The present disclosure relates to the fusion of vertebral bodies. More specifically, the present disclosure relates to devices and associated methods for fusion of vertebral bodies that provide robust spinal support in a less invasive manner.
The concept of intervertebral fusion for the cervical and lumbar spine following a discectomy was generally introduced in the 1960s. It involved coring out a bone graft from the hip and implanting the graft into the disc space. The disc space was prepared by coring out the space to match the implant. The advantages of this concept were that it provided a large surface area of bone to bone contact and placed the graft under loading forces that allowed osteoconduction and induction enhancing bone fusion. However, the technique is seldom practiced today due to numerous disadvantages including lengthy operation time, destruction of a large portion of the disc space, high risk of nerve injury, and hip pain after harvesting the bone graft.
Presently, at least two devices are commonly used to perform the intervertebral portion of an intervertebral body fusion: the first is the distraction device and the second is the intervertebral body fusion device, often referred to as a cage. Cages can be implanted as standalone devices or as part of a circumferential fusion approach with pedicle screws and rods. The concept is to introduce a distraction device that will distract a collapsed disc in a generally axial direction, decompress the nerve root, and allow load sharing to enhance bone formation, and then implant an intervertebral fusion device that is small enough to allow implantation with minimal retraction and pulling on nerves.
In a typical intervertebral body fusion procedure, a portion of the intervertebral disc is first removed from between the vertebral bodies. This can be done through either a direct open approach or a minimally invasive approach. Disc shavers, pituitary rongeours, curettes, and/or disc scrapers can be used to remove the nucleus and a portion of either the anterior or posterior annulus to allow implantation and access to the inner disc space. The distraction device is inserted into the cleared space to enlarge the disc space such that the vertebral bodies are separated in a generally axial direction by actuating the distraction device. Enlarging the disc space is important because it also opens the foramen where the nerve root exists. It is important that during the distraction process one does not over-distract the facet joints. An intervertebral fusion device is next inserted into the distracted space and bone growth factor, such as autograft, a collagen sponge with bone morphogenetic protein, or other bone enhancing substance may be inserted into the space within the intervertebral fusion device to promote the fusion of the vertebral bodies.
Intervertebral distraction and fusion can be performed through anterior, posterior, oblique, and lateral approaches. Each approach has its own anatomical challenges, but the general concept is to fuse adjacent vertebra in the cervical thoracic or lumbar spine. Devices have been made from various materials. Such materials include cadaveric cancellous bone, carbon fiber, titanium and polyetheretherketone (PEEK). Devices have also been made into different shapes such as a bean shape, football shape, banana shape, wedge shape and a threaded cylindrical cage.
As with all minimally invasive surgeries, a primary goal is to provide equivalent or near equivalent treatment as more invasive surgical techniques but with less discomfort, recovery time, etc. for the patient. One problem with minimally invasive intervertebral fusion procedures is that the limited size of the surgical access limits the size of the implant(s) that can be inserted. While devices that are vertically expandable in a generally axial direction have addressed some of these issues by being able to be inserted through a smaller opening and then made taller in a generally axial direction within the disc space, such devices are still limited in the transverse footprint that can be covered within the disc space which can affect the stability of the device within the disc space and limits the area for bone grown. Examples of such devices are disclosed in U.S. Pat. No. 11,234,835 and U.S. Patent Publication No. 2020/0281743, each of which is incorporated herein by reference in its entirety.
Disclosed herein are systems and methods for intervertebral body fusion that provide more robust support within the disc space. Intervertebral body fusion devices can have a unitary monolithic body including a plurality of body segments interconnected with each other by flexure members. Devices be configured to be inserted through an opening in a compressed configuration and then expanded within the disc space to an expanded configuration. In the expanded configuration, devices can have a greater mediolateral or transverse to the disc space footprint. This wider footprint provides greater support for the vertebrae relative to the size of the opening through which the device is inserted.
In one embodiment, an expandable intervertebral body fusion device includes a unitary monolithic body having a plurality of body segments connected to each other with flexure members and an opening defined between the plurality of body segments. The device body can include an anterior body segment, a posterior body segment and one or more mediolateral body segments extending between the anterior body segment and the posterior body segment along both a lateral side and a medial side of the anterior body segment and the posterior body segment. An opening can be formed in each of the anterior body segment and the posterior body segment. A locking bushing can extend from one of the anterior body segment and the posterior body segment into the opening in the body. The body is configured to be mediolaterally expanded from a compressed configuration to an expanded configuration by interaction of an expansion tool with the threaded opening causing the one or more mediolateral body segments on the lateral side and the one or more mediolateral body segments on the medial side to generally move away from each other and expand the opening between the plurality of body segments such that the body forms a greater mediolateral footprint in the expanded configuration than in the compressed configuration. Further expansion of the body can be prevented by interaction of the locking bushing with the other of the anterior body segment and the posterior body segment.
In one embodiment, an expandable intervertebral body fusion device includes a unitary monolithic body having a plurality of body segments connected to each other with flexure members and an opening defined between the plurality of body segments. The device body can include an anterior body segment, a posterior body segment and one or more mediolateral body segments extending between the anterior body segment and the posterior body segment along both a lateral side and a medial side of the anterior body segment and the posterior body segment. An opening can be formed in each of the anterior body segment and the posterior body segment. The body is configured to be mediolaterally expanded from a compressed configuration to an expanded configuration by interaction of an expansion tool with the threaded opening causing the one or more mediolateral body segments on the lateral side and the one or more mediolateral body segments on the medial side to generally move away from each other and expand the opening between the plurality of body segments such that the body forms a greater mediolateral footprint in the expanded configuration than in the compressed configuration. The mediolateral body segments can include adjacent projections and grooves that form tongue and groove connections between adjacent mediolateral body segments when the body is in the expanded configuration, the tongue and groove connections providing increased resistance of the body to shear and torsional forces.
The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.
Subject matter hereof may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying figures, in which:
While various embodiments are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the claimed inventions to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the subject matter as defined by the claims.
Referring now to
In the depicted embodiment, the device 100 includes three mediolateral body segments 106 on each side such that the device includes a total of eight body segments. In some embodiments, a device having eight body segments may be generally octagonally shaped in the expanded configuration as depicted in
Device body 102 can further include an internal locking bushing 118 that is depicted in isolation in
Adjacent body segments can further include interlocking projections 126 and slots 128 that mate in a tongue and groove configuration when the device is expanded (See
Each of first end body segment 112 and second end body segment 114 can include an opening that aids in insertion and/or expansion of device. In one embodiment, second end body segment 114 includes a second opening 130 and first end body segment 112 includes a first opening 132. A stabilizing element, such as a screw 10 (See
As noted above, device 100 can be inserted between adjacent vertebrae on its side, with bearing surfaces 104a, 104b configured to interface with the vertebrae. Device 100 can be inserted in a collapsed configuration and then expanded within the disc space to occupy a greater footprint within the disc space. In embodiments, device can be inserted through the back muscles similar to the approach used for a posterior lumbar interbody fusion (PLIF) procedure. Expansion of the device then provides a large area within the device to promote bone growth similar to the size of anterior lumber interbody fusion (ALIF) procedure. Use of the device is this manner therefore enables the greater fusion capabilities of an ALIF procedure without the greater trauma and risk associated with accessing the disc space through the abdominal muscles. Other access approaches and device orientations are possible including lateral abdominal retroperitoneal insertion and anterior retroperitoneal insertion with larger sizes. Also, anterior and posterior cervical insertions with smaller sizes. One example of a type of insertion device that may be adapted for use with the cage device 100 disclosed herein is disclosed in U.S. Patent Publication No. 2.020/0281743, previously incorporated by reference herein.
In embodiments, device 100 can be 3D printed. Device can be formed from various biocompatible materials, such as, for example titanium.
In a further embodiment, the central bushing can expand vertically after expansion of the implant providing height expansion. In embodiments, the bushing can have a central core with phalanges connected by flexures. When the device is opened, it expands the central core. Another option is flexure phalanges that cover the upper and lower endplates.
Various embodiments of systems, devices, and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the claimed inventions. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the claimed inventions.
Persons of ordinary skill in the relevant arts will recognize that the subject matter hereof may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the subject matter hereof may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the various embodiments can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted.
Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
For purposes of interpreting the claims, it is expressly intended that the provisions of 35 U.S.C. § 112(f) are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.
Number | Name | Date | Kind |
---|---|---|---|
283218 | Rycke | Aug 1883 | A |
703251 | Haire | Jun 1902 | A |
811344 | Wands | Jan 1906 | A |
1388836 | Ripsch et al. | Aug 1921 | A |
1500859 | Wright | Jul 1924 | A |
1547946 | Myers | Jul 1925 | A |
2106088 | De Tar | Jan 1938 | A |
2231221 | Rector | Feb 1941 | A |
2453656 | Bullard, III | Nov 1948 | A |
2666334 | Nalle | Jan 1954 | A |
2711105 | Williams | Jun 1955 | A |
2842976 | Young | Jul 1958 | A |
2891408 | Burt, Jr. | Jun 1959 | A |
3386128 | Vyvyan | Jun 1968 | A |
3449971 | Posh | Jun 1969 | A |
3575475 | Boerner | Apr 1971 | A |
3596863 | Kaspareck | Aug 1971 | A |
3597938 | Hellen | Aug 1971 | A |
3700289 | Bilinski et al. | Oct 1972 | A |
3700290 | Ensinger | Oct 1972 | A |
3708925 | Ainoura | Jan 1973 | A |
3709132 | Farrell et al. | Jan 1973 | A |
3916596 | Hawley | Nov 1975 | A |
3985000 | Hartz | Oct 1976 | A |
3988906 | Smith | Nov 1976 | A |
4261211 | Haberland | Apr 1981 | A |
4396047 | Balkus | Aug 1983 | A |
4478109 | Kobelt | Oct 1984 | A |
4516303 | Kloster | May 1985 | A |
4528864 | Craig | Jul 1985 | A |
4559717 | Scire et al. | Dec 1985 | A |
4630495 | Smith | Dec 1986 | A |
4691586 | van Leijenhorst et al. | Sep 1987 | A |
4694703 | Routson | Sep 1987 | A |
4869552 | Tolleson et al. | Sep 1989 | A |
5133108 | Esnault | Jul 1992 | A |
5172442 | Bartley et al. | Dec 1992 | A |
5181371 | DeWorth | Jan 1993 | A |
5196857 | Chiappetta et al. | Mar 1993 | A |
5198932 | Takamura | Mar 1993 | A |
5222986 | Wright | Jun 1993 | A |
5313852 | Arena | May 1994 | A |
5374556 | Bennett et al. | Dec 1994 | A |
5439377 | Milanovich | Aug 1995 | A |
5445471 | Wexler et al. | Aug 1995 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5645599 | Samani | Jul 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5664457 | Nejati | Sep 1997 | A |
5904479 | Staples | May 1999 | A |
5960670 | Iverson et al. | Oct 1999 | A |
5980252 | Samchukov et al. | Nov 1999 | A |
5988006 | Fleytman | Nov 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6056491 | Hsu | May 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6136031 | Middleton | Oct 2000 | A |
6175989 | Carpentar et al. | Jan 2001 | B1 |
6315797 | Middleton | Nov 2001 | B1 |
6350317 | Hao et al. | Feb 2002 | B1 |
6378172 | Schrage | Apr 2002 | B1 |
6395035 | Bresina et al. | May 2002 | B2 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6454807 | Jackson | Sep 2002 | B1 |
6484608 | Ziavras | Nov 2002 | B1 |
6517772 | Woolf | Feb 2003 | B1 |
6554526 | Egelandsdal | Apr 2003 | B1 |
6616695 | Crozet et al. | Sep 2003 | B1 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6719796 | Cohen et al. | Apr 2004 | B2 |
6752832 | Neumann | Jun 2004 | B2 |
6772479 | Hinkley et al. | Aug 2004 | B2 |
6802229 | Lambert | Oct 2004 | B1 |
6808537 | Michelson | Oct 2004 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6932844 | Ralph et al. | Aug 2005 | B2 |
6953477 | Berry | Oct 2005 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7051610 | Stoianovici et al. | May 2006 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7201751 | Zucherman et al. | Apr 2007 | B2 |
7273373 | Horiuchi | Sep 2007 | B2 |
7308747 | Smith et al. | Dec 2007 | B2 |
7316381 | Häcker et al. | Jan 2008 | B2 |
7410201 | Wilson et al. | Aug 2008 | B1 |
7425103 | Perez-Sanchez | Sep 2008 | B2 |
7431735 | Liu et al. | Oct 2008 | B2 |
7435032 | Murphey et al. | Oct 2008 | B1 |
7547325 | Biedermann et al. | Jun 2009 | B2 |
7584682 | Hsiao | Sep 2009 | B2 |
7611538 | Belliard et al. | Nov 2009 | B2 |
7632281 | Errico et al. | Dec 2009 | B2 |
7674296 | Rhoda et al. | Mar 2010 | B2 |
7682376 | Trieu | Mar 2010 | B2 |
7708779 | Edie et al. | May 2010 | B2 |
7712389 | Wang | May 2010 | B2 |
7753958 | Gordon et al. | Jul 2010 | B2 |
7758645 | Studer | Jul 2010 | B2 |
7758648 | Castleman et al. | Jul 2010 | B2 |
7892285 | Viker | Feb 2011 | B2 |
7896919 | Belliard et al. | Mar 2011 | B2 |
7901409 | Canaveral et al. | Mar 2011 | B2 |
7947078 | Siegal | May 2011 | B2 |
7951199 | Miller | May 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
8057549 | Butterman et al. | Nov 2011 | B2 |
8070813 | Grotz et al. | Dec 2011 | B2 |
8088163 | Kleiner | Jan 2012 | B1 |
8192495 | Simpson et al. | Jun 2012 | B2 |
8303663 | Jimenez et al. | Nov 2012 | B2 |
8496706 | Ragab et al. | Jul 2013 | B2 |
8523944 | Jimenez et al. | Sep 2013 | B2 |
8540452 | Jimenez et al. | Sep 2013 | B2 |
8628577 | Jimenez | Jan 2014 | B1 |
8636746 | Jimenez et al. | Jan 2014 | B2 |
8771360 | Jimenez et al. | Jul 2014 | B2 |
8795366 | Varela | Aug 2014 | B2 |
8894712 | Varela | Nov 2014 | B2 |
8906100 | Jimenez | Dec 2014 | B2 |
8932302 | Jimenez et al. | Jan 2015 | B2 |
8940049 | Jimenez et al. | Jan 2015 | B1 |
9358125 | Jimenez et al. | Jun 2016 | B2 |
9381092 | Jimenez et al. | Jul 2016 | B2 |
9445917 | Jimenez et al. | Sep 2016 | B2 |
9474626 | Jimenez | Oct 2016 | B2 |
9486328 | Jimenez | Nov 2016 | B2 |
9498270 | Jimenez | Nov 2016 | B2 |
9668879 | Jimenez et al. | Jun 2017 | B2 |
9867717 | Jimenez | Jan 2018 | B2 |
10060469 | Jimenez et al. | Aug 2018 | B2 |
20020128716 | Cohen et al. | Sep 2002 | A1 |
20020138146 | Jackson | Sep 2002 | A1 |
20030077110 | Knowles | Apr 2003 | A1 |
20030023314 | Landry et al. | Dec 2003 | A1 |
20040049271 | Biedermann et al. | Mar 2004 | A1 |
20040111157 | Ralph et al. | Jun 2004 | A1 |
20040153156 | Coben et al. | Aug 2004 | A1 |
20040193158 | Lim | Sep 2004 | A1 |
20040225364 | Richelsoph et al. | Nov 2004 | A1 |
20050000228 | De Sousa et al. | Jan 2005 | A1 |
20050033431 | Gordon et al. | Feb 2005 | A1 |
20050095384 | Wittmeyer, Jr. | May 2005 | A1 |
20050113921 | An et al. | May 2005 | A1 |
20050113924 | Buttermann | May 2005 | A1 |
20050175406 | Perez-Sanchez | Aug 2005 | A1 |
20050182416 | Lim et al. | Aug 2005 | A1 |
20050261769 | Moskowitz et al. | Nov 2005 | A1 |
20060004447 | Mastrorio et al. | Jan 2006 | A1 |
20060004455 | Leonard et al. | Jan 2006 | A1 |
20060025862 | Villiers et al. | Feb 2006 | A1 |
20060058878 | Michelson | Mar 2006 | A1 |
20060129244 | Ensign | Jun 2006 | A1 |
20060149385 | McKay | Jul 2006 | A1 |
20060184171 | Biedermann et al. | Aug 2006 | A1 |
20060247781 | Francis | Nov 2006 | A1 |
20060253201 | McLuen | Nov 2006 | A1 |
20060293752 | Mounmene et al. | Dec 2006 | A1 |
20070032791 | Greenhalgh et al. | Feb 2007 | A1 |
20070049943 | Moskowitz et al. | Mar 2007 | A1 |
20070083267 | Miz et al. | Apr 2007 | A1 |
20070093901 | Grotz et al. | Apr 2007 | A1 |
20070129730 | Woods et al. | Jun 2007 | A1 |
20070173826 | Canaveral | Jul 2007 | A1 |
20070185577 | Malek | Aug 2007 | A1 |
20070191954 | Hansell et al. | Aug 2007 | A1 |
20070191958 | Abdou | Aug 2007 | A1 |
20070198089 | Moskowitz et al. | Aug 2007 | A1 |
20070219634 | Greenhalgh et al. | Sep 2007 | A1 |
20070222100 | Husted et al. | Sep 2007 | A1 |
20070250171 | Bonin, Jr. | Oct 2007 | A1 |
20070255415 | Edie et al. | Nov 2007 | A1 |
20070282449 | de Villiers et al. | Dec 2007 | A1 |
20070288092 | Bambakidis | Dec 2007 | A1 |
20070293329 | Glimpel et al. | Dec 2007 | A1 |
20070293948 | Bagga et al. | Dec 2007 | A1 |
20080026903 | Flugrad et al. | Jan 2008 | A1 |
20080077246 | Fehling et al. | Mar 2008 | A1 |
20080091211 | Gately | Apr 2008 | A1 |
20080100179 | Ruggeri et al. | May 2008 | A1 |
20080103601 | Biro et al. | May 2008 | A1 |
20080114367 | Meyer | May 2008 | A1 |
20080140207 | Olmos | Jun 2008 | A1 |
20080147194 | Grotz et al. | Jun 2008 | A1 |
20080154266 | Protopsaltis et al. | Jun 2008 | A1 |
20080161920 | Melkent | Jul 2008 | A1 |
20080161931 | Perez-Cruet et al. | Jul 2008 | A1 |
20080168855 | Giefer et al. | Jul 2008 | A1 |
20080183204 | Greenhalgh et al. | Jul 2008 | A1 |
20080188941 | Grotz | Aug 2008 | A1 |
20080210039 | Brun | Sep 2008 | A1 |
20080221694 | Warnick et al. | Sep 2008 | A1 |
20080234736 | Trieu et al. | Sep 2008 | A1 |
20080243255 | Butler | Oct 2008 | A1 |
20080281423 | Sheffer et al. | Nov 2008 | A1 |
20080292392 | Voellmer | Nov 2008 | A1 |
20080319487 | Fielding et al. | Dec 2008 | A1 |
20090012564 | Chirico et al. | Jan 2009 | A1 |
20090076614 | Arramon | Mar 2009 | A1 |
20090099568 | Lowry et al. | Apr 2009 | A1 |
20090164017 | Sommerich et al. | Jun 2009 | A1 |
20090210061 | Sledge | Aug 2009 | A1 |
20090222100 | Cipoletti et al. | Sep 2009 | A1 |
20090234362 | Blain et al. | Sep 2009 | A1 |
20090259316 | Ginn et al. | Oct 2009 | A1 |
20090299478 | Carls et al. | Dec 2009 | A1 |
20090306672 | Reindel et al. | Dec 2009 | A1 |
20100004688 | Maas et al. | Jan 2010 | A1 |
20100076557 | Miller | Mar 2010 | A1 |
20100082109 | Greenhalgh et al. | Apr 2010 | A1 |
20100094305 | Chang et al. | Apr 2010 | A1 |
20100161062 | Foley et al. | Jun 2010 | A1 |
20100185291 | Jimenez et al. | Jul 2010 | A1 |
20100192715 | Vauchel et al. | Aug 2010 | A1 |
20100209184 | Jimenez et al. | Aug 2010 | A1 |
20110015638 | Pischl et al. | Jan 2011 | A1 |
20110054616 | Kamran et al. | Mar 2011 | A1 |
20110093075 | Duplessis et al. | Apr 2011 | A1 |
20110112644 | Zilberstein et al. | May 2011 | A1 |
20110138948 | Jimenez et al. | Jun 2011 | A1 |
20110160861 | Jimenez et al. | Jun 2011 | A1 |
20110172774 | Varela | Jul 2011 | A1 |
20110270398 | Grotz et al. | Nov 2011 | A1 |
20120010653 | Seifert et al. | Jan 2012 | A1 |
20120029636 | Ragab et al. | Feb 2012 | A1 |
20120083887 | Purcell et al. | Apr 2012 | A1 |
20120116518 | Grotz et al. | May 2012 | A1 |
20120158071 | Jimenez et al. | Jun 2012 | A1 |
20120185049 | Varela | Jul 2012 | A1 |
20120226357 | Varela | Sep 2012 | A1 |
20120271419 | Marik | Oct 2012 | A1 |
20120290094 | Lim et al. | Nov 2012 | A1 |
20120303124 | McLuen et al. | Nov 2012 | A1 |
20120323329 | Jimenez et al. | Dec 2012 | A1 |
20130053966 | Jimenez et al. | Feb 2013 | A1 |
20130144388 | Emery et al. | Jun 2013 | A1 |
20130158664 | Palmatier et al. | Jun 2013 | A1 |
20130197642 | Ernst | Aug 2013 | A1 |
20130317615 | Jimenez et al. | Nov 2013 | A1 |
20140012383 | Triplett et al. | Jan 2014 | A1 |
20140018924 | McManus et al. | Jan 2014 | A1 |
20140039622 | Glerum et al. | Feb 2014 | A1 |
20140058512 | Petersheim | Feb 2014 | A1 |
20140088714 | Miller et al. | Mar 2014 | A1 |
20140140757 | Jimenez et al. | May 2014 | A1 |
20140156007 | Pabst et al. | Jun 2014 | A1 |
20140194991 | Jimenez | Jul 2014 | A1 |
20140236296 | Wagner et al. | Aug 2014 | A1 |
20140249629 | Moskowitz et al. | Sep 2014 | A1 |
20140277490 | Perloff et al. | Sep 2014 | A1 |
20140343608 | Whiton et al. | Nov 2014 | A1 |
20150018951 | Leobl | Jan 2015 | A1 |
20150088258 | Jimenez et al. | Mar 2015 | A1 |
20150100128 | Glerum et al. | Apr 2015 | A1 |
20150148908 | Marino et al. | May 2015 | A1 |
20150230929 | Lorio | Aug 2015 | A1 |
20150272743 | Jimenez et al. | Oct 2015 | A1 |
20150272745 | Jimenez et al. | Oct 2015 | A1 |
20150272746 | Jimenez et al. | Oct 2015 | A1 |
20150351925 | Emerick et al. | Dec 2015 | A1 |
20160262907 | Jimenez | Sep 2016 | A1 |
20160356368 | Jimenez et al. | Dec 2016 | A1 |
20170056179 | Lorio | Mar 2017 | A1 |
20170056200 | Koch et al. | Mar 2017 | A1 |
20200281743 | Jimenez | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
1342456 | Sep 2003 | EP |
1552797 | Jul 2005 | EP |
1881209 | Jan 2008 | EP |
05-81194 | Apr 1993 | JP |
2004-301135 | Oct 2004 | JP |
2008-208932 | Sep 2008 | JP |
WO 2004026188 | Apr 2004 | WO |
WO 2004109155 | Dec 2004 | WO |
WO 2005081330 | Sep 2005 | WO |
WO 2005096975 | Oct 2005 | WO |
WO 2006094535 | Sep 2006 | WO |
WO 2006116052 | Nov 2006 | WO |
WO 2006125329 | Nov 2006 | WO |
WO 2007002583 | Jan 2007 | WO |
WO 2007009107 | Jan 2007 | WO |
WO 2007028140 | Mar 2007 | WO |
WO 2007076377 | Jul 2007 | WO |
WO 2007111979 | Oct 2007 | WO |
WO 2008137192 | Nov 2008 | WO |
WO 2009018349 | Feb 2009 | WO |
WO 2010078468 | Jul 2010 | WO |
WO 2010078520 | Jul 2010 | WO |
WO 2011011609 | Jan 2011 | WO |
WO 2011011626 | Jan 2011 | WO |
WO 2014066890 | May 2014 | WO |
Entry |
---|
PCT/US2010/042941, filed Jul. 22, 2010, International Search Report and Written Opinion, dated Apr. 25, 2011. |
PCT/US2010/042915, filed Jul. 22, 2010, Search Report and Written Opinion dated Apr. 22, 2011. |
PCT/US2009/069876, filed Dec. 30, 2009, International Search Report and Written Opinion dated Sep. 27, 2010, 10 pages. |
PCT/US2009/069958, filed Dec. 31, 2009, International Search Report and Written Opinion dated Nov. 29, 2010, 7 pages. |
PCT/US2015/055449, filed Oct. 14, 2015, International Search Report and Written Opinion dated Dec. 11, 2015, 9 pages. |
PCT/US2015/032977, filed May 28, 2015, International Search Report and Written Opinion dated Sep. 21, 2015, 10 pages. |
European Application No. EP 09837185.9, European Search Report dated May 14, 2013, 7 pages. |
Japanese Application No. 2012-521784, JP Office Action dated Feb. 18, 2014, 8 pages. |
PCT/US2013/067070, PCT Written Opinion/Search Report dated Feb. 27, 2014, 14 pages. |
PCT/US2014/052913, PCT Written Opinion/Search Report dated Dec. 22, 2014, 10 pages. |
European Application No. EP 10802916.6, Examination Report dated May 12, 2016, 4 pages. |
Canadian Application No. 2,768,867, Office Action dated Aug. 4, 2016, 4 pages. |
Canadian Application No. 2,768,867, Office Action dated Apr. 19, 2017, 4 pages. |
European Application No. EP14887838.2, Extended European Search Report, dated Oct. 25, 2017, 8 pages. |
Wenzel Spine, Inc., VariLift®-L Expandable Interbody Fusion Device: A proven solution for stand-alone fusion, Product Overview, 12 pages, 2010. |
Peter A Halverson, et. al., Tension-based Multi-stable Compliant: Rolling-contact Elements, Department of Mechanical Engineering, Brigham Young University, Provo UT, USA 84602, 34 pages, 2007. |
Just L. Herder, Force Directed Design of Laparoscopic Forceps, ASME Design Engineering Technical Conference, 8 pages, 1998. |
Alexander H. Slocum, Fundamentals of Design, 2005. |
W. Küsswetter, A Supplementary Instrumentation for Posterior Fusion of Spine in Scoliosis, Archives of Orthopedic Traumatic Surgery, 1980, 1 page. |
Chou et al., Efficacy of Anterior Cervical Fusion: Comparison of Titanium Cages, polyetheretherketone (PEEK) cages and autogenous bone grafts, Journal of Clinical Neuroscience, 2008, pp. 1240-1245. |
Amelie Jeanneau, et. al., A Compliant Rolling Contact Joint and its Application in a 3-DOF Planar Parallel Mechanism with Kinematic Analysis, ASME, Design Engineering Technical Conferences, 9 pages, 2004. |
Hunter et al., Overview of Medical Devices, Department of Radiology, University of Arizona, Aug. 2001, pp. 89-140, vol. 30, No. 4, ISSN: 0363-0188. |
Medtronic Sofamor Danek USA, Inc., Capstone Instrument Set Technique, http://www.mtortho.com/public/capstone.pdf, © 2005, 25 pages. |
Medtronic, Capstone Peek Spinal System Surgical Technique, http://www.mtortho.com/public/capstone_peek_st.pdf, © 2009, 36 pages. |
Website printout from https://seelio.com/w/fgf/omnilif-the-new-standard-in-spinal-deformity-correction-and-fusion?student=lumbarjax; dated Nov. 27, 2014, 5 pages. |
Printout from Video for OmniLIF Anterior Insertion Approach from Lumber Jax; https://seelio.com/w/fgf/omnilif-the-new-standard-in-spinal-deformity-correction-and-fusion?student=lumbarjax; dated Nov. 27, 2014, 7 pages. |
Printout from Video for OmniLIF Features from Lumber Jax; https://seelio.com/w/fgf/omnilif-the-new-standard-in-spinal-deformity-correction-and-fusion?student=lumbarjax; dated Nov. 27, 2014, 11 pages. |
International Search Report and Written Opinipn for International Application No. PCT/US2019/068890 dated Apr. 29, 2020. |
International Search Report and Written Opinion for International Application No. PCT/US2023/028048 dated Aug. 21, 2021. |
Australian Examination Report for Application No. 2019433217 dated Oct. 31, 2022, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20240016622 A1 | Jan 2024 | US |