer device. The first spacer device comprises opposing end portions. The first spacer device is adapted for insertion between a first pair of adjacent transverse processes, and the opposing end portions of the first spacer device are adapted to engage the first pair of adjacent transverse processes. The inter-transverse process spacer system further comprises a first connection device connected to the first spacer device and adapted to engage at least one of the first pair of adjacent transverse processes.


In another embodiment, an inter-laminar spacer system comprises a first connection device adapted to engage a lamina of a first vertebra and a second connection device adapted to engage a lamina of a second vertebra. The inter-laminar spacer system further comprises a first lamina spacer extending between the first and second connection devices.


In another embodiment, a method of spinal decompression comprises accessing a pair of transverse processes and inserting a spacer device between the pair of transverse processes. The method further comprises engaging a connection device with the spacer device and at least one of the pair of transverse processes.


In another embodiment of the present disclosure, a method of decompressing a spinal joint comprises accessing an interlaminar space between first and second lamina and inserting a spacer system into the interlaminar space. The method further comprises connecting the spacer system to inner and outer faces of the first lamina.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a vertebral column with an inter-transverse process spacer system according to one embodiment of the present disclosure.



FIG. 2 is an assembled perspective view of the spacer system of FIG. 1.



FIG. 3 is a perspective view of a component of the spacer system of FIG. 1.



FIG. 4 is a sectional view of the component of FIG. 3.



FIG. 5 is a perspective view of a vertebral column with an inter-laminar spacer system according to one embodiment of the present disclosure.



FIG. 6 is an assembled perspective view of the spacer system of FIG. 5.





DETAILED DESCRIPTION

The present disclosure relates generally to the field of orthopedic surgery, and more particularly to systems and methods for decompressing a spinal joint. For the purposes of promoting an understanding of the principles of the invention, reference will now be made to embodiments or examples illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alteration and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the disclosure relates.


Referring first to FIG. 1, the numeral 10 refers to a vertebral joint which includes an intervertebral disc 12 extending between vertebrae 14, 16. The vertebra 14 includes a lamina 18, and the vertebra 16 includes a lamina 20. The vertebrae 14, 16 also include vertebral bodies 14a, 16a, respectively. The vertebra 14 further includes transverse processes 22, 24; a spinous process 26; and caudal articular processes 28, 30. The vertebra 16 further includes transverse processes 32, 34; a spinous process 36; and rostral articular processes 38, 40. Although the illustration of FIG. 1 generally depicts the vertebral joint 10 as a lumbar vertebral joint, it is understood that the devices, systems, and methods of this disclosure may also be applied to all regions of the vertebral column, including the cervical and thoracic regions. Furthermore, the devices, systems, and methods of this disclosure may be used in non-spinal orthopedic applications.


A facet joint 42 is formed, in part, by the adjacent articular processes 28, 38. A facet joint 44 is formed, in part, by the adjacent articular processes 30, 40. Facet joints may also be termed zygapophyseal joints. A healthy facet joint includes a facet capsule extending between the adjacent articular processes. The facet capsule comprises cartilage and synovial fluid to permit the articulating surfaces of the articular processes to remain lubricated and glide over one another. The type of motion permitted by the facet joints is dependent on the region of the vertebral column. For example, in a healthy lumbar region, the facet joints limit rotational motion but permit greater freedom for flexion, extension, and lateral bending motions. By contrast, in a healthy cervical region of the vertebral column, the facet joints permit rotational motion as well as flexion, extension, and lateral bending motions. As the facet joint deteriorates, the facet capsule may become compressed and worn, losing its ability to provide a smooth, lubricated interface between the articular surfaces of the articular processes. This may cause pain and limit motion at the affected joint. Facet joint deterioration may also cause inflammation and enlargement of the facet joint which may, in turn, contribute to spinal stenosis. Removal of an afflicted articular process may result in abnormal motions and loading on the remaining components of the joint. The embodiments described below may be used to decompress a deteriorated facet joint and/or restore more natural motion constraint to a resected joint.


Injury, disease, and deterioration of the intervertebral disc 12 may also cause pain and limit motion. In a healthy intervertebral joint, the intervertebral disc permits rotation, lateral bending, flexion, and extension motions. An axis of flexion 46 may extend between the vertebral bodies 14a, 16a and through the intervertebral disc 12. As the intervertebral joint deteriorates, the intervertebral disc may become compressed, displaced, or herniated, resulting in excess pressure in other areas of the spine, particularly the posterior bony elements of the afflicted vertebrae. This deterioration may lead to spinal stenosis. The embodiments described below may restore more natural spacing to the posterior bony elements of the vertebrae, decompress an intervertebral disc, and/or may relieve spinal stenosis.


Referring still to FIG. 1, in one embodiment, a spacer system 50 may be used to support the transverse processes 24, 34; decompress the disc 12 and the facet joint 44; and/or relieve stenosis. The spacer system 50 includes a spacer device 52 which may be monolithically formed of an elastic, multi-directionally flexible material such as silicone, polyurethane, or hydrogel. The spacer device 52 may include two pairs of legs 54, 56 integrally formed with and extending from a cross member 58. As shown in greater detail in FIGS. 3 and 4, the cross member 58 may comprise transverse conduits 60, 62. The openings of the conduits 60, 62 may be widened and curved to minimize sharp edges that could present a point of wear. The internal faces of the legs 54 are angled to converge toward a recessed area 66, and the internal faces of the legs 56 are angled to converge toward a recessed area 68. The cross member 58 has a thickness 64 which may be slightly greater than the inter-transverse process space between the processes 24, 34 when the vertebra 14, 16 are in a natural position. For example, the cervical and lumbar regions of the vertebral column may be in lordosis when in a natural position.


Referring now to FIGS. 1 and 2, in this embodiment, the spacer system 50 further includes connection devices such as cables 70, 72 which extend through the transverse conduits 62, 64, respectively, of the cross member 58. At least one end of each of the cables 70, 72 may be attached to stopper devices 74, 76, respectively. The connection devices may be either elastic or inelastic and able to carry tensile forces. They may be formed, for example, of biocompatible reinforcing materials such as wire, cable, cord, bands, tape, or sheets. They may have a braided, knitted, or woven construction.


A surgical procedure to implant the spacer system 50 may be ultra minimally invasive. Using a posterior, posterolateral, lateral, anterolateral or anterior approach, a small incision may be created in the patient's skin. The transverse processes 24, 34 may be visualized directly or with radiographic assistance. The spacer device 52 may be compressed and inserted between the transverse processes 24, 34. The spacer device 52 may then expand slightly so that the recess 68 comes into firm contact with the transverse process 24 and the recess 66 comes into firm contact with the transverse process 34. The cross member 58 may remain slightly compressed after implantation so that the recesses 66, 68 may continue to exert pressure on the transverse processes 34, 24, respectively, minimizing the opportunity for the spacer device 52 to be come dislodged. The compression of the cross member 58 may bias the legs 56 to compress together, creating a firm grip on the transverse process 24. This holding action, together with the flexibility of the device 52, minimizes friction and the associated material and bone wear. The legs 54 may, likewise, grip transverse process 34.


The connection device 72, led for example by a needle, may be inserted through the conduit 60 and around the transverse process 24. The connection device 72 may then be inserted through the stopper 76. The location of the spacer device 52 may still be adjusted while the connection device 72 is relatively loose. For example, the spacer device 52 may be placed close to the base of the transverse processes 24, 34, near the vertebral bodies 14a, 16a, to reduce the torsional forces placed on the spacer device by the transverse processes. With the spacer device 52 in the desired position, the connection device 72 may be tightened, and anchored to the stopper device 76. The stopper device 76 may thus anchor both ends of the connection device 72. The connection device 70 may similarly anchor the spacer device to the transverse process 34.


In certain anatomies, the spacer system 50 may be used alone to provide decompression to a single targeted facet joint or to relieve pressure on a particular side of the intervertebral disc, such as a herniation area. But, as shown in FIG. 2, a second spacer system 80 may be installed on the opposite lateral side from the spacer system 50, between transverse processes 22, 32. The spacer system 80, when used in conjunction with the spacer system 50, may provide more balanced support and equalized decompression. The spacer system 80 may be substantially similar to system 50 and therefore will not be described in detail.


The spacer system 50, as installed, may axially separate the vertebrae 14, 16, relieving pressure on the intervertebral disc 12 and the facet joint 44 and reducing wear and further degeneration. The spacer device 52 may also dampen the forces on the intervertebral disc 12 and facet joint 44 during motion such as flexion and extension. Because the spacer device 52 may be positioned relatively close to the natural axis of flexion 46, the spacer system 50 may be less likely to induce kyphosis as compared to systems that rely upon inter-spinous process devices to provide decompression. Additionally, the system 50 may be installed minimally invasively with less dissection than the inter-spinous process devices of the prior art. Furthermore, an inter-transverse process system can be used on each lateral side of the vertebrae 14, 16, and may provide greater and more balanced decompression than the single inter-spinous process devices of the prior art.


In an alternative embodiment, the conduits through the spacer device may be omitted and the connection devices attached to other connection points on the spacer device such as side handles. The connection device may extend through or into one or both of the transverse processes. In still another alternative, the connection device may be eliminated and the spacer device held in place by the compressive forces of the transverse processes. The connection device may also take the form of a clamp, spike, threaded connection or any other type of mechanical or adhesive connection for attaching devices to bone.


In another alternative embodiment, the spacer device may be shaped to address various patient anatomies and afflictions. In one embodiment, the legs of the spacer device may be angled such that the spacer device provides not only cephalad-caudal axial decompression but also anterior or posterior decompression. For example, in a patient recovering from disc surgery, the spacer device may be angled toward lordosis to take pressure off the intervertebral disc temporarily. Likewise the spacer device may be angled toward kyphosis to temporarily reduce pressure on a recovering facet joint.


In another alternative embodiment, the material of the spacer device may be completely or partially rigid. A sheath may be also surround the spacer device to limit direct contact between the spacer device and the surrounding tissue. The sheath may also serve to contain wear debris and limit over stretching of the spacer device.


Referring now to FIGS. 5 and 6, in one embodiment, a spacer system 100 may be used to support the laminae 18, 20; decompress the disc 12 and the facet joint 44; and/or relieve stenosis. The spacer system 100 includes a spacer device 102 which may be monolithically formed of an elastic, multi-directionally flexible material such as silicone, polyurethane, or hydrogel. The spacer device 102 may have a wider midsection and may taper slightly toward the ends. The spacer device may have a height 108 which may be slightly greater than the inter-laminar space between the processes 18, 20 when the vertebra 14, 16 are in a natural position. For example, the cervical and lumbar regions of the vertebral column may be in lordosis when in a natural position.


The spacer system 100 further includes connection devices 104, 106 such as laminar hooks which are attached to the opposite ends of the spacer device 102. The laminar hook 104 may comprise an outer arm 110 and an inner arm 112. The laminar hooks 104, 106 may be formed of any suitable biocompatible material including metals such as cobalt-chromium alloys, titanium alloys, nickel titanium alloys, and/or stainless steel alloys. Ceramic materials such as aluminum oxide or alumnia, zirconium oxide or zirconia, compact of particulate diamond, and/or pyrolytic carbon may be suitable. Polymer materials may also be used, including any member of the polyaryletherketone (PAEK) family such as polyetheretherketone (PEEK), carbon-reinforced PEEK, or polyetherketoneketone (PEKK); polysulfone; polyetherimide; polyimide; ultra-high molecular weight polyethylene (UHMWPE); and/or cross-linked UHMWPE.


A surgical procedure to implant the spacer system 100 may be relatively minimally invasive. Using a posterior, posterolateral, lateral, or other suitable approach, a small incision may be created in the patient's skin. The ligamentum flavum or other soft tissues may be mobilized and the laminae 18, 20 may be visualized directly or with radiographic assistance. The spacer device 102 may be compressed and the laminar hooks 104, 106 may be inserted between the laminae 18, 20. The spacer device 102 may then expand slightly so that hooks 104, 106 come into firm contact with the laminae 20, 18, respectively. The spacer device 102 may remain slightly compressed after implantation so that the hooks 104, 106 may continue to exert pressure on the laminae 20, 18, respectively, minimizing the opportunity for the spacer device 102 to be come dislodged. With the system 100 installed, the arms 110, 112 of the hook 104 may firmly contact the outer and inner faces, respectively, of the lamina 20. The hook 106 may similarly engage the lamina 18.


In certain anatomies, the spacer system 100 may be used alone to provide decompression to a single targeted facet joint or to relieve pressure on a particular side of the intervertebral disc, such as a herniation area. However, a second spacer system may also be installed on the opposite lateral side from the spacer system 100. The spacer system 100, when used in conjunction with a second spacer system, may provide more balanced support and equalized decompression.


The spacer system 100, as installed, may axially separate the vertebrae 14, 16, relieving pressure on the intervertebral disc 12 and the facet joint 44 and reducing wear and further degeneration. The spacer device 102 may also dampen the forces on the intervertebral disc 12 and facet joint 44 during motions such as flexion and extension. Because the spacer device 102 may be positioned relatively close to the natural axis of flexion 46, the spacer system 100 may be less likely to induce kyphosis as compared to systems that rely upon inter-spinous process devices to provide decompression. Additionally, the system 100 may installed with less dissection than the inter-spinous process devices of the prior art. Furthermore, an inter-laminar system can be used on each lateral side of the vertebrae 14, 16, and may provide greater and more balanced decompression than the single inter-spinous process devices of the prior art.


In an alternative embodiment, the laminar hooks may have a spring action which draws the arms together to engage the lamina, or the hooks may have a vise mechanism which draws the arms together to engage the lamina. This holding action, together with the flexibility of the device 102, may minimize friction and the associated material and bone wear.


In still another alternative, the spacer device may be formed of a rigid material such as those listed above for the laminar hooks. A rigid spacer device may be height adjustable such that a decreased height may be set to provide easy access for the laminar hooks, and an increased height may be set to bring the hooks into firm contact with the laminar walls.


In still another alternative embodiment, the connection devices may attach to other posterior bones such as the adjacent articular or spinous process. A connection device such as the cabling system 72 described above may also be used to connect the spacer device between the laminae. For example, a cable could extend around the lamina, through the spinal foramen to tether the spacer device to the lamina.


Although only a few exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this disclosure. Accordingly, all such modifications and alternative are intended to be included within the scope of the invention as defined in the following claims. Those skilled in the art should also realize that such modifications and equivalent constructions or methods do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure. It is understood that all spatial references, such as “horizontal,” “vertical,” “top,” “upper,” “lower,” “bottom,” “left,” “right,” “cephalad,” “caudal,” “upper,” and “lower,” are for illustrative purposes only and can be varied within the scope of the disclosure. In the claims, means-plus-function clauses are intended to cover the elements described herein as performing the recited function and not only structural equivalents, but also equivalent elements.

Claims
  • 1. A method of decompressing a spinal joint, the method comprising: accessing an interlaminar space between adjacent upper and lower laminae of a single interlaminar level;inserting a spacer system having first and second connection devices into the interlaminar space;engaging the upper and lower laminae with the first and second connection devices respectively such that the first connection device engages an inferior surface of the upper lamina and the second connection device engages a superior surface of the lower lamina;wherein the first and second connection devices comprise first and second hooks, respectively, having first and second hook surfaces, respectively, facing in generally opposite directions;wherein the spacer system includes a central portion and the first and second hooks are connected to each other only through the central portion;wherein the central portion is laterally offset from a vertical axis defined by minimum points on the first and second hooks respectively such that after said inserting, the central portion is disposed posteriorly with respect to the laminae of the single interlaminar level.
  • 2. The method of claim 1 wherein, when the spacer system is inserted in the interlaminar space, the central portion does not extend above the upper lamina or below the lower lamina of the single interlaminar level.
  • 3. The method of claim 2 wherein said inserting comprises compressing the central portion to elastically deform the central portion.
  • 4. The method of claim 3 further comprising maintaining the central portion in a compressed state while the spinal joint is in a natural position.
  • 5. The method of claim 4 wherein said maintaining the spacer component in a compressed state comprises the spacer system providing a decompressive force against the inferior surface of the upper lamina and the superior surface of the lower lamina after said insertion.
  • 6. The method of claim 1 wherein said inserting comprises compressing the central portion to elastically deform the central portion.
  • 7. The method of claim 6 further comprising maintaining the central portion in a compressed state while the spinal joint is in a natural position.
  • 8. The method of claim 7 wherein said maintaining the spacer component in a compressed state comprises the spacer system providing a decompressive force against the inferior surface of the upper lamina and the superior surface of the lower lamina after said insertion.
  • 9. The method of claim 1: wherein said inserting the spacer comprises: compressing the spacer system to a first compressed state;inserting the spacer system in the first compressed state into the interlaminar space between the upper and lower laminae;wherein engaging the upper and lower laminae comprises expanding the spacer system to a second compressed state.
  • 10. The method of claim 1 wherein said engaging the upper and lower laminae comprises: engaging the first hook surface with both an inferior surface and a posterior surface of the upper lamina;engaging the second hook surface with both a superior surface and a posterior surface of the lower lamina.
  • 11. The method of claim 2: wherein said inserting the spacer comprises: compressing the spacer system to a first compressed state;inserting the spacer system in the first compressed state into the interlaminar space between the upper and lower laminae;wherein engaging the upper and lower laminae comprises expanding the spacer system to a second compressed state.
  • 12. The method of claim 2 wherein said engaging the upper and lower laminae comprises: engaging the first hook surface with both an inferior surface and a posterior surface of the upper lamina;engaging the second hook surface with both a superior surface and a posterior surface of the lower lamina.
US Referenced Citations (135)
Number Name Date Kind
2677369 Knowles May 1954 A
2774350 Cleveland Dec 1956 A
3648691 Lumb et al. Mar 1972 A
3693616 Roaf et al. Sep 1972 A
4011602 Rybicki et al. Mar 1977 A
4257409 Bacal et al. Mar 1981 A
4269178 Keene May 1981 A
4422451 Kalamchi Dec 1983 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4604995 Stephens et al. Aug 1986 A
4686970 Dove et al. Aug 1987 A
4827918 Olerud May 1989 A
4913134 Luque Apr 1990 A
5010879 Moriya et al. Apr 1991 A
5011484 Breard Apr 1991 A
5047055 Bao et al. Sep 1991 A
5092866 Breard et al. Mar 1992 A
5116334 Cozad et al. May 1992 A
5201734 Cozad et al. Apr 1993 A
5306275 Bryan Apr 1994 A
5360430 Lin Nov 1994 A
5366455 Dove et al. Nov 1994 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5454812 Lin Oct 1995 A
5496318 Howland et al. Mar 1996 A
5609592 Brumfield et al. Mar 1997 A
5609634 Voydeville Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5645599 Samani Jul 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5690649 Li Nov 1997 A
5702452 Argenson et al. Dec 1997 A
5725582 Bevan et al. Mar 1998 A
5810815 Morales Sep 1998 A
5810818 Errico et al. Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5976186 Bao et al. Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6066140 Gertzbein et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6132464 Martin Oct 2000 A
6293949 Justis et al. Sep 2001 B1
6312431 Asfora Nov 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6440169 Elberg et al. Aug 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6582433 Yun Jun 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6695842 Zucherman et al. Feb 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6733534 Sherman May 2004 B2
6752831 Sybert et al. Jun 2004 B2
6761720 Senegas Jul 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6946000 Senegas et al. Sep 2005 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7252673 Lim Aug 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7377942 Berry May 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
20020095154 Atkinson et al. Jul 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20030216736 Robinson et al. Nov 2003 A1
20040097931 Mitchell May 2004 A1
20040106995 Le Couedic et al. Jun 2004 A1
20040181282 Zucherman et al. Sep 2004 A1
20040243239 Taylor Dec 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050261768 Trieu Nov 2005 A1
20050288672 Feree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060122620 Kim Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070043362 Malandain et al. Feb 2007 A1
20070112350 Deneuvillers et al. May 2007 A1
20070162000 Perkins Jul 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20080161818 Kloss et al. Jul 2008 A1
Foreign Referenced Citations (38)
Number Date Country
2821678 Nov 1979 DE
2821678 Nov 1979 DE
0322334 Feb 1992 EP
1138268 Apr 2001 EP
1330987 Jul 2003 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2775183 Aug 1999 FR
2816197 Jul 2000 FR
2799948 Apr 2001 FR
2828398 Aug 2001 FR
2861285 Apr 2005 FR
780652 Dec 1957 GB
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
988281 Jan 1983 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
WO 9820939 May 1998 WO
WO 2004047691 Jun 2004 WO
2004084743 Oct 2004 WO
WO 2004084743 Oct 2004 WO
WO 2005009300 Feb 2005 WO
2005037150 Apr 2005 WO
WO 2005044118 May 2005 WO
WO 2005110258 Nov 2005 WO
WO 2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
Related Publications (1)
Number Date Country
20060235387 A1 Oct 2006 US