Transverse spatial mode transformer for optical communication

Information

  • Patent Grant
  • 6404951
  • Patent Number
    6,404,951
  • Date Filed
    Friday, February 12, 1999
    26 years ago
  • Date Issued
    Tuesday, June 11, 2002
    22 years ago
Abstract
A transverse spatial mode transformer for transforming an optical signal between different spatial modes is described. The transformer is based on a spatially selective change of the phase of the optical signal wavefront relative to the initial wavefront. As the phase-adjusted optical signal propagates, the transverse intensity distribution changes to correspond to the new spatial mode. The transformer can be used to change the lower order spatial mode of an optical signal to a higher order spatial mode appropriate for a dispersion compensated fiber optic communication system. The transformer can also be used to change a higher order spatial mode to a lower order spatial mode.
Description




FIELD OF THE INVENTION




The invention relates to fiber optic telecommunication systems and more specifically to chromatic dispersion compensation in such systems.




BACKGROUND OF THE INVENTION




The tendency of a pulse of light propagating through an optical fiber to broaden is a result of the fact that different wavelengths of light pass through the fiber at different speeds. This speed differential which causes the pulse to broaden is termed chromatic dispersion. Chromatic dispersion presents a problem in modem optical communication systems because the tendency of light pulses to broaden as they propagate down the fiber causes the closely spaced light pulses to overlap in time. This overlap can have an undesirable effect since it restricts how closely spaced the pulses can be. This in turn limits the data bandwidth of the optical fiber.




There are many characteristics of dispersion. First order dispersion is the rate of change of index of refraction with respect to wavelength in the fiber. First order dispersion is also referred to as group velocity. Second order dispersion is the rate of change of the first order dispersion with respect to wavelength. Second order dispersion produces the pulse broadening. Third order dispersion is the rate of change of broadening with respect to a change in wavelength. This is often referred to as the dispersion slope.




Several solutions have been proposed to mitigate the effects of dispersion in transmission fibers. One technique involves the use of a compensating optical fiber having an appropriate, length and which has a dispersion that is opposite to the dispersion characteristic of the transmission fiber. The result is dispersion in the transmission fiber is substantially matched and canceled by the total dispersion in the compensating fiber. While this technique offers a solution to the dispersion problem, it may be impractical in actual use because of the attenuation due to the required length of the compensating fiber. In such a case, the total transmission length of the fiber is significantly increased thereby increasing the signal attenuation in the fiber. Furthermore, it may be difficult to find a fiber of the desired length with the required dispersion properties.




It is also difficult to design a fiber having a changing index of refraction across the diameter of the fiber (the fiber index profile) that will compensate simultaneously for the second and third dispersion orders. It is even more difficult to control the material properties of such fibers even in the most accurate fabrication process necessary to produce such fibers. In addition, the process of fabricating the single compensating chromatic dispersion fiber is expensive and generally not practical.




When a pulse of light is transmitted through an optical fiber, the energy follows a number of paths which cross the fiber axis at different angles. A group of paths which cross the axis at the same angle is known as a mode. Sometimes it is necessary to limit or control the number of modes used in a transmission system. The fundamental mode LP


01


in which light passes substantially along the fiber axis is often used in high bandwidth transmission systems using optical fibers commonly referred to as single mode fibers.




The dispersion properties of high order modes have been investigated at length. There is a dependence of high order mode dispersion on wavelength and on the properties of the fiber. By properly designing the fiber index profile it is possible to make the dispersion slope be positive, negative or zero. It is also possible to make the magnitude of the dispersion be negative, zero or slightly positive. Using these two properties one can either control or compensate for the dispersion in any transmission fiber.




Systems have been developed to take advantage of higher order modes to compensate for dispersion in a typical optical communication system. In such systems it has been necessary to first convert the lower order fundamental mode of the light to a higher order spatial mode. This is accomplished using longitudinal mode conversion.




Prior art methods for mode conversion are known as longitudinal mode conversion and are based on introducing a periodic perturbation along the fiber axis. The length of each period and the number of periods in these longitudinal converters must be determined accurately according to the wavelength, the strength of the perturbation, and the modes involved. By constructing a longitudinal mode converter it is possible to achieve good efficiency in transferring the energy from one mode to the other in a limited spectral bandwidth. This spectral property has been used in Dense Wavelength Division Multiplexing (DWDM) applications in telecommunications for other applications. Unfortunately, this technique is accompanied by significant energy attenuation and it cannot be used over broad spectral bandwidths.




Another deficiency associated with longitudinal mode converters is related to the fact that after the conversion, only a single mode should be present in the fiber. It can be difficult to discriminate between desired modes and undesired modes having almost the same group velocities because unwanted modes can appear at the output of the converter. As the modes propagate, modal dispersion occurs and the pulse broadens. Generally, longitudinal mode converters introduce significant energy attenuation and noise. Therefore, a trade-off must be made between having broad-spectrum capability and the demand for converting the original mode to a pure, single, high-order mode.




One such longitudinal mode converter is discussed in U.S. Pat. No. 5,802,234. Here, a single mode transmission fiber carries the LP


01


to a longitudinal mode converter. Before conversion in this system, however, it is necessary to couple the single mode transmission fiber to a multimode fiber while maintaining the signal in the basic LP


01


mode. This coupling is typically difficult to achieve without signal degradation and any misalignment or manufacturing inaccuracies can result in the presence of higher order modes. It is desirable that only the LP


01


mode propagate initially in the multimode fiber in order to avoid significant noise that degrades the system performance and typically such coupling results in the propagation of additional modes.




The present invention overcomes the disadvantages of longitudinal mode converters and previous attempts to control dispersion in a fiber optic system.




SUMMARY OF THE INVENTION




The present invention relates to an apparatus and method for transforming an optical signal between different spatial modes. The apparatus and method are based on a spatially selective phase change of the optical signal wavefront relative to the initial wavefront. As the phase-adjusted optical signal propagates, the transverse intensity distribution changes to correspond to the new spatial mode.




The present invention features a transverse mode transformer having an optical input and a spatially selective retardation element. The retardation element transforms an optical signal received at the optical input from a first spatial mode to a second spatial mode. The retardation element can be a phase plate, a lens, a mirror, a grating, an electro-optic element, a beam splitter or a reflective element. In one embodiment the second spatial mode is of a higher order than the first spatial mode.




In another aspect, the invention features a method of spatial mode transformation which includes the steps of providing a spatially selective retardation element, receiving an optical signal having a first spatial mode at the retardation element and spatially retarding at least a portion of the optical signal to generate a second spatial mode. In one embodiment, the second spatial mode is a higher order mode.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other advantages of the invention may be more clearly understood with reference to the specification and the drawings, in which:





FIG. 1

is a block diagram of an embodiment of a typical fiber optic transmission system known to the prior art;





FIG. 2

is a block diagram of an embodiment of the fiber optic transmission system of the present invention including a chromatic dispersion compensation fiber module;





FIG. 3

is a block diagram of an embodiment of the chromatic dispersion compensation fiber module shown in

FIG. 2

showing transverse mode transformers and a chromatic dispersion compensation fiber;





FIG. 4

is a block diagram of another embodiment of the chromatic dispersion compensation fiber module of the present invention showing transverse mode transformers and two chromatic dispersion compensation fibers;





FIG. 5

is a highly schematic diagram of an embodiment of a transverse mode transformer shown in

FIG. 3

;





FIG. 6



a


is a block diagram of an alternative embodiment of a fiber optic transmission system of the current invention with the leading transmission fiber replaced by a transmission source;





FIG. 6



b


is a block diagram of an alternative embodiment of a fiber optic transmission system of the current invention with the receiving transmission fiber replaced by a detector;





FIG. 7



a


is a graph of the intensity as a function of position along the diameter of a fiber in an ideal case;





FIG. 7



b


is a graph of the intensity as a function of position along the diameter of the fiber after transformation to the LP


02


mode;





FIG. 8

is a graph of the relative energy in the higher order mode relative to the LP


01


mode for an element optimized for operation at a wavelength of 1550 nm in an ideal case;





FIG. 9

is a block diagram of an alternative embodiment of a transverse mode transformer using two phase elements;





FIG. 10



a


is a highly schematic diagram of an alternative embodiment of the present invention showing two chromatic dispersion compensation fibers used for multiple order dispersion compensation;





FIG. 10



b


is a highly schematic diagram of an alternative embodiment of the present invention showing two chromatic dispersion compensation fibers sandwiching a single mode transmission fiber used for multiple order dispersion compensation;





FIGS. 11



a


-


11




e


are graphs of different solution spaces showing relative design characteristics resulting from the use of first and second order dispersion;





FIGS. 12



a


-


12




c


are illustrations of alternative embodiments of the transverse mode transformer shown embedded in a fiber optic transmission system;





FIGS. 13



a


-


13




c


are graphs of the amplitude versus position plot of the pulse across the diameter of the fiber before, during and after mode transformation;





FIG. 14

is an illustration of an alternative embodiment of the current invention using a polarization beamsplitter and a polarization combiner;





FIG. 15

is a schematic diagram of a single bulk component that can be used to replace the discrete bulk optical components in the embodiment shown in

FIG. 14

;





FIG. 16

shows a representation of the polarization of propagating modes through the element described in

FIG. 15

,





FIG. 17

shows a representation of the polarization of propagating modes using a birefringent element;





FIG. 18

is a block diagram of an alternative embodiment of the current invention designed to eliminate the sensitivity of the system to polarization mode dispersion by using a circulator and a Faraday mirror; and





FIG. 19

is a block diagram of an alternative embodiment of the current invention designed to eliminate the sensitivity of the system to polarization mode dispersion without using a circulator.





FIGS. 20



a


-


20




c


are diagrams of alternative embodiments of a transverse mode transformer using internal reflection.











DETAILED DESCRIPTION OF THE INVENTION




A typical optical fiber transmission system known in the prior art is shown in FIG.


1


. Such a system includes a signal transmitter


2


in optical communication with a single mode fiber (SMF)


3


which is in turn in optical communication with a signal receiver


4


. (Other components common to optical fiber systems, such as amplifiers, circulators, isolators, etc. are not shown.) A signal is transmitted from the transmitter


2


into the fiber


3


where it propagates some distance. Depending on the length and other properties of the fiber, significant signal attenuation and dispersion can occur in the fiber. The receiver


4


acquires the attenuated signal as it exits the fiber


3


.




A basic configuration of the system of the present invention is presented in

FIG. 2. A

transmitter


2


transmits an optical signal into a communication fiber


3


. The communication fiber


3


introduces dispersion that requires compensation. The chromatic dispersion compensation module


10


compensates for signal dispersion introduced by the communication fiber


3


before propagating the signal into a receiver


4


.




An embodiment of the chromatic dispersion module


10


is shown in

FIG. 3. A

signal propagating in a single mode fiber (SMF)


3


enters a mode transformer


28


which converts the basic lower order spatial mode, generally LP


01


, to a higher order spatial mode, generally LP


02


, that propagates in a special chromatic dispersion compensating fiber


30


. The chromatic dispersion compensation fiber (DCF)


30


is designed to compensate for the first order dispersion of the signal. A second chromatic dispersion compensation fiber


31


with different compensation properties may be coupled to the first chromatic dispersion compensation fiber


30


in order to compensate for dispersion slope as shown in FIG.


4


. If required, more than two chromatic dispersion compensation fibers may be used to compensate even higher order dispersion or alternatively for mode filtering applications. Once compensation is complete, the signal is then converted back to the lower order mode by a second mode transformer


28


′ and emerges from the chromatic dispersion compensation module


10


in the single mode fiber


3


′.




The mode transformer


28


of the present invention is a bi-directional transverse mode transformer. It can be used to convert a lower order spatial mode to a higher order spatial mode. Conversely, the same transverse mode transformer


28


can be used to convert a higher order spatial mode to a lower order spatial mode. Unlike prior mode transformers which used the longitudinal axis of the fiber to accomplish longitudinal mode conversion, the present transverse mode transformer uses transverse properties of the wavefront of the light to mode convert by selectively altering the phase of at least one portion of the wavefront. One embodiment of a transverse mode transformer is shown in

FIG. 5. A

transverse phase element


58


arranged perpendicular to the longitudinal axis of the fiber is used to accomplish mode transformation. A pulse of light propagates in a single mode fiber


50


with a small diameter core


54


. The pulse broadens into and expanded region


56


as it emerges from the fiber. As the pulse passes through the traverse phase element


58


the phase distribution of the pulse is changed. The phase element


58


is typically a spatially selective phase element, i.e. a spatially selective retardation element. As a result of the spatially selective retardation, the phase element


58


alters the phase of points on the wavefront as a function of their transverse position. A focusing lens


62


focuses the pulse back into the special chromatic dispersion compensation fiber


64


, shown as having a broader core


66


simply for explanatory purposes. In one embodiment the lens


62


is a compound lens. In another embodiment, gradient index (GRIN) lenses are used. The phase element


58


can be any spatially selective phase element, including but not limited to, lenses, mirrors, gratings, electro-optic devices, beamsplitters, reflective elements, graded index materials and photolithographic elements.




Phase transformation can be achieved using the properties of spherical aberration inherent in optical lenses. After a wavefront passes through a lens, it will experience spherical aberration. The resulting distorted wavefront can be used with or without a phase element


58


in the transverse mode transformer


28


of the present invention to transform the spatial mode of the original wavefront to a higher order spatial mode.





FIG. 6



a


depicts a system in which a transmission source


24


replaces the optical fiber


3


shown in the embodiment in FIG.


4


. Here the system does not require an input transmission fiber and retains all the functionality and advantages of the present invention. The transmission source


24


injects an optical signal directly into the chromatic dispersion compensation module


10


where it is pre-compensated before being received by the transmission fiber


3


′. Precompensation can be desirable when the transmission fiber


3


′ has a known dispersion that requires compensation.





FIG. 6



b


describes a system in which a detector


36


replaces the transmission fiber


3


′ shown in the embodiment in FIG.


4


. Here the system does not require an exit transmission fiber


3


′ and the functionality of the system is not affected. In this case the optical signal propagates in the optical fiber


3


before being compensated by the chromatic dispersion compensation module


10


. Once the signal is down converted by mode transformer


28


′, it is detected directly by detector


36


. This method can conserve energy since there will not be fiber coupling losses exhibited before the detector.




The physical mechanism of the transverse mode transformation presented in this invention is explained with reference to

FIGS. 13



a


to


13




c


. (

FIGS. 13



a


to


13




c


share the same horizontal scale.)

FIG. 13



a


illustrates the gaussian-like amplitude distribution of mode LP


01


in a single mode fiber, wherein the horizontal axis represents the transverse position across the diameter of the fiber in arbitrary units and the vertical axis represents the amplitude in arbitrary units. In one embodiment, the transverse phase element


58


(

FIG. 5

) introduces a step function to the wavefront


20


of the pulse such that the center region


20




a


of the wavefront


20


is retarded with respect to the outer region


20




b


of the wavefront


20


. Therefore, the inner region


20




a


and the outer region


20




b


of the wavefront


20


will differ in phase by 180°. After propagation and transformation, the resulting distribution


22


shown in

FIG. 13



c


enters the chromatic dispersion compensation fiber


64


(see FIG.


5


). More than ninety percent of the transverse intensity distribution in the LP


01


mode (see

FIG. 7



a


) is present in the LP


02


mode (see

FIG. 7



b


) after transformation. The remaining energy is distributed among higher order modes which are not supported by the special chromatic dispersion compensation fiber


64


. Therefore, the fiber will contain substantially a single high order mode (LP


02


). The same process, but in the reverse order, occurs in the second mode transformer


28


′ at the opposite end of the compensation fiber


64


. This technique can also be applied to convert between other spatial modes.




One of the advantages of this transverse transformation mechanism is its high efficiency over a broad spectrum.

FIG. 8

shows the residual energy in the LP


01


mode for an element optimized for operation at 1550 nm. The horizontal axis represents the wavelength of the pulse in nanometers, and the vertical axis represents the ratio between the energy remaining in the low order mode to the total energy of the pulse. Less than one half of a percent of the pulse energy is left in the lowest order mode over greater than 100 nm of spectral range.




In order to further improve the transformation efficiency it is possible to use multiple phase elements


58


′ and


58


″ as shown in FIG.


9


. The pulse emerging from fiber


50


is collimated by lens


62


′, then it passes through the two phase elements


58


′ and


58


″ and is finally focused by lens


62


″ into a special chromatic dispersion compensation fiber


64


. This technique reduces longitudinal sensitivity in the placement of the phase elements. The design of phase elements


58


′ and


58


″ can be based on a coordinate transformation technique for converting between spatial modes. The first phase element


58


′ is designed to have local phase changes across the pulse. Each local phase change redirects (i.e., steers) a small section of the wavefront


20


to a predetermined coordinate on the second phase element


58


″. As a result, a predetermined intensity pattern is generated at the second phase element


58


″. The second phase element also induces local phase changes across the wavefront so that the resulting wavefront


20


with predetermined intensity and phase distributions at the second element


58


″ yields the desired spatial mode.




Another embodiment of the chromatic dispersion compensation module


10


of the present invention is shown in

FIG. 10



a


. This embodiment may be used with transverse mode transformers


28


, but is not limited to their use. Any means that propagates a pulse with a higher order mode into an optical coupler


6


can use the invention. After the higher order pulse passes through optical coupler


6


, the pulse then enters the first chromatic dispersion compensation fiber (DCF


1


)


8


which is designed to compensate for the dispersion of the communication fiber


5


. DCF


1




8


is spliced to a second dispersion compensation fiber (DCF


2


)


9


through a splice


12


. DCF


2




9


is designed to have minimal second order dispersion at the point where the dispersion slope is maximum. By properly choosing the design parameters, a minimal length of DCF


1




8


and DCF


2




9


is required to compensate for dispersion. DCF


1




8


and DCF


2




9


can be designed to operate with the basic LP


01


mode as long as they have different dispersion characteristics. The order in which DCF


1




8


and DCF


2




9


are arranged can be changed. Generally, more chromatic dispersion compensation fibers are required as the number of dispersion orders to be compensated increases. The chromatic dispersion compensated pulse passes into the outgoing optical transmission fiber


5


′ at splice


14


.

FIG. 10



b


illustrates another embodiment of the invention. A single mode fiber


5


″ is sandwiched between two dispersion compensation fibers. Any number of combinations can be realized without detracting from the essence of the invention.




Graphs of possible solutions using the chromatic dispersion compensation fibers of the present invention are shown in

FIGS. 11



a


-


11




e


. The horizontal axes represent the second order dispersion, and the vertical axes represent the second order dispersion slope (i.e., third order dispersion). The dispersion compensation introduced by the chromatic dispersion compensation fibers is presented as arrow


24


.

FIG. 11



a


represents an ideal system, where the desired dispersion solution is presented as the point


20


. By choosing the proper length of chromatic dispersion compensation fiber, the desired results are achieved. Unfortunately, in conventional communication systems it is difficult to change the relationship between the dispersion orders. Moreover, it is difficult to even predict this relationship before fabrication of the compensation fiber is completed. In addition, this relationship varies strongly according to fabrication processes. Therefore, if the desired amount of dispersion compensation presented at point


20


is displaced as illustrated in

FIG. 11



b


, it is impossible to achieve the desired compensation. It is possible, however, to increase the length of the DCF in order to add length


26


to the arrow


24


, so that the actual magnitude of dispersion is increased and the resulting dispersion


27


will approximate the desired dispersion


20


.




By combining two or more different fibers it is possible to achieve a variety of dispersion properties. The dispersion properties of DCF


1




8


and DCF


2




9


in

FIG. 10



a


are represented as


32


and


34


in

FIG. 11



c


. The area


36


represents the solution space of dispersion compensation which can be achieved by proper combination of the two fibers DCF


1




8


and DCF


2




9


.





FIG. 11



d


represents an example of such a combination. Using a combination of two or more DCFs, one can compensate for higher orders of dispersion. In order to achieve better coverage of the dispersion possibilities it is desirable to increase the angle between the arrows


32


and


34


in

FIG. 11



c


. It is difficult to achieve this result by using conventional single mode DCFs, however, high order mode-dispersion compensation fibers (HOM-DCF) can achieve more than 90 degrees difference between two different DCFs as presented in

FIG. 11



e


. This system is insensitive to the exact properties of the DCFs, because changing the length of the fibers can compensate for any deviation in the result.





FIG. 12



a


depicts an alternative embodiment of the transverse mode transformer of the present invention and shows a connection, between two fibers, designed to modify the wavefront. Both fibers include a core


11


and cladding


12


. The face


14


of the transmission fiber


7


can be perpendicular to the face of the dispersion compensation fiber


8


or at a small angle to the DCF


8


in order to eliminate reflection noise. The end face of at least one of the fibers has a predetermined binary pattern


16


. The pattern


16


can be etched onto the fiber or be in optical communication with the fiber. The pattern is designed to redistribute a gaussian wavefront such as that corresponding to the LP


01


mode as depicted in

FIG. 7



a


to the LP


02


mode as depicted in

FIG. 7



b


. In order to achieve an instantaneous change of the wavefront, the height of the binary pattern is set in one embodiment to 1.5 microns. This height is much smaller than the ‘Rayleigh range’, which is approximately 50 microns in a conventional fiber. The Rayleigh range is defined as πr


2


/λ where r is the radius of the wavefront and λ is the wavelength of the light.





FIG. 12



b


depicts an embodiment in which the fibers


7


,


8


are in contact with each other in order to reduce the relative motion and losses. In one embodiment, the end face of at least one of the fibers


7


and


8


has a predetermined binary pattern


16


′.

FIG. 12



c


depicts the same architecture as in

FIG. 12



b


except that a transparent material (for example the cladding itself) fills the gap


17


. In this architecture the height of the pattern


16


″ can be larger. If the relative refractive index difference between the filled gap


17


and the pattern


16


″ is set to 4%, then the pattern height is set to 13 microns. This height is still smaller than the ‘Rayleigh range’.




The width of the wavefront in a fiber is of the order of microns. Since modem photolithographic methods can achieved sub-micron resolution, photolithography can be used to create the desired pattern on the face of the fiber.




Just as photolithography makes it is possible to accurately etch or coat the desired pattern on the edge of the fiber, multiple lithographic processes make it possible to approximate any continuous pattern. Accurate alignment of the fiber core to the desired pattern can be achieved by illuminating the fiber through the core.




Another method for creating a pattern


16


on the end face of a fiber is to attach a short (i.e., a few tenths of microns in length) fiber having the desired pattern


16


. It can also be done by attaching a long fiber to the fiber end face and cutting it to the desired length. This method is more convenient and less expensive in mass production.




An internally reflective spatial mode transformer


190


of the present invention is illustrated in

FIG. 20



a


. The gaussian beam emerging from the end of a single mode fiber


3


includes a center portion


192


and outer portions


194


. The gaussian beam


192


and


194


enters the spatial mode transformer


190


where only the outer portions


194


are reflected from an internal surface


196


back into the center portion


192


so that the interference between the portions


192


and


194


results in a wavefront similar to that of the LP


02


mode. The resulting wavefront passes through one or more lenses


198


which couple the wavefront into a high order mode fiber


8


. The internal surface


196


can be made from a variety of reflectors including, but not limited to, metallic reflective materials and refractive index interfaces (e.g., a segment of optical fiber having a core-cladding interface).

FIG. 20



b


illustrates an internally reflective spatial mode transformer


190


attached to the single mode fiber


3


. In another embodiment shown in

FIG. 20



c


, a fiber-based spatial mode transformer


190


′ is disposed between the ends of the two fibers


3


and


8


. The mode transformer


190


′ includes a short segment of optical fiber with an expanded core


200


of high refractive index. The cores of the two fibers


3


and


8


can be expanded in order to improve the coupling efficiency between spatial modes.




The transverse transformation process is insensitive to the polarization of the propagating pulse. However, in many applications it is necessary to introduce different phase shifts to the different polarizations of the pulse. This can be desirable because the polarization of the LP


01


mode in the single mode fiber can be different from that of the higher order modes such as the TE


01


mode.

FIG. 14

depicts an embodiment for such an application. In this embodiment a collimating lenses


88


, a polarization beamsplitter


92


, and a combiner


96


are conventional bulk elements. Special mirrors


100


and


102


perform the transverse mode transformation. These mirrors


100


and


102


are designed to introduce phase changes to the reflected wavefronts. One way of achieving this is by etching patterns on the mirrors themselves. In another embodiment, the transverse mode transformer


28


is constructed as a single bulk component


109


as shown in FIG.


15


. The incident optical beam


110


is split into two orthogonally polarized beams


111


and


113


by a polarization beamsplitter


115


. Each beam is then reflected by total internal reflection from sides


114


, and recombined at polarization beamsplitter


115


into a single output beam


112


.




The effect of this element


109


on the polarization of the light passing through it is illustrated in FIG.


16


. An arbitrarily polarized pulse


120


is split to its two orthogonal polarization components


124




a


and


124




b


by the polarization beamsplitter


115


(not shown). The phase of each component


124




a


and


124




b


is changed by the phase elements on the mirrors


114


of

FIG. 15

resulting in altered components


128




a


and


128




b


. A polarization beamsplitter


115


(not shown) combines the components


128




a


and


128




b


into a single annular distribution


132


. The orientation of the phase elements on the mirrors


114


which are used to generate the altered components


128




a


and


128




b


can be rotated so that all LP


11


modes can be generated separately. As a result, only a single mode propagates in the DCF


84


of FIG.


14


. One advantage is that a polarization-maintaining fiber is not required.




If the polarization of the incident pulse is known (after a polarizer or a polarizing splitter) then it is possible to transform its polarization to match that of the high order modes in the fiber. This polarization transformation can be done with a fine transverse grating. For example, the polarization of the LP


01


mode (the lowest order mode), which is basically linear and uniform across the mode, can be transformed to an azimuthal one (as that of the TE


01


) by using a transverse grating with a varying local period.




Alternatively, a birefringent element can be used.

FIG. 17

represents a physical description of the process of transforming a linear polarization towards angular polarization by using a retardation plate. The linear polarization


140


passes through a waveplate


142


having primary axes oriented at an angle to the orientation of the linear polarization. The height of the plate is designed to have an angular dependence according to the equation H


1


(r,θ)=D/(2π)θ, where D is defined as the depth for which the birefringence waveplate is not changing the orientation of linear polarization. The resulting polarization


144


is shown in FIG.


17


. However, this wavefront may have a residual angular phase. Therefore, another non-birefringent element


146


is used to compensate for any residual angular phase resulting in polarization


148


. This element introduces the negative angular phase. This phase can be presented as H


2


(r,θ)=F/(2π)θ, where F is calculated according to the residual angular phase. The same effect can be achieved also by using two retardation waveplates having opposite angular phases and their primary axis oriented at opposite angles to the linear polarization.




The transverse phase elements can be implemented in a few configurations according to the requirements of the complete system.

FIG. 18

represents one embodiment of a system according to the present invention which is designed to eliminate the sensitivity of the system to polarization mode dispersion. The light propagating in a single mode fiber


3


enters a circulator


160


or a coupler (not shown). Then the light passes through the transverse mode transformer


162


. The light is propagated as a higher order mode in the dispersion compensation fiber


164


. A Faraday mirror


166


then reflects the light. After the light has passed again through the dispersion compensation fiber


164


and transverse mode transformer


162


, the circulator


160


separates the outgoing light for propagation through fiber


3


′ from the incoming light propagating through fiber


3


.




However, in many applications circulators


160


are not desired because of their expense and complexity. Couplers (i.e., beamsplitters) are also undesirable because they introduce an inherent 50% loss.

FIG. 19

represents a configuration in which a circulator or coupler is not needed. The light is separated into its orthogonal polarizations by the polarization splitter


172


. Then, each polarization passes through a Faraday rotator


174


imparting a 45° polarization rotation to the polarization and then through a phase element


178


. A polarization conserving special fiber


180


or an elliptical special fiber


180


is oriented at 45° so it is parallel to the transmitted polarization. The influence of the two Faraday rotators


174


cancels the rotation introduced by the special fiber


180


. As a result, the two polarizations return to their original state and are combined at the polarizer


172


in the same orientation. The resultant outgoing light propagates through fiber


182


. As the two polarizations are counter-propagating in the special fiber


180


, they have the same orientation. Therefore, they will be combined without time difference.




Thus, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention described herein.



Claims
  • 1. A transverse mode transformer for transforming an optical signal propagating in an input optical waveguide, said optical signal having a first spatial mode having a wavefront characterized by a first unique spatial dependence of its phase, said transverse mode transformer comprising;at least one phase element arranged to alter a phase of a first region of said wavefront relative to an adjacent second region of said wavefront; said optical signal propagating in an output optical waveguide in substantially a single second spatial mode having a wavefront characterized by a second unique spatial dependence of its phase.
  • 2. The transverse mode transformer of claim 1, wherein the first spatial mode comprises an LP01 mode.
  • 3. The transverse mode transformer of claim 1, wherein said single second spatial mode is an LP02 mode.
  • 4. The transverse mode transformer of claim 1, wherein said single second spatial mode is an LP11 mode.
  • 5. The transverse mode transformer of claim 1, further comprising a lens in optical communication with said at least one phase element.
  • 6. The transverse mode transformer of claim 5, wherein said lens is integral with one of said at least one phase elements.
  • 7. The transverse mode transformer of claim 1, wherein said at least one phase element is arranged to alter said phase of said first region of said wavefront by 180° relative to said second adjacent region of said wavefront.
  • 8. The transverse mode transformer of claim 1, wherein said at least one phase element is selected from the group consisting of a lens, a mirror, a grating, an electro-optic device, a beamsplitter, a reflective element, a graded index material, and a photolithographic element.
  • 9. The transverse mode transformer of claim 1, wherein said at least one phase element comprises a predetermined binary pattern on an end face of an optical waveguide adapted to support said optical signal propagating in the first spatial mode.
  • 10. The transverse mode transformer of claim 1, wherein said at least one phase element comprises a predetermined binary pattern on an end face of said output optical waveguide.
  • 11. A method for transforming an optical signal propagating in an input optical waveguide, said optical signal having a first spatial mode having a wavefront characterized by a first unique spatial dependence of its phase, said method comprising the steps of:providing at least one phase element arranged to alter a phase of a first region of the wavefront relative to a second adjacent region of said wavefront; directing the optical signal to propagate through said phase element, thereby altering said phase of said first region of said wavefront relative to said second adjacent region of said wavefront; and providing an output optical waveguide, whereby said phase-altered optical signal propagates in said output optical waveguide in substantially a second single spatial mode having a wavefront characterized by a second unique spatial dependence of its phase.
  • 12. The method of claim 11, wherein the first spatial mode comprises an LP01 mode.
  • 13. The method of claim 11, wherein said single second spatial mode is an LP02 mode.
  • 14. The method of claim 11, wherein said single second spatial mode is an LP11 mode.
  • 15. The method of claim 11, wherein said at least one phase element alters said phase of said first region of said wavefront substantially by 180° relative to said second region of said wavefront.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional U.S. patent application No. 60/079,423 which was filed Mar. 26, 1998, provisional U.S. patent application No. 60/089,350 which was filed Jun. 15, 1998 and provisional U.S. patent application No. 60/091,026 which was filed Jun. 29, 1998 and incorporates by reference U.S. patent application Ser. No. 09/249,830 entitled “Optical Communication System with Chromatic Dispersion” filed Feb. 12, 1999 and U.S. patent application Ser. No. 09/249,920 entitled “Apparatus and Method for Compensation of Chromatic Dispersion in Optical Fibers” (now U.S. Pat. No. 6,339,665) filed concurrently herewith.

US Referenced Citations (16)
Number Name Date Kind
3832030 Gloge Aug 1974 A
4281893 Yamada et al. Aug 1981 A
4701011 Emkey et al. Oct 1987 A
4768851 Shaw et al. Sep 1988 A
4777663 Charlton Oct 1988 A
4804248 Bhagavatula Feb 1989 A
4912523 Refi et al. Mar 1990 A
4953947 Bhagavatula Sep 1990 A
4974931 Poole Dec 1990 A
5185827 Poole Feb 1993 A
5261016 Poole Nov 1993 A
5267077 Blooder Nov 1993 A
5473719 Stone Dec 1995 A
5740292 Strasser Apr 1998 A
5802234 Vengsarkar et al. Sep 1998 A
6078709 Abramov et al. Jun 2000 A
Foreign Referenced Citations (2)
Number Date Country
53106142 Sep 1978 JP
10-170722 Jun 1998 JP
Non-Patent Literature Citations (3)
Entry
Bilodeau, F., et al.: “Efficient, Narrowband LP01 LP02 Mode Converters Fabricated in Photosensitive Fibre: Spectral Response” Electronic Letters, vol. 27, No. 8, pp. 682-684, (Apr. 11, 1991).
KY, N. H., et al.: “Efficient Broadband Intracore Grating LP01-LP02 Mode Converters for Chromatic-Dispersion Compensation” Optics Letters, vol. 23, No. 6, pp. 445-447, (Mar. 15, 1998).
Poole et al.: “Optical Fiber-Based Dispersion Compensation Using Higher Order Modes Near Cutoff” Journal of Lightwave technology, vol. 12, No. 10, pp. 1746-1758, Oct. 1994.
Provisional Applications (3)
Number Date Country
60/079423 Mar 1998 US
60/089350 Jun 1998 US
60/091026 Jun 1998 US