1. Field of the Invention
The invention relates to trap-priming systems for floor drains. More specifically, the invention relates to a trap-priming system that supplies water to a p-trap of a floor drain by piping water from a sink faucet. The preferred priming water line to the p-trap originates from location(s) in the faucet unit that is/are between the faucet valve(s) and the faucet water outlet. This way, the trap-priming system is turned on each time the faucet is turned on, and does not require any valve other than the faucet valve or any complex systems such as pressure-sensing, solenoid, or flushometer tail piece system.
2. Related Art
Conventional floor drains, such as are used in utility rooms and including heat pump, air conditioning, and swimming pool facilities, and some bathroom and shower facilities, comprise p-traps typically directly below the floor drain hole. Such p-traps are well-known and comprise a generally horizontal, curved section of piping that holds water in the “trough” of the “p” to create a water seal between the up-stream pipe (connected to the floor hole) and the downstream pipe (connected to the sewer or other waste water system). This water seal is mandated in modern plumbing systems to prevent flow of gasses from the sewer/waste-water system to the room containing the floor drain.
In many floor-drain applications, water typically flows from the floor surface into the drain only in the case of spills, accidents, leaks, or emergencies. Therefore, the water seal in the floor drain p-trap may go for days or weeks without being replenished by such water-flow from the floor. Thus, the water seal would tend to evaporate, if not for frequent replenishment from a priming system that supplies water to the p-trap from some source other than water on the floor surface. Conventional trap-priming systems comprise complex valves and/or electronics, such as automatic primer valves (see Prim-Rite™ trap primer valves, Prime Perfect™ trap primer valves), toilet primer valve systems (see Walker Closet™ primers, for example), and various continuous or pressure-drop-activated trap seal primers (see, for example, Solo-Prime™ Electronic Trap Priming Assemblies), and/or other equipment that tends to be expensive, inconvenient to install, unreliable, and/or difficult to monitor and maintain.
The invented trap-priming system solves many or all of the above-discussed problems, by providing a simple, efficient, reliable and economic solution for floor drain p-trap priming. The preferred system uses only clean water, rather than any waste water. The preferred system may be installed as OEM, or as a retrofit kit, without any modification to a conventional faucet except to provide a hole in a portion of the faucet to access a water-containing portion of the faucet downstream of the faucet valve.
The invention comprises a trap-priming system comprising a priming-water conduit extending from a portion of a water faucet unit to a floor drain p-trap, wherein said portion of the water faucet is located between the faucet valve or valves and the faucet water-outlet. The faucet valve(s) control(s) water flow into said priming-water conduit, and, therefore, into said p-trap, without requiring any other valve or control system to Wm the priming water on or off.
The priming-water conduit may be attached, and in fluid communication with, various structures of the faucet that are downstream of the faucet valve(s). In preferred embodiments, the priming-water conduit is attached to, and fluidly-communicates with, either: the mixing chamber/junction of a mixing faucet; the water line that extends from the mixing chamber/junction to the faucet outlet/nozzle; or any water-containing structure that is downstream of the faucet valve(s). This way, each time the faucet is turned on, by means of the manual or user-motion-activated faucet valve(s), a portion of the water passing from the valve(s) to the mixing chamber and/or by other routes to the faucet outlet/nozzle, will flow into the priming-water conduit and to the p-trap. Therefore, it may be said that water automatically enters the priming-water conduit upon opening of the manual or user-motion-activated faucet valve. This proportion of flow to the priming-water conduit vs. to the faucet outlet/nozzle may be determined by conduit/pipe size, a flow restriction orifice, and/or by other conventional flow restriction means. Preferably, there is no valve or other on-off and/or proportional flow control system in the priming-water conduit, or in any way associated with the priming system except for the faucet valve(s) provided as the valve(s) for controlling water out of the faucet outlet/nozzle to the user of the faucet/sink.
Many faucet and faucet valve designs are available in the market place, many or all of which may be easily adapted to comprise the invented trap-priming system. For example, a port may be drilled or otherwise provided in the faucet structure, to which the priming-water conduit is sealed by various means, including welding, soldering, threading, or other connection. This port and connection point for the priming-water conduit may be provided in all faucets of a manufacturer's product line, with the port and/or conduit plugged or otherwise sealed-off except for applications in which a trap-priming system is needed. The preferred trap-priming modification, consisting of a tube/pipe tapped into the mixing chamber or the faucet outlet line or nozzle, is a minimal structural change/addition that does not require changes in the valve or the faucet housing. This allows a manufacturer to provide trap-priming faucets and non-priming faucets that have substantially the same structure, and also the same external appearance once the faucet is installed. This allows customers to purchase a group of faucets all looking the same, with one or a small portion of the group being fitted for trap-priming and the others of the group either not having the trap-priming feature or having the trap-priming feature capped or plugged. See, for example, assembly 500 in
Referring to the figures, there are shown several, but not the only, embodiments of the invented trap-priming system. The preferred trap priming system may comprise modifications of various faucets, some of which, but not all, are portrayed in the figures and in Exhibits A and B.
The preferred faucets are those frequently called “mixing faucets”, wherein hot and cold water are joined prior to flowing to a single spout/outlet. Mixing faucets typically fall into two categories, one being the “single-lever” (single handle) type and the other being a “double- or two-lever” (two handle) type. In each of these mixing faucet types, the preferred embodiment of priming water conduit is provided at a location between the valve(s) and the water outlet, wherein the priming water conduit will receive water at a pressure significantly reduced relative to the pressure upstream of the valve(s). In the single-lever faucets, the preferred embodiment of priming water conduit is provided at a location between the single valve and the single spout outlet. In the double-lever faucets, the preferred embodiment of priming water conduit is provided at a location between two valves and the single spout outlet.
Less preferred faucets (not shown) are the type wherein two spouts are provided, one for hot and one for cold, with each of the spouts having its own valve and handle. These, therefore, are not “mixing” faucets. In these less preferred embodiments, the trap-priming conduit may be installed between the valve and the spout outlet of either of the spouts. The spout that is more likely to be used frequently probably would be chosen.
In the preferred single-lever mixing faucets, a single valve cartridge comprises a cam, wedge, or other mechanical system, controlled by the single lever/handle, that adjusts hot and cold water flow in amounts and proportions depending on the direction and extent of the lever/handle movement. Many such single-lever faucet valve cartridges are described in the patent literature and are known in this field of art. Both of said hot and cold water amounts flow out to the user through a single faucet tap outlet/nozzle or “single spout”. Thus, the single lever/handle may be manually moved to a position wherein both hot and cold water are shut off and to various other positions allowing a wide range of proportions of hot and cold water to flow preferably into a mixing chamber or other junction, and then to the faucet outlet/nozzle (the “tap outlet”) for use by a user of the sink. The “wide range of proportions” may be, for example, the hot water being 0-100% of the total of hot and cold water from the valve, with the cold water making up the remainder of the 100% of water flow. Several styles of single-lever mixing faucets, adapted to include embodiments of the invented trap-priming system, are shown in
The faucets illustrated in the Figures are manual faucets, wherein the user grasps the handle(s) and manually moves it/them to actuate and control the water flow. Alternative embodiments of the invention may include faucets wherein the user need not touch a faucet handle, as the faucet has a motion-sensing control feature, rather than manual-control, of water flow to the spout, and, hence, to the trap-priming water conduit. Thus, the user still controls the faucet, by virtue of his/her approaching the faucet closely enough and/or waving a hand closely enough, that the user-motion-activated valve cartridge opens water flow. Such motion-sensor-based, or other “hands-off” electric/electronic, systems are part of some conventional faucets, as known in the art, and are not a control or valve added for the trap-priming adaptation. Preferably, therefore, no sensors or electronic/electric controls are added because of the adaptation to make the faucet a trap-priming faucet.
Other embodiments 401, 402, generally represented in
Referring specifically to the preferred single-lever mixing faucets shown in the figures, the preferred trap priming system 10, 100, 200 may comprise modifications of various faucets. Faucets 12, 112 each have a single spout 11, 111, and a single valve cartridge 22, 122. A pipe, tube, or other water conduit 15, 115, 215, which may also be called a “water discharge pipe” is connected, to be in fluid communication with, a portion of the faucet that is downstream of the faucet valve and upsteam of, or in, the faucet outlet/nozzle. Thus, the conduit 15, 115, 215 may be installed in various places in the typically-several-inches of structure between the valve and the nozzle 25, 125. This places the conduit 15, 115, 215 in a location wherein it will receive water when the faucet valve is turned on, as it is in fluid communication with the water-containing outlet structure of the faucet. The faucet valve 20, 120 lies between the water source(s) and the conduit 15, 115, 215, so that said water sources do not feed the conduit 15, 115, 215 unless the valve 20, 120 is turned on.
The valve 20, 120 structures are not shown in detail in the drawings, but are shown schematically in dashed lines inside valve cartridges 22, 122, wherein “valve cartridge” generally refers to the entire valve system, including its housing, the valve elements (water blocking elements), the linkage between valve elements and the lever/handle, and a region that may be called the mixing chamber 40, 140. It will be understood by those of skill in the art that the single lever/handle 30, 130 is manually movable to many positions that control the valve 20, 120 to obtain various amounts of flow, and various proportions of hot to cold water. The valve and valve cartridge may be of various designs and sizes, but will be understood that the preferred ones comprise: inlet ports 23 for each of the hot water line 26 and the cold water line 27, valve elements that close and open to allow various flows amounts of each of the hot and cold water (schematically shown in dashed lines), operative connection (not shown) between the valve elements and the lever/handle 30, 130, and a mixing chamber/junction 40, 140 into which said various amounts of hot and cold water flow for at least some mixing prior to flowing to the faucet outlet/nozzle 25, 125.
In the Figures, there are shown two styles of valves cartridges 22, 122, which are quite differently shaped and sized. These two valves cartridges 22, 122 have differently-sized and differently-located mixing chambers 40, 140, due to their substantially-different designs. For example, mixing chamber 40 (
The conduit 115 in
Preferably, the conduit is permanently or semi-permanently attached to the faucet in a way that does not block any portion of the faucet nozzle/outlet. Therefore, the conduit does not extend significantly, or at all, over or across the faucet outlet opening. This way, the faucet with trap-priming feature is usable at all times to provide water to the sink through the nozzle/outlet, and the trap-priming feature is operating each time the faucet is turned on to provide water to the sink. Specifically, the trap-priming system is not a temporary system that is installed over/around the faucet outlet/nozzle to receive all of the water flowing to the outlet/nozzle. Also, the trap-priming system is preferably not adapted in size or water flowrate to flush out the p-trap under the floor drain and/or any other p-trap, that is, is not adapted to provide so much water to any p-trap that it would flush out debris or other clogging from the p-trap.
In
Flow restriction may be provided by means of orifice members (which are typically removable) and/or non-removable members, and/or by narrowing of the conduit passageway, as needed to balance the desired flow relative to the flow through the faucet outlet/nozzle, in removable and/or permanent conduits. It is preferred that said “restriction” or “narrowing”, or other control of flowrate, is not done by a moving valve member, but rather by a simple orifice or smaller-diameter tube or fitting. Preferably, the flow restriction/control of trap-priming water results in the priming water flowrate being 1/100 up to 1/10 of the total flow leaving the valve cartridge, or, in other words, preferably in a range of 1 up to 10 percent water to the p-trap and 99 down to 90 percent water leaving the spout outlet. More preferably, about 1-4 percent of the water from the valve travels to the p-trap and about 99-96 percent exits the spout outlet.
As illustrated in the example room of
The primer-water conduit shown in
As may be seen in the example of
There are preferably no sensors that measure conditions at or near the p-trap to turn on water flow to the p-trap. While some faucets adapted to include embodiments of the trap-priming system may comprise a motion-sensor(s) or other “hands-off” electric/electronic systems for turning on the faucet, such sensor(s) and/or other hands-off system(s) are part of the conventional faucet, as known in the art, and are not an addition to the conventional faucet as an adaptation for trap-priming. Preferably, therefore, no sensors or electronic/electric controls are added because of the adaptation to make the faucet a trap-priming faucet.
A check valve or vacuum breaker only for the purpose of preventing water flow in the “wrong” direction through the conduit could be added, but the inventors do not believe that a check valve or breaker will be needed. The trap-priming conduit and it connection to the faucet are at the outlet side of the faucet valve, and generally at or very close to atmospheric pressure (rather than at the approximate 50 psi pressure upstream of the faucet valve). Also, said trap-priming conduit and said connection are fluidly connected to the faucet outlet/nozzle with relatively little pressure difference relative to said outlet/nozzle, the inventors believe that air flow into the outlet/nozzle would break any vacuum occurring in said conduit 15, 115, 215.
Although this invention has been described above with reference to particular means, materials and embodiments, it is to be understood that the invention is not limited to these disclosed particulars, but extends instead to all equivalents within the broad scope of the following claims.
This application claims benefit of provisional application Ser. No. 61/285,436, filed Dec. 10, 2009, the entire disclosure of which is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
202287 | Shedd | Apr 1878 | A |
705933 | Keyt | Jul 1902 | A |
1665029 | Hartnett | Apr 1928 | A |
3526547 | Shock | Sep 1970 | A |
3952764 | Keller | Apr 1976 | A |
3998241 | Jones et al. | Dec 1976 | A |
4218786 | Taglarino | Aug 1980 | A |
4337795 | Argyris et al. | Jul 1982 | A |
4357957 | Bisonaya et al. | Nov 1982 | A |
4493343 | Arnold et al. | Jan 1985 | A |
4497337 | Mosbrucker et al. | Feb 1985 | A |
4574399 | Sullivan | Mar 1986 | A |
4811431 | Kraverath | Mar 1989 | A |
4882789 | Kraverath | Nov 1989 | A |
5287877 | Ackroyd | Feb 1994 | A |
5373592 | Stoltenberg et al. | Dec 1994 | A |
6422260 | Danowski et al. | Jul 2002 | B2 |
6546948 | Tarzia | Apr 2003 | B2 |
20070271695 | Thomas et al. | Nov 2007 | A1 |
20080023085 | Rosko et al. | Jan 2008 | A1 |
20080072967 | Wen | Mar 2008 | A1 |
Entry |
---|
http://www.merriam-webster.com/dictionary/faucet, Nov. 2012. |
Trail piece trap priming assembly, Sep. 30, 2009, p. 1-2, Precision Plumbing Products, http://www.pppinc.net. |
Flush valve primer, Sep. 30, 2009, p. 1, Precision Plumbing Products, http://www.pppinc.net. |
Prime-rite trap primer valve, Sep. 30, 2009, p. 1-3, Precision Plumbing Products, http://www.pppinc.net. |
Waker closet primer, Sep. 30, 2009, p. 1-3, Precision Plumbing Products, http://www.pppinc.net. |
Solo-prime electronic trap priming assembly, Sep. 30, 2009, p. 1-2, Precision Plumbing Products, http://www. pppinc.net. |
MIFAB Trap seal primer selection guide, p. 1-4, prior to Sep. 30, 2009. |
Automatic trap primer valve, prior to Sep. 30, 2009. |
Number | Date | Country | |
---|---|---|---|
20110303303 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61285436 | Dec 2009 | US |