A portion of the disclosure of this patent document contains material which is subject to copyright protection. This patent document may show and/or describe matter which is or may become trade dress of the owner. The copyright and trade dress owner has no objection to the facsimile reproduction by anyone of the patent disclosure as it appears in the Patent and Trademark Office patent files or records, but otherwise reserves all copyright and trade dress rights whatsoever.
This disclosure relates to radio frequency filters using acoustic wave resonators, and specifically to filters for use in communications equipment.
A radio frequency (RF) filter is a two-port device configured to pass some frequencies and to stop other frequencies, where “pass” means transmit with relatively low signal loss and “stop” means block or substantially attenuate. The range of frequencies passed by a filter is referred to as the “pass-band” of the filter. The range of frequencies stopped by such a filter is referred to as the “stop-band” of the filter. A typical RF filter has at least one pass-band and at least one stop-band. Specific requirements on a pass-band or stop-band depend on the specific application. For example, a “pass-band” may be defined as a frequency range where the insertion loss of a filter is better than a defined value such as 1 dB, 2 dB, or 3 dB. A “stop-band” may be defined as a frequency range where the rejection of a filter is greater than a defined value such as 20 dB, 30 dB, 40 dB, or greater depending on application.
RF filters are used in communications systems where information is transmitted over wireless links. For example, RF filters may be found in the RF front-ends of cellular base stations, mobile telephone and computing devices, satellite transceivers and ground stations, IoT (Internet of Things) devices, laptop computers and tablets, fixed point radio links, and other communications systems. RF filters are also used in radar and electronic and information warfare systems.
RF filters typically require many design trade-offs to achieve, for each specific application, the best compromise between performance parameters such as insertion loss, rejection, isolation, power handling, linearity, size and cost. Specific design and manufacturing methods and enhancements can benefit simultaneously one or several of these requirements.
Performance enhancements to the RF filters in a wireless system can have broad impact to system performance. Improvements in RF filters can be leveraged to provide system performance improvements such as larger cell size, longer battery life, higher data rates, greater network capacity, lower cost, enhanced security, higher reliability, etc. These improvements can be realized at many levels of the wireless system both separately and in combination, for example at the RF module, RF transceiver, mobile or fixed sub-system, or network levels.
The desire for wider communication channel bandwidths will inevitably lead to the use of higher frequency communications bands. The current LTE™ (Long Term Evolution) specification defines frequency bands from 3.3 GHz to 5.9 GHz. Some of these bands are not presently used. Future proposals for wireless communications include millimeter wave communication bands with frequencies up to 28 GHz.
High performance RF filters for present communication systems commonly incorporate acoustic wave resonators including surface acoustic wave (SAW) resonators, bulk acoustic wave BAW) resonators, film bulk acoustic wave resonators (FBAR), and other types of acoustic resonators. However, these existing technologies are not well-suited for use at the higher frequencies proposed for future communications networks.
Throughout this description, elements appearing in figures are assigned three-digit or four-digit reference designators, where the two least significant digits are specific to the element and the one or two most significant digit is the figure number where the element is first introduced. An element that is not described in conjunction with a figure may be presumed to have the same characteristics and function as a previously described element having the same reference designator.
Description of Apparatus
The XBAR 100 is made up of a thin film conductor pattern formed on a surface of a piezoelectric plate 110 having parallel front and back surfaces 112, 114, respectively. The piezoelectric plate is a thin single-crystal layer of a piezoelectric material such as lithium niobate, lithium tantalate, lanthanum gallium silicate, gallium nitride, or aluminum nitride. The piezoelectric plate is cut such that the orientation of the X, Y, and Z crystalline axes with respect to the front and back surfaces is known and consistent. In the examples presented in this patent, the piezoelectric plates are Z-cut, which is to say the Z axis is normal to the front and back surfaces 112, 114. However, XBARs may be fabricated on piezoelectric plates with other crystallographic orientations.
The back surface 114 of the piezoelectric plate 110 is attached to a surface of the substrate 120 except for a portion of the piezoelectric plate 110 that forms a diaphragm 115 spanning a cavity 140 formed in the substrate. The portion of the piezoelectric plate that spans the cavity is referred to herein as the “diaphragm” 115 due to its physical resemblance to the diaphragm of a microphone. As shown in
The substrate 120 provides mechanical support to the piezoelectric plate 110. The substrate 120 may be, for example, silicon, sapphire, quartz, or some other material or combination of materials. The back surface 114 of the piezoelectric plate 110 may be bonded to the substrate 120 using a wafer bonding process. Alternatively, the piezoelectric plate 110 may be grown on the substrate 120 or attached to the substrate in some other manner. The piezoelectric plate 110 may be attached directly to the substrate or may be attached to the substrate 120 via one or more intermediate material layers.
“Cavity” has its conventional meaning of “an empty space within a solid body.” The cavity 140 may be a hole completely through the substrate 120 (as shown in Section A-A and Section B-B) or a recess in the substrate 120 (as shown subsequently in
The conductor pattern of the XBAR 100 includes an interdigital transducer (IDT) 130. The IDT 130 includes a first plurality of fingers, such as finger 136, extending from a first busbar 132 and a second plurality of fingers extending from a second busbar 134. The first and second pluralities of fingers are interleaved. The interleaved fingers overlap for a distance AP, commonly referred to as the “aperture” of the IDT. The center-to-center distance L between the outermost fingers of the IDT 130 is the “length” of the IDT. The fingers are typically, but not necessarily, parallel to each other.
The first and second busbars 132, 134 serve as the terminals of the XBAR 100. The piezoelectric plate 110 and the IDT 130 are configured such that a radio frequency or microwave signal applied between the two busbars 132, 134 of the IDT 130 excites a primary acoustic mode within the piezoelectric plate 110. The primary acoustic mode is a bulk shear mode where the primary direction of atomic motion within the piezoelectric plate 110 is parallel to the surfaces of the plate and perpendicular to the fingers of the IDT 130. Acoustic energy propagates along a direction substantially orthogonal to the surface of the piezoelectric plate 110, which is also normal, or transverse, to the direction of the electric field created by the IDT fingers. Thus, the XBAR is considered a transversely-excited film bulk wave resonator.
The IDT 130 is positioned on the piezoelectric plate 110 such that at least the fingers of the IDT 130 are disposed on the diaphragm 115 of the piezoelectric plate that spans, or is suspended over, the cavity 140. As shown in
For ease of presentation in
A front-side dielectric layer 214 may optionally be formed on the front side of the piezoelectric plate 110. The “front side” of the XBAR is, by definition, the surface facing away from the substrate. The front-side dielectric layer 214 has a thickness tfd. The front-side dielectric layer 214 is formed between the IDT fingers 238. Although not shown in
The IDT fingers 238 may be aluminum, a substantially aluminum alloys, copper, a substantially copper alloys, molybdenum, beryllium, gold, or some other conductive material. Thin (relative to the total thickness of the conductors) layers of other metals, such as chromium or titanium, may be formed under and/or over the fingers to improve adhesion between the fingers and the piezoelectric plate 110 and/or to passivate or encapsulate the fingers. The busbars (132, 134 in
Dimension p is the “pitch” of the IDT fingers, which may be referred to as the pitch of the IDT and/or the pitch of the XBAR. For an IDT with constant pitch, the pitch is equal to the center-to-center spacing of the fingers. Dimension w is the width or “mark” of the IDT fingers. The IDT of an XBAR differs substantially from the IDTs used in surface acoustic wave (SAW) resonators. In a SAW resonator, the pitch of the IDT is one-half of the acoustic wavelength at the resonance frequency. Additionally, the mark-to-pitch ratio of a SAW resonator IDT is typically close to 0.5 (i.e. the mark or finger width is about one-fourth of the acoustic wavelength at resonance). In an XBAR, the pitch p of the IDT is typically 2 to 20 times the width w of the fingers. In addition, the pitch p of the IDT is typically 2 to 20 times the thickness ts of the piezoelectric slab 212. The width of the IDT fingers in an XBAR is not constrained to one-fourth of the acoustic wavelength at resonance. For example, the width of XBAR IDT fingers may be 500 nm or greater, such that the IDT can be fabricated using optical lithography. The thickness tm of the IDT fingers may be from 100 nm to about 2.5 times the thickness ts of the piezoelectric slab 212. The thickness of the busbars (132, 134 in
The SM XBAR 300 is made up of a thin film conductor pattern formed on a front surface 312 of a piezoelectric plate 310 having parallel front and back surfaces 312, 314, respectively. The piezoelectric plate is a thin single-crystal layer of a piezoelectric material such as lithium niobate, lithium tantalate, lanthanum gallium silicate, gallium nitride, or aluminum nitride. The piezoelectric plate is cut such that the orientation of the X, Y, and Z crystalline axes with respect to the front and back surfaces is known and consistent. In the examples presented in this patent, the piezoelectric plates are Z-cut, which is to say the Z axis is normal to the surfaces of the plate. However, SM XBARs may be fabricated on piezoelectric plates with other crystallographic orientations.
The back surface 314 of the piezoelectric plate 310 is attached to, and mechanically supported by, a substrate 320. The substrate 320 may be, for example, silicon, sapphire, quartz, or some other material. As will be described subsequently, the piezoelectric plate 310 may be attached to the substrate 320 via a plurality of intermediate material layers.
The conductor pattern of the SM XBAR 300 includes an IDT 330 similar to the IDT 130 previously described. The IDT 330 includes a first plurality of fingers, such as finger 336, extending from a first busbar 332 and a second plurality of fingers extending from a second busbar 334. The first and second pluralities of parallel fingers are interleaved. The interleaved fingers overlap for a distance AP, commonly referred to as the “aperture” of the IDT. The center-to-center distance L between the outermost fingers of the IDT 330 is the “length” of the IDT.
The first and second busbars 332, 334 serve as the terminals of the SM XBAR 300. A radio frequency or microwave signal applied between the two busbars 332, 334 of the IDT 330 excites a primary acoustic wave within the piezoelectric plate 310. The excited primary acoustic wave is a bulk shear wave that propagates in the direction normal to the surface of the piezoelectric plate 310.
For ease of presentation in
A front-side dielectric layer 414 may optionally be formed on the front surface 312 of the piezoelectric plate 310. The front-side dielectric layer 414 has a thickness tfd. The front-side dielectric layer 414 may be formed between the IDT fingers 336. Although not shown in
An acoustic Bragg reflector 440 is sandwiched between a surface 322 of the substrate 320 and the back surface 314 of the piezoelectric plate 310. The term “sandwiched” means the acoustic Bragg reflector 440 is both disposed between and physically connected to a surface 322 of the substrate 320 and the back surface 314 of the piezoelectric plate 310. In some circumstances, thin layers of additional materials may be disposed between the acoustic Bragg reflector 440 and the surface 322 of the substrate 320 and/or between the Bragg reflector 440 and the back surface 314 of the piezoelectric plate 310. Such additional material layers may be present, for example, to facilitate bonding the piezoelectric plate 310, the acoustic Bragg reflector 440, and the substrate 320.
The acoustic Bragg reflector 440 includes multiple layers that alternate between materials having high acoustic impedance and materials have low acoustic impedance. “High” and “low” are relative terms. For each layer, the standard for comparison is the adjacent layers. Each “high” acoustic impedance layer has an acoustic impedance higher than that of both the adjacent low acoustic impedance layers. Each “low” acoustic impedance layer has an acoustic impedance lower than that of both the adjacent high acoustic impedance layers. Each of the layers has a thickness equal to, or about, one-fourth of the acoustic wavelength at or near a resonance frequency of the SM XBAR 300. Materials having comparatively low acoustic impedance include silicon dioxide, silicon oxycarbide, aluminum, and certain plastics such as cross-linked polyphenylene polymers. Materials having comparatively high acoustic impedance include silicon nitride, aluminum nitride, silicon carbide, and metals such as molybdenum, tungsten, gold, and platinum. All of the high acoustic impedance layers of the acoustic Bragg reflector 440 are not necessarily the same material, and all of the low acoustic impedance layers are not necessarily the same material. In the example of
The resonance and anti-resonance frequencies of the primary acoustic mode of an XBAR or an SM-XBAR are determined by multiple factors including the type, crystallographic orientation, and thickness of the piezoelectric slab and the pitch and mark of the IDT fingers. In particular, different combinations of mark and pitch on the same piezoelectric diaphragm can excite the same primary acoustic mode. In this context, two acoustic modes are considered to be the same if the two acoustic modes have the same direction of acoustic energy flow and the same resonance and/or anti-resonance frequencies.
A radio frequency or microwave signal applied across the IDT of an XBAR or an SM-XBAR may also excite undesired spurious acoustics modes. The frequency and strength of such spurious acoustic modes also depend on multiple factors including the pitch and mark of the IDT fingers. However, two or more mark/pitch combinations that excite the same primary acoustic mode do not necessarily excite the same spurious modes. When the pitch and mark within an IDT is changed between two or more mark/pitch combinations that produce the same primary acoustic mode but different spurious modes, the different spurious modes will not add constructively over the area of the IDT.
The unit cell 500 includes a first set of IDT fingers 512, 514, 516 extending from an upper busbar 510, and a second set of IDT fingers 522, 524 extending from a lower busbar 520. In this patent, directional terms such as upper, lower, left, right, vertical, horizontal, etc. refer to direction or position within the drawing being discussed and do not imply any physical position or orientation. The unit cell 500 is intended to be cascaded in the horizontal direction (as will be described in conjunction with
The unit cell 500 is divided into a first pitch/mark zone 530 and a second pitch/mark zone 540. Within the first pitch/mark zone 530, the pitch between adjacent fingers is P1 and the mark of the fingers is M1. Within the second pitch/mark zone 540, the pitch between adjacent fingers is P2 and the mark of the fingers is M2. The mark/pitch combination of the IDT changes between M1/P1 and M2/P2 every two fingers. To this end, each finger 512, 514, 516 of first set of IDT fingers extending from the upper busbar 510 has a uniform width of (M1+M2)/2, including portions of fingers 512 and 516 within adjacent unit cells. Note that the pitch is not measured to the respective centers of the first set of IDT fingers, but to a dashed line that divides each finger in a ratio of M1/M2. For example, finger 514 is divided such that the portion of the finger extending left into the 1st pitch/mark zone 530 has a width of M1/2, and the portion of this finger extending right into the 2nd pitch/mark zone 540 has a width of M2/2. The second set of IDT fingers 522, 524 extending from the lower busbar 520 has a center-to-center distance between adjacent fingers equal to P1+P2. The mark of the second set of IDT fingers 522, 524 alternates between M1 (e.g. finger 522) and M2 (e.g. finger 524). The net effect is that the unit cell 500 has two periods of pitch P1 and mark M1 followed by two periods of pitch P2 and mark M2.
The unit cell 500 may be cascaded to provide an IDT with any desired length with a corresponding number of fingers.
The unit cell 500 is exemplary. A unit cell for varying the pitch and mark along the length of an IDT may, for example, may have three or more consecutive periods of each mark/pitch combination as shown in
Alternatively, or additionally, a unit cell for varying the pitch and mark along the length of an IDT may cycle between three or more mark/pitch zones as shown in
The unit cell 900 includes a first set of IDT fingers 912, 914, 916 extending from an upper busbar 910, and a second set of IDT fingers 922, 924 extending from a lower busbar 920. The unit cell 900 is intended to be cascaded in the horizontal direction to form an IDT. The unit cell 900 only includes portions of the end fingers 912 and 916. Other portions of those fingers exist within adjacent unit cells (not shown in
In the unit cell 900, dot-dash rectangles 930 identify first pitch/mark zones of the IDT where the local pitch is P1 and the local mark is M1. Dashed rectangles 940 identify second pitch/mark zones of the IDT where the local pitch is P2 and the local mark is M2. The mark/pitch combination of the IDT steps between M1/P1 and M2/P2 across the aperture AP for every pair of fingers. D
For example, the pitch between fingers 912 and 922 is P2 and the mark is M2 over the upper half of the aperture proximate the upper busbar 910. The pitch between fingers 912 and 922 is P1 and the mark is M1 over the lower half of the aperture AP proximate the lower busbar 920. The upper half of the aperture between fingers 912 and 922 is a 2nd pitch/mark zone 940 (as indicated by the dashed rectangle). The lower half of the aperture between fingers 912 and 922 is a 1st pitch/mark zone 930 (as indicated by the dot-dash rectangle). The change between a first pitch/mark zone and a second pitch/mark zone is reversed between fingers 922 and 914.
The unit cell 900 may be cascaded to provide an IDT with any desired length with a corresponding number of fingers. The unit cell 900 is exemplary. A unit cell for varying the pitch and mark across the aperture of an IDT may, for example, switch between three or more mark/pitch combinations and may switch between pitch/mark combinations in two or more steps across the aperture.
The unit cell 1000 includes a first set of IDT fingers 1012, 1014, 1016 extending from an upper busbar 1010, and a second set of IDT fingers 1022, 1024 extending from a lower busbar 1020. The unit cell 1000 is intended to be cascaded in the horizontal direction (as was described in conjunction with
In the unit cell 1000, the mark/pitch combination of the IDT varies continuously between M1/P1 and M2/P2 across the aperture of the IDT for every pair of fingers. For example, fingers 1012 and 1022 form a second pitch/mark zone 1040 with pitch=P2 and mark=M2 at the upper edge of the aperture proximate the upper busbar 1010. The same two fingers 1012, 1011 form a second pitch/mark zone 1040, with pitch=P1 and mark=M1, at the lower edge of the aperture proximate the lower busbar 1020. Conversely, the pitch between fingers 1022 and 1014 is P1 at the upper edge of the aperture AP proximate the upper busbar 1010 and P2 at the lower edge of the aperture AP proximate the lower busbar 1020.
To accomplish this change in pitch, at least portions of fingers 1022 and 1024 within the aperture AP are tilted, which is to say not perpendicular to the lower bus bar 1020. Specifically, the portion of finger 1022 within the aperture AP tilts from perpendicular to the lower busbar 1020 by an angle equal to the arctangent of (P2-P1)/AP. The portion of finger 1024 within the aperture AP tilts from perpendicular to the lower busbar 1020 by the same angular magnitude in the opposite direction of the tilt of finger 1022. The spacing between adjacent fingers in the same set of fingers (e.g. between fingers 1012 and 1014 or fingers 1022 and 1024) is P2+P1.
To maintain constant resonance and/or anti-resonance frequencies, the mark must also vary across the aperture. To this end, the first set of IDT fingers 1012, 1014, 1016 extending from the upper busbar 1010 are tapered and the second set of IDT fingers 1022, 1024 extending from the lower busbar 1020 are tilted. For example, the width of fingers 1012 and 1016 (including the portions in the adjacent unit cells) is M1 at the upper edge of the aperture AP proximate the upper busbar 1010 and M2 at the lower edge of the aperture AP proximate the lower busbar 1020. Conversely, the width of finger 1014 is M2 at the upper edge of the aperture AP proximate the upper busbar 1010 and M1 at the lower edge of the aperture AP proximate the lower busbar 1020. The tilted fingers 1022 and 1024 have a fixed width, parallel to the busbars 1010, 1020 equal to (M1+M2)/2. Simulation results show that an RF signal applied to the unit cell 100 excites essentially the same shear primary acoustic mode over the entire unit cell 1000. Tapering the first set of fingers between M1 and M2 and using the average of M1 and M2 for the second set of fingers has the same effect as a mark equal to M1 where the pitch is P1 and a mark equal to M2 where the pitch is P2. Thus the effective mark is equal to M1 where the pitch is P1 and the effective mark is equal to M2 where the pitch is P2.
The unit cell 1000 may be cascaded to provide an IDT with any desired length with a corresponding number of fingers.
The IDT 1100 is exemplary. An IDT with varied pitch and mark across the aperture may, for example, have more or fewer that 8 unit cells and more or fewer than 33 fingers. An IDT may use two or more two or more different unit cells in rotation.
The curves 1210 and 1220 in
The XBAR devices simulated to generate the curves 1210 and 1220 are exemplary. XBAR devices may be designed with different dimensions for operation at the same or other frequencies.
Closing Comments
Throughout this description, the embodiments and examples shown should be considered as exemplars, rather than limitations on the apparatus and procedures disclosed or claimed. Although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. With regard to flowcharts, additional and fewer steps may be taken, and the steps as shown may be combined or further refined to achieve the methods described herein. Acts, elements and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
As used herein, “plurality” means two or more. As used herein, a “set” of items may include one or more of such items. As used herein, whether in the written description or the claims, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of”, respectively, are closed or semi-closed transitional phrases with respect to claims. Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. As used herein, “and/or” means that the listed items are alternatives, but the alternatives also include any combination of the listed items.
This patent is a continuation of application Ser. No. 16/805,471, filed Feb. 28, 2020, entitled TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATOR WITH INTERDIGITAL TRANSDUCER WITH VARIED MARK AND PITCH, which claims priority from provisional patent application 62/892,871, filed Aug. 28, 2019, entitled XBAR RESONATORS WITH REDUCED SPURIOUS MODES. This patent is related to application Ser. No. 16/230,443, filed Dec. 21, 2018, entitled TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATOR, now U.S. Pat. No. 10,491,192. This patent is related to application Ser. No. 16/438,141, filed Jun. 11, 2019, entitled SOLIDLY-MOUNTED TRANSVERSELY-EXCITED FILM BULK ACOUSTIC RESONATOR, now U.S. Pat. No. 10,601,392.
Number | Name | Date | Kind |
---|---|---|---|
5446330 | Eda et al. | Aug 1995 | A |
5552655 | Stokes et al. | Sep 1996 | A |
5631515 | Mineyoshi et al. | May 1997 | A |
5726610 | Allen et al. | Mar 1998 | A |
5853601 | Krishaswamy | Dec 1998 | A |
6377140 | Ehara et al. | Apr 2002 | B1 |
6516503 | Kada et al. | Feb 2003 | B1 |
6540827 | Levy et al. | Apr 2003 | B1 |
6570470 | Maehara et al. | May 2003 | B2 |
6707229 | Martin | Mar 2004 | B1 |
6710514 | Ikada et al. | Mar 2004 | B2 |
6833774 | Abbott et al. | Dec 2004 | B2 |
7042132 | Bauer et al. | May 2006 | B2 |
7345400 | Nakao et al. | Mar 2008 | B2 |
7463118 | Jacobsen | Dec 2008 | B2 |
7535152 | Ogami et al. | May 2009 | B2 |
7684109 | Godshalk et al. | Mar 2010 | B2 |
7728483 | Tanaka | Jun 2010 | B2 |
7868519 | Umeda | Jan 2011 | B2 |
7939987 | Solal et al. | May 2011 | B1 |
7941103 | Iwamoto et al. | May 2011 | B2 |
7965015 | Tai et al. | Jun 2011 | B2 |
8278802 | Lee et al. | Oct 2012 | B1 |
8294330 | Abbott et al. | Oct 2012 | B1 |
8344815 | Yamanaka et al. | Jan 2013 | B2 |
8816567 | Zuo et al. | Aug 2014 | B2 |
8829766 | Milyutin et al. | Sep 2014 | B2 |
8932686 | Hayakawa et al. | Jan 2015 | B2 |
9093979 | Wang | Jul 2015 | B2 |
9112134 | Takahashi | Aug 2015 | B2 |
9130145 | Martin et al. | Sep 2015 | B2 |
9219466 | Meltaus et al. | Dec 2015 | B2 |
9240768 | Nishihara et al. | Jan 2016 | B2 |
9276557 | Nordquist et al. | Mar 2016 | B1 |
9369105 | Li et al. | Jun 2016 | B1 |
9425765 | Rinaldi | Aug 2016 | B2 |
9525398 | Olsson | Dec 2016 | B1 |
9564873 | Kadota | Feb 2017 | B2 |
9640750 | Nakanishi et al. | May 2017 | B2 |
9748923 | Kando et al. | Aug 2017 | B2 |
9762202 | Thalmayr et al. | Sep 2017 | B2 |
9780759 | Kimura et al. | Oct 2017 | B2 |
9837984 | Khlat et al. | Dec 2017 | B2 |
10079414 | Guyette et al. | Sep 2018 | B2 |
10187039 | Komatsu et al. | Jan 2019 | B2 |
10200013 | Bower et al. | Feb 2019 | B2 |
10211806 | Bhattacharjee | Feb 2019 | B2 |
10284176 | Solal | May 2019 | B1 |
10389391 | Ito et al. | Aug 2019 | B2 |
10491192 | Plesski et al. | Nov 2019 | B1 |
10601392 | Plesski et al. | Mar 2020 | B2 |
10637438 | Garcia et al. | Apr 2020 | B2 |
10644674 | Takamine | May 2020 | B2 |
10756697 | Plesski et al. | Aug 2020 | B2 |
10790802 | Yantchev et al. | Sep 2020 | B2 |
10797675 | Plesski | Oct 2020 | B2 |
10819309 | Turner et al. | Oct 2020 | B1 |
10826462 | Plesski et al. | Nov 2020 | B2 |
10868510 | Yantchev et al. | Dec 2020 | B2 |
10868512 | Garcia et al. | Dec 2020 | B2 |
10868513 | Yantchev | Dec 2020 | B2 |
10911017 | Plesski | Feb 2021 | B2 |
10911021 | Turner et al. | Feb 2021 | B2 |
10911023 | Turner | Feb 2021 | B2 |
10917070 | Plesski et al. | Feb 2021 | B2 |
10917072 | McHugh et al. | Feb 2021 | B2 |
10985726 | Plesski | Apr 2021 | B2 |
10985728 | Plesski et al. | Apr 2021 | B2 |
10985730 | Garcia | Apr 2021 | B2 |
10992282 | Plesski et al. | Apr 2021 | B1 |
10992283 | Plesski et al. | Apr 2021 | B2 |
10992284 | Yantchev | Apr 2021 | B2 |
10998877 | Turner et al. | May 2021 | B2 |
10998882 | Yantchev et al. | May 2021 | B2 |
11003971 | Plesski et al. | May 2021 | B2 |
11146232 | Yandrapalli et al. | Oct 2021 | B2 |
11201601 | Yantchev et al. | Dec 2021 | B2 |
11418167 | Garcia | Aug 2022 | B2 |
20020079986 | Ruby et al. | Jun 2002 | A1 |
20020158714 | Kaitila et al. | Oct 2002 | A1 |
20020189062 | Lin et al. | Dec 2002 | A1 |
20030080831 | Naumenko et al. | May 2003 | A1 |
20030199105 | Kub et al. | Oct 2003 | A1 |
20040041496 | Imai et al. | Mar 2004 | A1 |
20040100164 | Murata | May 2004 | A1 |
20040207033 | Koshido | Oct 2004 | A1 |
20040207485 | Kawachi et al. | Oct 2004 | A1 |
20040261250 | Kadota et al. | Dec 2004 | A1 |
20050099091 | Mishima et al. | May 2005 | A1 |
20050185026 | Noguchi et al. | Aug 2005 | A1 |
20050218488 | Matsuo | Oct 2005 | A1 |
20050264136 | Tsutsumi et al. | Dec 2005 | A1 |
20060131731 | Sato | Jun 2006 | A1 |
20060152107 | Tanaka | Jul 2006 | A1 |
20060179642 | Kawamura | Aug 2006 | A1 |
20070090898 | Kando | Apr 2007 | A1 |
20070115079 | Kubo et al. | May 2007 | A1 |
20070182510 | Park | Aug 2007 | A1 |
20070188047 | Tanaka | Aug 2007 | A1 |
20070194863 | Shibata et al. | Aug 2007 | A1 |
20070267942 | Matsumoto et al. | Nov 2007 | A1 |
20070296304 | Fujii et al. | Dec 2007 | A1 |
20080018414 | Inoue et al. | Jan 2008 | A1 |
20080246559 | Ayazi | Oct 2008 | A1 |
20080297280 | Thalhammer et al. | Dec 2008 | A1 |
20090315640 | Umeda et al. | Dec 2009 | A1 |
20100064492 | Tanaka | Mar 2010 | A1 |
20100123367 | Tai et al. | May 2010 | A1 |
20100212127 | Heinze et al. | Aug 2010 | A1 |
20100301703 | Chen et al. | Dec 2010 | A1 |
20110018389 | Fukano et al. | Jan 2011 | A1 |
20110018654 | Bradley et al. | Jan 2011 | A1 |
20110102107 | Onzuka | May 2011 | A1 |
20110109196 | Goto et al. | May 2011 | A1 |
20110199160 | Yamanaka | Aug 2011 | A1 |
20110278993 | Iwamoto | Nov 2011 | A1 |
20120286900 | Kadota et al. | Nov 2012 | A1 |
20130057360 | Meltaus et al. | Mar 2013 | A1 |
20130207747 | Nishii et al. | Aug 2013 | A1 |
20130234805 | Takahashi | Sep 2013 | A1 |
20130271238 | Onda | Oct 2013 | A1 |
20130278609 | Stephanou et al. | Oct 2013 | A1 |
20130321100 | Wang | Dec 2013 | A1 |
20140009032 | Takahashi et al. | Jan 2014 | A1 |
20140009247 | Moriya | Jan 2014 | A1 |
20140113571 | Fujiwara et al. | Apr 2014 | A1 |
20140130319 | Iwamoto | May 2014 | A1 |
20140145556 | Kadota | May 2014 | A1 |
20140151151 | Reinhardt | Jun 2014 | A1 |
20140152145 | Kando et al. | Jun 2014 | A1 |
20140173862 | Kando et al. | Jun 2014 | A1 |
20140225684 | Kando et al. | Aug 2014 | A1 |
20140312994 | Meltaus et al. | Oct 2014 | A1 |
20150014795 | Franosch et al. | Jan 2015 | A1 |
20150042417 | Onodera et al. | Feb 2015 | A1 |
20150165479 | Lasiter et al. | Jun 2015 | A1 |
20150244149 | Van Someren | Aug 2015 | A1 |
20150319537 | Perois et al. | Nov 2015 | A1 |
20150333730 | Meltaus et al. | Nov 2015 | A1 |
20160028367 | Shealy | Jan 2016 | A1 |
20160036415 | Ikeuchi | Feb 2016 | A1 |
20160049920 | Kishino | Feb 2016 | A1 |
20160079958 | Burak | Mar 2016 | A1 |
20160149554 | Nakagawa | May 2016 | A1 |
20160182009 | Bhattacharjee | Jun 2016 | A1 |
20160301382 | Iwamoto | Oct 2016 | A1 |
20170063332 | Gilbert et al. | Mar 2017 | A1 |
20170104470 | Koelle et al. | Apr 2017 | A1 |
20170179225 | Kishimoto | Jun 2017 | A1 |
20170179928 | Raihn et al. | Jun 2017 | A1 |
20170187352 | Omura | Jun 2017 | A1 |
20170201232 | Nakamura et al. | Jul 2017 | A1 |
20170214381 | Bhattacharjee | Jul 2017 | A1 |
20170214387 | Burak et al. | Jul 2017 | A1 |
20170214389 | Tsutsumi | Jul 2017 | A1 |
20170222617 | Mizoguchi | Aug 2017 | A1 |
20170222622 | Solal et al. | Aug 2017 | A1 |
20170264266 | Kishimoto | Sep 2017 | A1 |
20170290160 | Takano et al. | Oct 2017 | A1 |
20170359050 | Irieda et al. | Dec 2017 | A1 |
20170370791 | Nakamura et al. | Dec 2017 | A1 |
20180005950 | Watanabe | Jan 2018 | A1 |
20180013400 | Ito et al. | Jan 2018 | A1 |
20180013405 | Takata | Jan 2018 | A1 |
20180026603 | Iwamoto | Jan 2018 | A1 |
20180033952 | Yamamoto | Feb 2018 | A1 |
20180041191 | Park | Feb 2018 | A1 |
20180062615 | Kato et al. | Mar 2018 | A1 |
20180062617 | Yun et al. | Mar 2018 | A1 |
20180123016 | Gong | May 2018 | A1 |
20180152169 | Goto et al. | May 2018 | A1 |
20180191322 | Chang et al. | Jul 2018 | A1 |
20180212589 | Meltaus et al. | Jul 2018 | A1 |
20180278227 | Hurwitz | Sep 2018 | A1 |
20180309426 | Guenard et al. | Oct 2018 | A1 |
20180316333 | Nakamura et al. | Nov 2018 | A1 |
20180358948 | Gong et al. | Dec 2018 | A1 |
20190007022 | Goto et al. | Jan 2019 | A1 |
20190068155 | Kimura et al. | Feb 2019 | A1 |
20190068164 | Houlden et al. | Feb 2019 | A1 |
20190123721 | Takamine | Apr 2019 | A1 |
20190131953 | Gong | May 2019 | A1 |
20190148621 | Feldman et al. | May 2019 | A1 |
20190181825 | Schmalzl et al. | Jun 2019 | A1 |
20190181833 | Nosaka | Jun 2019 | A1 |
20190207583 | Miura et al. | Jul 2019 | A1 |
20190245518 | Ito | Aug 2019 | A1 |
20190273480 | Lin et al. | Sep 2019 | A1 |
20190348966 | Campanella-Pineda | Nov 2019 | A1 |
20190386636 | Plesski et al. | Dec 2019 | A1 |
20200007110 | Konaka et al. | Jan 2020 | A1 |
20200021272 | Segovia Fernandez et al. | Jan 2020 | A1 |
20200036357 | Mimura | Jan 2020 | A1 |
20200235719 | Yantchev et al. | Jul 2020 | A1 |
20200244247 | Maeda | Jul 2020 | A1 |
20200274520 | Shin et al. | Aug 2020 | A1 |
20200295729 | Yantchev | Sep 2020 | A1 |
20200304091 | Yantchev | Sep 2020 | A1 |
20200321939 | Turner et al. | Oct 2020 | A1 |
20200328728 | Nakagawa et al. | Oct 2020 | A1 |
20200350891 | Turner et al. | Nov 2020 | A1 |
20200373907 | Garcia | Nov 2020 | A1 |
20210013859 | Turner et al. | Jan 2021 | A1 |
20210152150 | Yantchev | May 2021 | A1 |
20210273631 | Jachowski et al. | Sep 2021 | A1 |
20210313951 | Yandrapalli et al. | Oct 2021 | A1 |
20210328575 | Hammond et al. | Oct 2021 | A1 |
20220103160 | Jachowski et al. | Mar 2022 | A1 |
20220116015 | Garcia et al. | Apr 2022 | A1 |
20220123720 | Garcia et al. | Apr 2022 | A1 |
20220123723 | Garcia et al. | Apr 2022 | A1 |
20220149808 | Dyer et al. | May 2022 | A1 |
20220149814 | Garcia et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
106788318 | May 2017 | CN |
110417373 | Nov 2019 | CN |
210431367 | Apr 2020 | CN |
113765495 | Dec 2021 | CN |
H10209804 | Aug 1998 | JP |
2001244785 | Sep 2001 | JP |
2002300003 | Oct 2002 | JP |
2003078389 | Mar 2003 | JP |
2004096677 | Mar 2004 | JP |
2004129222 | Apr 2004 | JP |
2004523179 | Jul 2004 | JP |
2004304622 | Oct 2004 | JP |
2006173557 | Jun 2006 | JP |
2007251910 | Sep 2007 | JP |
2007329584 | Dec 2007 | JP |
2010062816 | Mar 2010 | JP |
2010103803 | May 2010 | JP |
2010154505 | Jul 2010 | JP |
2010233210 | Oct 2010 | JP |
2013528996 | Jul 2013 | JP |
2013214954 | Oct 2013 | JP |
2015054986 | Mar 2015 | JP |
2016001923 | Jan 2016 | JP |
2017526254 | Sep 2017 | JP |
2017220910 | Dec 2017 | JP |
2018093487 | Jun 2018 | JP |
2018166259 | Oct 2018 | JP |
2018207144 | Dec 2018 | JP |
2019186655 | Oct 2019 | JP |
2020113939 | Jul 2020 | JP |
2010047114 | Apr 2010 | WO |
2013021948 | Feb 2013 | WO |
2015098694 | Jul 2015 | WO |
2016017104 | Feb 2016 | WO |
2016052129 | Apr 2016 | WO |
2016147687 | Sep 2016 | WO |
2017188342 | Nov 2017 | WO |
2018003268 | Jan 2018 | WO |
2018003273 | Jan 2018 | WO |
2018163860 | Sep 2018 | WO |
2019117133 | Jun 2019 | WO |
2019138810 | Jul 2019 | WO |
2020092414 | May 2020 | WO |
12020100744 | May 2020 | WO |
Entry |
---|
Buchanan “Ceramic Materials for Electronics” 3rd Edition, first published in 2004 by Marcel Dekker, Inc. pp. 496 (Year 2004). Jan. 00, 2004. |
Sorokin et al. Study of Microwave Acoustic Attenuation in a Multi-frequency Bulk Acoustic Resonator Based on a Synthetic Diamond Single Crystal Published in Acoustical Physics, vol. 61, No. 6, 2015 pp. 675 (Year 2015) Jan. 00, 2015. |
Zou, Jie “High-Performance Aluminum Nitride Lamb Wave Resonators for RF Front-End Technology” University of California, Berkeley, Summer 2015, pp. 63 (Year 2015) Jan. 00, 2015. |
Santosh, G. , Surface acoustic wave devices on silicon using patterned and thin film ZnO, Ph.D. thesis, Feb. 2016, Indian Institute of technology Guwahati, Assam, India Feb. 2016. |
Merriam Webster, dictionary meaning of the word “diaphragm”, since 1828, Merriam Webster (Year: 1828) 1828. |
Kadota et al. “5.4 Ghz Lamb Wave Resonator on LiNbO3 Thin Crystal Plate and Its Application,” published in Japanese Journal of Applied Physics 50 (2011) 07HD11. (Year: 2011) 2011. |
Safari et al. “Piezoelectric for Transducer Applications” published by Elsevier Science Ltd., pp. 4 (Year: 2000). 2020. |
Moussa et al. Review on Triggered Liposomal Drug Delivery with a Focus on Ultrasound 2015, Bentham Science Publishers, pp. 16 (Year 2005) 2005. |
Acoustic Properties of Solids ONDA Corporation 592 Weddell Drive, Sunnyvale, CA 94089, Apr. 11, 2003, pp. 5 (Year 2003). 2003. |
Bahreyni, B. Fabrication and Design of Resonant Microdevices Andrew William, Inc. 2018, NY (Year 2008). 2008. |
Material Properties of Tibtech Innovations, © 2018 Tibtech Innovations (Year 2018). 2018. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2020/45654 dated Oct. 29, 2020. |
T. Takai, H. Iwamoto, et al., “I.H.P.Saw Technology and its Application to Microacoustic Components (Invited).” 2017 IEEE International Ultrasonics Symposium, Sep. 6-9, 2017. pp. 1-8. |
R. Olsson III, K. Hattar et al. “A high electromechanical coupling coefficient SH0 Lamb wave lithiumniobate micromechanical resonator and a method for fabrication” Sensors and Actuators A: Physical, vol. 209, Mar. 1, 2014, pp. 183-190. |
M. Kadota, S. Tanaka, “Wideband acoustic wave resonators composed of hetero acoustic layer structure,” Japanese Journal of Applied Physics, vol. 57, No. 7S1. Published Jun. 5, 2018. 5 pages. |
Y. Yang, R. Lu et al. “Towards Ka Band Acoustics: Lithium Niobat Asymmetrical Mode Piezoelectric MEMS Resonators”, Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign, May 2018. pp. 1-2. |
Y. Yang, A. Gao et al. “5 GHZ Lithium Niobate MEMS Resonators With High FOM of 153”, 2017 IEEE 30th International Conference in Micro Electro Mechanical Systems (MEMS). Jan. 22-26, 2017. pp. 942-945. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2019/036433 dated Aug. 29, 2019. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2019/058632 dated Jan. 17, 2020. |
G. Manohar, “Investigation of Various Surface Acoustic Wave Design Configurations for Improved Sensitivity.” Doctoral dissertation, University of South Florida, USA, Jan. 2012, 7 pages. |
Ekeom, D. & Dubus, Bertrand & Volatier, A . . . (2006). Solidly mounted resonator (SMR) FEM-BEM simulation. 1474-1477. 10.1109/ULTSYM.2006.371. |
Mizutaui, K. and Toda, K., “Analysis of lamb wave propagation characteristics in rotated Ycut Xpropagation LiNbO3 plates.” Electron. Comm. Jpn. Pt. I, 69, No. 4 (1986): 47-55. doi:10.1002/ecja.4410690406. |
Naumenko et al., “Optimal orientations of Lithium Niobate for resonator SAW filters”, 2003 IEEE Ultrasonics Symposium—pp. 2110-2113. (Year: 2003). |
Namdeo et al. “Simulation on Effects of Electrical Loading due to Interdigital Transducers in Surface Acoustic Wave Resonator”, published in Procedia Engineering 64 ( 2013) of Science Direct pp. 322-330 (Year: 2013) 2013. |
Rodriguez-Madrid et al., “Super-High-Frequency SAW Resonators on AIN/Diamond”, IEEE Electron Device Letters, vol. 33, No. 4, Apr. 2012, pp. 495-497. Year: 2012) 2012. |
A. C. Guyette, “Theory and Design of Intrinsically Switched Multiplexers With Optimum Phase Linearity,” in IEEE Transactions on Microwave Theory and Techniques, vol. 61, No. 9, pp. 3254-3264, Sep. 2013, doi: 10.1109/TMTT.2013.2274963. Sep. 2013. |
Yanson Yang, Ruochen Lu, Songbin Gong, High Q Antisymmetric Mode Lithium Niobate MEMS Resonators With Spurious Mitigation, Journal of Microelectromechanical Systems, vol. 29, No. 2, Apr. 2020. Apr. 2, 2020. |
Yu-Po Wong, Luyan Qiu, Naoto Matsuoka, Ken-ya Hashimoto, Broadband Piston Mode Operation for First-order Antisymmetric Mode Resonators, 2020 IEEE International Ultrasonics Symposium, Sep. 2020. Sep. 2020. |
USPTO/ISA, International Search Report and Written Opinion for PCT Application No. PCT/US2021/024824 dated Jul. 27, 2021, 9 total pages. |
Chen et al., “Development and Application of SAW Filter,” Micromachines, Apr. 20, 2022, vol. 13, No. 656, pp. 1-15. |
Herrmann et al., “Properties of shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures,” Ultrasonics, 1999, vol. 37, pp. 335-341. |
Lam et al., “A Review of Lame and Lamb Mode Crystal Resonators for Timing Applications and Prospects of Lame and Lamb Mode Piezo MEMS Resonators for Filtering Applications,” 2018 International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, Mar. 6-7, 2018, 12 pages. |
Kadota et al., “Ultra-Wideband Ladder Filter Using SH0 Plate Wave in Thin LiNbO3 Plate and Its Application to Tunable Filter”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, No. 5, May 2015, pp. 939-946. |
Abass et al. “Effects of inhomogeneous grain size distribution in polycrystalline silicon solar cells”, Energy Procedia 10(2011) pp. 55-60 © 2011 Published by Elsevier Ltd. |
Gorisse et al., “Lateral Field Excitation of membrane-based Aluminum Nitride resonators”, 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings. |
Pang et al., “Self-Aligned Lateral Field Excitation Film Acoustic Resonator with Very Large Electromechanical Coupling”, 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference, pp. 558-561. |
Xue et al., “High Q Lateral-Field-Excited Bulk Resonator Based on Single-Crystal LiTaO3 for 5G Wireless Communication”, Journal of Electron devices society, Mar. 2021, Introduction. |
Yandrapalli et al., “Toward Band n78 Shear Bulk Acoustic Resonators Using Crystalline Y-Cut Lithium Niobate Films with Spurious Suppression”, Journal of Microelectromechanical Systems, vol. 32, No. 4, Aug. 2023, pp. 327-334. |
Gnewuch, et al. “Broadband monolithic acousto-optic tunable filter”, Mar. 1, 2000 / vol. 25, No. 5 / Optics Letters. |
Reinhardt, “Acoustic filters based on thin single crystal LiNb••3 films: status and prospects”, 2014 IEEE International Ultrasonics Symposium Proceedings, pp. 773-781. |
Number | Date | Country | |
---|---|---|---|
20210391847 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
62892871 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16805471 | Feb 2020 | US |
Child | 17460737 | US |