The present disclosure is generally related to containers, such as trash can assemblies that tend to move or shift when opened or closed.
Receptacles and other devices having lids or doors are used in a variety of different settings, such as for containing refuse or for storing items such as recyclables, dirty laundry, pet food, etc. For example, in both residential and commercial settings, trash cans and other receptacles often have lids or doors for protecting or preventing the escape of the contents of the receptacle. The lid or door can also inhibit or prevent odors from escaping and can hide the items within the receptacle from view. Additionally, the lid of a trash receptacle can help prevent contamination from escaping from the receptacle.
A problem with many existing receptacles with lids, such as trash receptacles, is that the lid can contact the surrounding environment (e.g., a wall or cabinet) when the lid is actuated due to movement or shifting of the receptacle. In some circumstances, this contact can cause the receptacle to get lodged into the surrounding environment and prevent the receptacle from returning back to its original position or alignment. Several embodiments disclosed herein address this problem, or other problems.
In some embodiments, a trash can assembly comprises a body comprising an upper sidewall and a lower base, the body having a front region and a rear region. The trash can assembly can include a lid configured to transition between a closed position and an open position. The trash can assembly can include an actuation system, which can include a pedal and a linkage. The actuation system can be configured to move the lid from the closed position to the open position in response to an actuation force applied on the pedal. The trash can assembly can include a dislodgement or return system. The dislodgement or return system can have at least one dynamic member associated with the front region of the body and at least one static member associated with the rear region of the body. The active dislodgement or return system can be configured to facilitate returning the trash can assembly to an original position or alignment, for example, automatically. In some implementations, the dynamic member comprises a frame associated with the lower base of the body; a foot that is movably coupled to the frame and is movable between an extended position and a retracted position; and/or a biasing member applying a force on the foot to urge the foot into the extended position. The foot can be configured to engage a floor of a surrounding environment in one or both of the extended and retracted positions. When the actuation force is applied on the pedal, the foot can be configured to transition from the extended position to the retracted position. After the actuation force is released from the pedal, the foot can be configured to transition from the retracted position to the extended position to move the body relative to the surrounding environment.
Any of the structures, materials, steps, or other features disclosed above, or disclosed elsewhere herein, can be used in any of the embodiments in this disclosure. Any of the structures, materials, steps, or other features that are shown and/or described herein can be used in combination with any other of the structures, materials, steps, or other features that are shown and/or described herein. No structure or step is essential or indispensable.
Neither the preceding summary nor the following detailed description purports to limit or define the scope of protection. The scope of protection is defined by the claims.
The abovementioned and other features of the embodiments disclosed herein are described below with reference to the drawings of the embodiments. The illustrated embodiments are intended to illustrate, but not to limit the embodiments. Various features of the different disclosed embodiments can be combined to form further embodiments, which are part of this disclosure.
The embodiments disclosed herein are disclosed in the context of trash can assemblies (also called trash cans, garbage bins, refuse containers, recycling containers, or otherwise) because they have particular utility in this context. However, the inventions disclosed herein can be used in other contexts as well, such as in any other type of receptacle. Further, the inventions are described herein in reference to various embodiments and drawings. It will be appreciated by those skilled in the art that variations and improvements may be accomplished in view of these teachings without deviating from the scope and spirit of the inventions. By way of illustration, the many features are described in reference to a step-type trash container, such as a step trash can of the kind typically used in kitchens. Many types of trash containers, such as those with side-pivoting lids or removable lids, can be used in connection with the present inventions.
Overview
The trash can 110 can include a body 112 and an upper closure assembly. As shown, the upper closure assembly can be or can include a lid 114 movably coupled to the body 112 to provide access to the interior of the body 112. The lid 114 can be rotatably coupled along a rear side of the body 112. The trash can 110 can include an actuation system 120 for operating the upper closure assembly, such as the lid 114. As shown, the actuation system can include an actuator 122. For example, the actuator 122 can be a foot pedal positioned along a lower, front side of the body 112. The actuator 122 can operate the upper closure assembly via a linkage 124. In some embodiments, the linkage 124 can physically couple the actuator 122 to the upper closure assembly via one or more struts, rods, or hydraulics. However, it is to be understood that the linkage 124 can indirectly couple the actuator 122 to the upper closure assembly. For example, the actuator 122 can be used to operate an electronic motor coupled to the upper closure assembly.
As shown, the trash can 110 can include an active dislodgement or return system 130. As will be discussed in further detail below, the active dislodgement or return system 130 can facilitate dislodging the trash can 110 from the surrounding environment, such as between the floor and a wall positioned behind the body 112, or returning the trash can 110 from a temporary position, such as a position caused by temporarily opening the lid on the trash can 110. The active dislodgement or return system 130 can include one or more static members 132 and/or one or more dynamic members 134. As shown in the illustrated embodiment, the static members 132 and/or the dynamic members 134 can be attached to a lower portion of the body 112. For example, the static members 132 and/or the dynamic members 134 can contact one or more structures in the surrounding environment, such as a floor and/or a wall, and/or can be used to support the weight of the body 112 against a floor of the surrounding environment. The static members 132 can be positioned at or proximate a rear side of the body 112 and/or the dynamic members 134 can be positioned at or proximate a front side of the body 112. However, it is to be understood that the static members 132 and/or the dynamic members 134 can be attached to other portions of the body 112. For example, static members 132 can be positioned near both the front side and the rear side of the body 112 and/or dynamic members 134 can be positioned near both the first side and the rear side of the body 112. As another example, the dynamic members 134 can be positioned on sidewall, such as a rear sidewall of the body 112.
The static members 132 can generally retain their shape when subjected to a load. For example, the static members 132 can be formed from a material which experiences little to no deformation when a force is applied on the actuator 122. In some embodiments, the static members 132 and/or the dynamic members 134 may be formed at least in part from a polymer or elastomer or any other slip-resistant material having a high coefficient of friction, such as plastic or rubber, which can be attached directly to the body 112. In some implementations, the static members 132 can maintain the same general shape throughout operation of the trash can 110 (e.g., before and after actuation of the actuation system 120).
The dynamic members 134 can move in response to an environmental stimulus, such as an action by a user or the ceasing of an action by a user. For example, structures of the dynamic members 134 can translate and/or rotate upon release of a force on the actuator 122. In some implementations, structures of the dynamic members 134 can translate and/or rotate upon application of a force on the actuator 122.
Schematics of a Dynamic Member
With reference first to
The dynamic member 210a can include a biasing member 218a to bias the foot 214a into a desired position. In some embodiments, the biasing member 218a can bias the foot 214a towards the extended position. This can advantageously allow the biasing member 218a to apply a counteracting force on the foot 214a when the foot 214a is in a retracted position. For example, in some implementations where the dynamic member is positioned below the body of the trash can 110, the foot 214a can transition from an extended position to a retracted position upon application of a downward force on the trash can 110 (e.g., a downward force on the actuator 122 of
With reference next to
With reference next to
While the embodiments of dynamic members 210a-c are described as having frames 212a-c, it is to be understood that the frames 212a-c can be omitted. Many different types of dynamic members can be used in any suitable situation to achieve biased horizontal travel in a trash can 110 in order to return the trash can 110 from a displaced position to a substantially original position, such as a piston or plunger (e.g., with a slanted surface that contacts the ground or other supporting surface), a moveable linkage (e.g., a four-bar linkage), and/or one or more gears or wheels, etc. Any components of the illustrated dynamic members 210a-c, such as the feet 214a-c, biasing members 218a-b, and/or electronic component 216c, can be omitted or substituted or can be attached directly to the trash can 110. Moreover, while the biasing members 218a-b are schematically illustrated as a coil spring, it is to be understood that the biasing member can take on any other forms such as, but not limited to, one or more radial springs, leaf springs, elastomeric members, and the like. Moreover, it is to be understood that the biasing member can include devices or structures that induce and/or respond to electromagnetic forces. For example, the biasing member can include one or more magnets attached to the frame and foot which are oriented to attract or repel, one or more solenoids, and/or one or more electric motors.
Operational Examples of a Receptacle with a Dynamic Member
With reference first to
The trash can 310 can include an active dislodgement or return system having one or more static members 332 and/or one or more dynamic members 334. As shown in the illustrated embodiment, the static members 332 and/or the dynamic members 334 are attached to a lower portion of the body 312. The static members 332 are positioned closer to a rear side of the body 312. The dynamic members are positioned closer to the front side of the body 312. In this configuration, the static members 332 and the dynamic members 334 can be used to support the weight of the body 312 against a floor 340 of the surrounding environment.
As shown, the application of a downwardly-directed force 322 on the actuator 320 can create a moment 324 about the front support elements (e.g., the dynamic members 334). In some instances, particularly when the trash can 310 is empty, this moment 324 can rotate the trash can 310 about the front support elements. This rotation can reduce the amount of grip on the floor 340, causing the trash can 310 to slide backwards into the wall 342 of the surrounding environment. Moreover, in some instances, the force 322 applied by the user may not be directed perpendicular to the floor but may instead also include a component in the direction of the wall 342. This can apply a force 326 to the front support elements which can also cause the trash can 310 to slide backwards into the wall 342 of the surrounding environment.
With reference next to
With reference next to
In some embodiments, the application of force 336 can be caused by potential energy stored during compression of a biasing member (such as biasing members 218a-b) within the dynamic member 334. In some embodiments, the application of force 336 can be caused by an electronic device, such as a motor or solenoid, moving a component of the dynamic member 334. It is to be understood that while
Examples of Receptacles
The upper closure assembly can include multiple parts, such as a trim ring 415 that is rotatable or otherwise moveable with respect to the body 412, and a lid 414 that is rotatable or otherwise moveable with respect to the body 412. The trash can 410 may also include an actuator such as a pedal 420 that is configured to permit a user to actuate a function of the trash can 410, such as opening one or more portions of the closure assembly of the trash can 410, such as opening the lid 414 of the trashcan 410. In some embodiments (not shown), there may be multiple actuators, such as multiple pedals, that may actuate a plurality of different functions of the trash can 410, such as opening the lid 414 and/or the trim ring 415 of the trash can 410. In some embodiments (not shown), the body 412 of the trash can 410 can be split into two or more receptacles.
As illustrated in
In some embodiments, the trim ring 415 is configured to move between a closed position (as illustrated, for example, in connection with the trim ring 115 of FIGS. 18-24 of U.S. Publication No. 2015/0259139, which has been incorporated herein by reference) and an open position (as illustrated, for example, in
In some embodiments, the trash can 410 does not include a removable rigid liner inside of the trash can 410 for receiving disposable trash bags or liners; rather, the trash can 410 is configured to receive an upper edge of the disposable trash bags or liners directly around the outer perimeter of the upper edge of the body 410 itself. When an upper edge of a trash bag or liner (not shown) is positioned around the upper edge of the body 410, a portion of the trash bag or liner may be exposed on the outside of the upper region of the body 410, which may present an undesirable aesthetic appearance. Conveniently, when the trim ring 415 is in the closed position, it can be configured to cover, obscure, and/or to securely hold the exposed portion of the disposable trash bag or liner along the upper region of the body 410. In some embodiments, as illustrated, the vertical length of the trim ring 415 is sufficiently long to cover or obscure any exposed portion of the upper edge of the disposable trash bag or liner when the trim ring 415 is in the closed position.
As shown in
The lid 414 can be directly or indirectly attached to a damper, as illustrated, for example, in connection with the dampening mechanism 160 of FIG. 19 of U.S. Publication No. 2015/0259139, which has been incorporated herein by reference, or any other type of damper. In some embodiments, the damper can help to slow down the closing and/or opening of the lid 414 to diminish noise and/or undesired knocking of the lid 414 against an adjacent wall or cabinet or furniture. The damper can be positioned at or near the bottom region or base of the trash can 410 of
In some embodiments, as shown, the lid 414 can be pivotally attached to the trim ring 415, which in turn can be pivotally attached to the body 412 of the trash can 410. The trim ring 415 can be manually moved by a user from the closed position to the open position, as shown in
As shown in
As shown in
The exterior panel 440 can be attached to the interior panel 450 in many different ways. For example, the exterior panel 440 can be adhered onto an exterior face of the interior panel 450, such as using any suitable type of glue or tape or other adhesive; or the exterior panel 440 can be mechanically affixed onto the interior panel 450, such as by a snap fit, or by a friction fit, or by fasteners such as one or more screws, rivets, brads, etc. In some embodiments, the exterior panel 440 can be attached to the interior panel 450 in such a way that, as illustrated, the upper edge 452 and/or lower edge 454 of the trim ring 415 are covered (at least partially, or along a majority or their respective lengths, or at least along a majority of the front and lateral side regions, or substantially entirely) by the exterior panel 440, at least along the front and/or lateral sides of the upper region of the trash can 410. In some embodiments, the rear side of the interior panel 450 of the trim ring 415 is not covered by the exterior panel 440 (as shown). In some embodiments, the interior panel 450, which may not be as aesthetically pleasing as the exterior panel 440, is not exposed to outside view, including along at least a portion of, or a majority of, or the entirety of, the upper edge 452 and/or the lower edge 454 of the trim ring 415, at least on the front and/or lateral sides of the trash can 410. In some embodiments, as shown, the exterior panel 440 is attached to the interior panel 450 by curling a portion of an upper edge 452 of the exterior panel 440 around an upper edge of the interior panel 450 and/or by curling a portion of a lower edge 454 of the exterior panel 440 around a lower edge of the interior panel 454. In some embodiments, as shown, the upper and/or lower edges 452, 454 of the exterior panel are rounded, as illustrated in
In some embodiments, as shown in
The upper closure assembly can include multiple parts, such as a trim ring 515 that is rotatable or otherwise moveable with respect to the body 512, and a lid 514 that is rotatable with respect to the body 512. The trash can 510 may also include an actuator such as a pedal 520 that is configured to permit a user to actuate a function of the trash can 510. As shown, the pedal 520 is positioned along a lower, front side of the trash can 510 which can facilitate operation with a user's foot; however, it is to be understood that the pedal 520 can be positioned along other locations of the body 512.
As shown in
With reference to
An Embodiment of a Dynamic Member
With reference next to
As shown, the foot can rotate relative to the frame 572. For example, the foot can rotate counter-clockwise from an extended position (as shown in
With reference next to
In some implementations, the surface area of the dynamic member 570a in contact with the surface, such as the floor 590, can change as the dynamic member 570a transitions between the extended position and the retracted position. For example, as shown in
Certain Terminology
Terms of orientation used herein, such as “top,” “bottom,” “horizontal,” “vertical,” “longitudinal,” “lateral,” and “end” are used in the context of the illustrated embodiment. However, the present disclosure should not be limited to the illustrated orientation. Indeed, other orientations are possible and are within the scope of this disclosure. Terms relating to circular shapes as used herein, such as diameter or radius, should be understood not to require perfect circular structures, but rather should be applied to any suitable structure with a cross-sectional region that can be measured from side-to-side. Terms relating to shapes generally, such as “circular” or “cylindrical” or “semi-circular” or “semi-cylindrical” or any related or similar terms, are not required to conform strictly to the mathematical definitions of circles or cylinders or other structures, but can encompass structures that are reasonably close approximations.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include or do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
Conjunctive language, such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, in some embodiments, as the context may dictate, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than or equal to 10% of the stated amount. The term “generally” as used herein represents a value, amount, or characteristic that predominantly includes or tends toward a particular value, amount, or characteristic. As an example, in certain embodiments, as the context may dictate, the term “generally parallel” can refer to something that departs from exactly parallel by less than or equal to 20 degrees.
Unless otherwise explicitly stated, articles such as “a” or “an” should generally be interpreted to include one or more described items. Accordingly, phrases such as “a device configured to” are intended to include one or more recited devices. Such one or more recited devices can also be collectively configured to carry out the stated recitations. For example, “a processor configured to carry out recitations A, B, and C” can include a first processor configured to carry out recitation A working in conjunction with a second processor configured to carry out recitations B and C.
The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Likewise, the terms “some,” “certain,” and the like are synonymous and are used in an open-ended fashion. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Overall, the language of the claims is to be interpreted broadly based on the language employed in the claims. The language of the claims is not to be limited to the non-exclusive embodiments and examples that are illustrated and described in this disclosure, or that are discussed during the prosecution of the application.
Summary
Several illustrative embodiments of dynamic foot trash can assemblies and associated methods have been disclosed. Although the trash cans have been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the trash cans extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the embodiments and certain modifications and equivalents thereof. For example, although generally rectangular trash cans are depicted, the disclosed inventive concepts can be used in connection with a wide variety of trash can configurations, such as circular, semi-circular, oval, etc. Various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of a receptacle or trash can. The scope of this disclosure should not be limited by the particular disclosed embodiments described herein.
While this disclosure has been described in terms of certain illustrative embodiments and uses, other embodiments and other uses, including embodiments and uses which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Components, elements, features, acts, or steps can be arranged or performed differently than described and components, elements, features, acts, or steps can be combined, merged, added, or left out in various embodiments. All possible combinations and subcombinations of elements and components described herein are intended to be included in this disclosure. No single feature or group of features is necessary or indispensable.
Further, while illustrative embodiments have been described, any embodiments having equivalent elements, modifications, omissions, and/or combinations are also within the scope of this disclosure. Moreover, although certain aspects, advantages, and novel features are described herein, not necessarily all such advantages may be achieved in accordance with any particular embodiment. For example, some embodiments within the scope of this disclosure achieve one advantage, or a group of advantages, as taught herein without necessarily achieving other advantages taught or suggested herein. Further, some embodiments may achieve different advantages than those taught or suggested herein.
Certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any subcombination or variation of any subcombination.
Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, and not all operations need to be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products. Additionally, other implementations are within the scope of this disclosure.
Any portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in one embodiment or example in this disclosure can be combined or used with (or instead of) any other portion of any of the steps, processes, structures, and/or devices disclosed or illustrated in a different embodiment, flowchart, or example. The embodiments and examples described herein are not intended to be discrete and separate from each other. Combinations, variations, and other implementations of the disclosed features are within the scope of this disclosure.
Some embodiments have been described in connection with the accompanying drawings. The figures are drawn and/or shown to scale, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed invention. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, any methods described herein may be practiced using any device suitable for performing the recited steps.
In summary, various embodiments and examples of trash can assemblies have been disclosed. Although the trash cans have been disclosed in the context of those embodiments and examples, it will be understood by those skilled in the art that this disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or other uses of the embodiments, as well as to certain modifications and equivalents thereof. This disclosure expressly contemplates that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another. Accordingly, the scope of this disclosure should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application claims the priority benefit of U.S. Provisional Patent Application No. 62/639,900, filed on Mar. 7, 2018, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
830182 | Skov | Sep 1906 | A |
1426211 | Pausin | Aug 1922 | A |
1461253 | Owen | Jul 1923 | A |
1754802 | Raster | Apr 1930 | A |
1820555 | Man | Aug 1931 | A |
1891651 | Padelford et al. | Dec 1932 | A |
1922729 | Geibel | Aug 1933 | A |
1980938 | Geibel | Nov 1934 | A |
2046777 | Geibel | Jul 1936 | A |
2308326 | Calcagno | Jan 1943 | A |
D148825 | Snider | Feb 1948 | S |
2457274 | Rifken | Dec 1948 | A |
2593455 | James | Apr 1952 | A |
2759625 | Ritter | Aug 1956 | A |
2796309 | Taylor | Jun 1957 | A |
2888307 | Graves et al. | May 1959 | A |
2946474 | Knapp | Jul 1960 | A |
3008604 | Garner | Nov 1961 | A |
3023922 | Arrington et al. | Mar 1962 | A |
3137408 | Taylor | Jun 1964 | A |
3300082 | Patterson | Jan 1967 | A |
3392825 | Gale et al. | Jul 1968 | A |
3451453 | Heck | Jun 1969 | A |
3654534 | Fischer | Apr 1972 | A |
3800503 | Maki | Apr 1974 | A |
3820200 | Myers | Jun 1974 | A |
3825150 | Taylor | Jul 1974 | A |
3825215 | Borglum | Jul 1974 | A |
3886425 | Weiss | May 1975 | A |
3888406 | Nippes | Jun 1975 | A |
3891115 | Ono | Jun 1975 | A |
4014457 | Hodge | Mar 1977 | A |
4027774 | Cote | Jun 1977 | A |
4081105 | Dagonnet et al. | Mar 1978 | A |
4189808 | Brown | Feb 1980 | A |
4200197 | Meyer et al. | Apr 1980 | A |
4217616 | Jessup | Aug 1980 | A |
4303174 | Anderson | Dec 1981 | A |
4320851 | Montoya | Mar 1982 | A |
4349123 | Yang | Sep 1982 | A |
4357740 | Brown | Nov 1982 | A |
4416197 | Kehl | Nov 1983 | A |
4417669 | Knowles et al. | Nov 1983 | A |
4457483 | Gagne | Jul 1984 | A |
4535911 | Goulter | Aug 1985 | A |
4570304 | Montreuil et al. | Feb 1986 | A |
4576310 | Isgar et al. | Mar 1986 | A |
D284320 | Kubic et al. | Jun 1986 | S |
4609117 | Pamment | Sep 1986 | A |
4630332 | Bisbing | Dec 1986 | A |
4630752 | DeMars | Dec 1986 | A |
4664347 | Brown et al. | May 1987 | A |
4697312 | Freyer | Oct 1987 | A |
4711161 | Swin et al. | Dec 1987 | A |
4729490 | Ziegenbein | Mar 1988 | A |
4753367 | Miller et al. | Jun 1988 | A |
4763808 | Guhl et al. | Aug 1988 | A |
4765548 | Sing | Aug 1988 | A |
4765579 | Robbins, III et al. | Aug 1988 | A |
4785964 | Miller et al. | Nov 1988 | A |
4792039 | Dayton | Dec 1988 | A |
4794973 | Perisic | Jan 1989 | A |
4813592 | Stolzman | Mar 1989 | A |
4823979 | Clark, Jr. | Apr 1989 | A |
4834260 | Auten | May 1989 | A |
4863053 | Oberg | Sep 1989 | A |
4867339 | Hahn | Sep 1989 | A |
4869391 | Farrington | Sep 1989 | A |
4884717 | Bussard et al. | Dec 1989 | A |
4888532 | Josson | Dec 1989 | A |
4892223 | DeMent | Jan 1990 | A |
4892224 | Graham | Jan 1990 | A |
D307344 | Massonnet | Apr 1990 | S |
4913308 | Culbertson | Apr 1990 | A |
4915347 | Iqbal et al. | Apr 1990 | A |
4918568 | Stone et al. | Apr 1990 | A |
D308272 | Koepsell | May 1990 | S |
4923087 | Burrows | May 1990 | A |
4944419 | Chandler | Jul 1990 | A |
4948004 | Chich | Aug 1990 | A |
4964523 | Bieltvedt et al. | Oct 1990 | A |
4972966 | Craft, Jr. | Nov 1990 | A |
4996467 | Day | Feb 1991 | A |
5031793 | Chen et al. | Jul 1991 | A |
5048903 | Loblein | Sep 1991 | A |
5054724 | Hutcheson | Oct 1991 | A |
5065272 | Owen et al. | Nov 1991 | A |
5065891 | Casey | Nov 1991 | A |
D322350 | Craft, Jr. et al. | Dec 1991 | S |
5076462 | Perrone | Dec 1991 | A |
D323573 | Schneider | Jan 1992 | S |
5090585 | Power | Feb 1992 | A |
5090785 | Stamp | Feb 1992 | A |
5100087 | Ashby | Mar 1992 | A |
5111958 | Witthoeft | May 1992 | A |
D327760 | Donnelly | Jul 1992 | S |
D329929 | Knoedler et al. | Sep 1992 | S |
5147055 | Samson et al. | Sep 1992 | A |
5156290 | Rodrigues | Oct 1992 | A |
D331097 | Sieren | Nov 1992 | S |
5170904 | Neuhaus | Dec 1992 | A |
5174462 | Hames | Dec 1992 | A |
D332852 | Delmerico | Jan 1993 | S |
D335562 | Evans | May 1993 | S |
5213272 | Gallagher et al. | May 1993 | A |
5222704 | Light | Jun 1993 | A |
D337181 | Warman | Jul 1993 | S |
5226558 | Whitney et al. | Jul 1993 | A |
5230525 | Delmerico et al. | Jul 1993 | A |
5242074 | Conaway et al. | Sep 1993 | A |
D340333 | Duran et al. | Oct 1993 | S |
5249693 | Gillispie et al. | Oct 1993 | A |
5261553 | Mueller et al. | Nov 1993 | A |
5265511 | Itzov | Nov 1993 | A |
5295607 | Chang | Mar 1994 | A |
5305916 | Suzuki et al. | Apr 1994 | A |
5314151 | Carter-Mann | May 1994 | A |
5322179 | Ting | Jun 1994 | A |
5329212 | Feigleson | Jul 1994 | A |
5337581 | Lott | Aug 1994 | A |
5348222 | Patey | Sep 1994 | A |
5353950 | Taylor et al. | Oct 1994 | A |
5372272 | Jennings | Dec 1994 | A |
5381588 | Nelson | Jan 1995 | A |
5385258 | Sutherlin | Jan 1995 | A |
5390818 | LaBuda | Feb 1995 | A |
5404621 | Heinke | Apr 1995 | A |
5407089 | Bird et al. | Apr 1995 | A |
5419452 | Mueller et al. | May 1995 | A |
5471708 | Lynch | Dec 1995 | A |
5474201 | Liu | Dec 1995 | A |
5501358 | Hobday | Mar 1996 | A |
D368563 | Brightbill et al. | Apr 1996 | S |
5520067 | Gaba | May 1996 | A |
5520303 | Bernstein et al. | May 1996 | A |
5527840 | Chutko et al. | Jun 1996 | A |
5531348 | Baker et al. | Jul 1996 | A |
5535913 | Asbach et al. | Jul 1996 | A |
5558254 | Anderson et al. | Sep 1996 | A |
5560283 | Hannig | Oct 1996 | A |
5584412 | Wang | Dec 1996 | A |
D377554 | Adriaansen | Jan 1997 | S |
5611507 | Smith | Mar 1997 | A |
5628424 | Gola | May 1997 | A |
5632401 | Hurd | May 1997 | A |
5636416 | Anderson | Jun 1997 | A |
5636761 | Diamond et al. | Jun 1997 | A |
5644111 | Cerny et al. | Jul 1997 | A |
5645186 | Powers et al. | Jul 1997 | A |
5650680 | Chula | Jul 1997 | A |
D383277 | Peters | Sep 1997 | S |
5662235 | Nieto | Sep 1997 | A |
5671847 | Pedersen et al. | Sep 1997 | A |
5690247 | Boover | Nov 1997 | A |
5695088 | Kasbohm | Dec 1997 | A |
5699929 | Ouno | Dec 1997 | A |
D388922 | Peters | Jan 1998 | S |
D389631 | Peters | Jan 1998 | S |
5704511 | Kellams | Jan 1998 | A |
5724837 | Shin | Mar 1998 | A |
5730312 | Hung | Mar 1998 | A |
5732845 | Armaly, Jr. | Mar 1998 | A |
5735495 | Kubota | Apr 1998 | A |
5738239 | Triglia | Apr 1998 | A |
5770935 | Smith et al. | Jun 1998 | A |
5799909 | Ziegler | Sep 1998 | A |
5816431 | Giannopoulos | Oct 1998 | A |
5816640 | Nishimura | Oct 1998 | A |
D401028 | Ahern, Jr. et al. | Nov 1998 | S |
D401383 | Gish | Nov 1998 | S |
D401719 | Van Leeuwen et al. | Nov 1998 | S |
5873643 | Burgess, Jr. et al. | Feb 1999 | A |
5881896 | Presnell et al. | Mar 1999 | A |
5881901 | Hampton | Mar 1999 | A |
5884237 | Kanki et al. | Mar 1999 | A |
5887748 | Nguyen | Mar 1999 | A |
D412552 | Burrows | Aug 1999 | S |
5961105 | Ehrnsberger et al. | Oct 1999 | A |
5967355 | Ragot | Oct 1999 | A |
5967392 | Niemi et al. | Oct 1999 | A |
5987708 | Newton | Nov 1999 | A |
6000569 | Liu | Dec 1999 | A |
6010024 | Wang | Jan 2000 | A |
6024238 | Jaros | Feb 2000 | A |
6036050 | Ruane | Mar 2000 | A |
6102239 | Wien | Aug 2000 | A |
6105859 | Stafford | Aug 2000 | A |
6123215 | Windle | Sep 2000 | A |
D431700 | Roudebush | Oct 2000 | S |
6126031 | Reason | Oct 2000 | A |
6129233 | Schiller | Oct 2000 | A |
6131861 | Fortier, Jr. et al. | Oct 2000 | A |
D435951 | Yang et al. | Jan 2001 | S |
6209744 | Gill | Apr 2001 | B1 |
6211637 | Studer | Apr 2001 | B1 |
6234339 | Thomas | May 2001 | B1 |
6250492 | Verbeek | Jun 2001 | B1 |
D445980 | Tjugum | Jul 2001 | S |
6286706 | Tucker | Sep 2001 | B1 |
6328320 | Walski et al. | Dec 2001 | B1 |
6345725 | Lin | Feb 2002 | B1 |
6364147 | Meinzinger et al. | Apr 2002 | B1 |
6386386 | George | May 2002 | B1 |
6390321 | Wang | May 2002 | B1 |
6401958 | Foss et al. | Jun 2002 | B1 |
D466667 | Lin | Dec 2002 | S |
6519130 | Breslow | Feb 2003 | B1 |
6557716 | Chan | May 2003 | B1 |
D476456 | Englert et al. | Jun 2003 | S |
D476457 | Verbeek | Jun 2003 | S |
6596983 | Brent | Jul 2003 | B2 |
D480193 | Wang | Sep 2003 | S |
6612099 | Stravitz | Sep 2003 | B2 |
6626316 | Yang | Sep 2003 | B2 |
6626317 | Pfiefer et al. | Sep 2003 | B2 |
D481508 | Wang | Oct 2003 | S |
6632064 | Walker et al. | Oct 2003 | B1 |
D481846 | Lin | Nov 2003 | S |
D482169 | Lin | Nov 2003 | S |
6659407 | Asaro | Dec 2003 | B2 |
6681950 | Miller, Jr. et al. | Jan 2004 | B2 |
6701832 | Hawkins | Mar 2004 | B1 |
D488604 | Yang et al. | Apr 2004 | S |
D488903 | Yang et al. | Apr 2004 | S |
D489503 | Lin | May 2004 | S |
D489855 | Tseng | May 2004 | S |
D489857 | Yang et al. | May 2004 | S |
D490583 | Yang et al. | May 2004 | S |
D490954 | Brand | Jun 2004 | S |
D491706 | Yang et al. | Jun 2004 | S |
6758366 | Bourgund et al. | Jul 2004 | B2 |
D493930 | Wang | Aug 2004 | S |
D494723 | Lin | Aug 2004 | S |
6774586 | Shih | Aug 2004 | B1 |
6785912 | Julio | Sep 2004 | B1 |
6812655 | Wang et al. | Nov 2004 | B1 |
6814249 | Lin | Nov 2004 | B2 |
D499450 | Goodman et al. | Dec 2004 | S |
6837393 | Kuo | Jan 2005 | B1 |
6857538 | Lin | Feb 2005 | B2 |
6859005 | Boliver | Feb 2005 | B2 |
D503021 | Yang et al. | Mar 2005 | S |
D503022 | Lai | Mar 2005 | S |
D503502 | Lai | Mar 2005 | S |
6866826 | Moore et al. | Mar 2005 | B2 |
6883676 | Lin | Apr 2005 | B2 |
D507090 | Yang et al. | Jul 2005 | S |
6920994 | Lin | Jul 2005 | B2 |
D509339 | Lin | Sep 2005 | S |
6974948 | Brent | Dec 2005 | B1 |
D513445 | Lin | Jan 2006 | S |
6981606 | Yang et al. | Jan 2006 | B2 |
D517764 | Wang | Mar 2006 | S |
D517767 | Yang et al. | Mar 2006 | S |
D518266 | Yang et al. | Mar 2006 | S |
7017773 | Gruber et al. | Mar 2006 | B2 |
D522203 | Lin | May 2006 | S |
D522204 | Lin | May 2006 | S |
7044323 | Yang et al. | May 2006 | B2 |
D522704 | Lin | Jun 2006 | S |
D524504 | Lin | Jul 2006 | S |
D525756 | Yang et al. | Jul 2006 | S |
7073677 | Richardson et al. | Jul 2006 | B2 |
7077283 | Yang et al. | Jul 2006 | B2 |
7080750 | Wein et al. | Jul 2006 | B2 |
D526457 | Lin | Aug 2006 | S |
D526458 | Lin | Aug 2006 | S |
D526756 | Lin | Aug 2006 | S |
7086550 | Yang et al. | Aug 2006 | B2 |
D528726 | Lin | Sep 2006 | S |
D530476 | Lin | Oct 2006 | S |
D530874 | Lin | Oct 2006 | S |
7121421 | Yang et al. | Oct 2006 | B2 |
D531499 | Zaidman | Nov 2006 | S |
D535450 | Chen | Jan 2007 | S |
D535799 | Epps | Jan 2007 | S |
D535800 | Yang et al. | Jan 2007 | S |
7163591 | Kim et al. | Jan 2007 | B2 |
7168591 | Miller | Jan 2007 | B1 |
D537223 | Lin | Feb 2007 | S |
D537597 | Bolden | Feb 2007 | S |
D537599 | Lin | Feb 2007 | S |
D537601 | Lin | Feb 2007 | S |
D537999 | Lin | Mar 2007 | S |
D538995 | Lin | Mar 2007 | S |
D539498 | Yang et al. | Mar 2007 | S |
D539499 | Yang et al. | Mar 2007 | S |
D540001 | Zimmerman | Apr 2007 | S |
D542001 | Yang et al. | May 2007 | S |
D542995 | Lin | May 2007 | S |
D543673 | Yang et al. | May 2007 | S |
D544170 | Lin | Jun 2007 | S |
D544171 | Lin | Jun 2007 | S |
D544671 | Saunders et al. | Jun 2007 | S |
D545024 | Liao | Jun 2007 | S |
7225943 | Yang et al. | Jun 2007 | B2 |
D547020 | Chen | Jul 2007 | S |
7243811 | Ramsey | Jul 2007 | B1 |
D550918 | Wang et al. | Sep 2007 | S |
D552319 | Gusdorf | Oct 2007 | S |
D552321 | Yang et al. | Oct 2007 | S |
D552823 | Yang et al. | Oct 2007 | S |
D552824 | Zimmerman | Oct 2007 | S |
D552825 | Yang et al. | Oct 2007 | S |
D555320 | Yang et al. | Nov 2007 | S |
D557869 | Hawker et al. | Dec 2007 | S |
D559494 | Yang et al. | Jan 2008 | S |
D559495 | Yang et al. | Jan 2008 | S |
D562522 | Daams | Feb 2008 | S |
7328842 | Wagner et al. | Feb 2008 | B2 |
D564169 | Wang | Mar 2008 | S |
D564723 | Yang et al. | Mar 2008 | S |
D566367 | Lin | Apr 2008 | S |
D566369 | Shek | Apr 2008 | S |
D566923 | Lin | Apr 2008 | S |
D567468 | Yang et al. | Apr 2008 | S |
D568572 | Yang et al. | May 2008 | S |
D569720 | Lablaine | May 2008 | S |
7374060 | Yang et al. | May 2008 | B2 |
D571520 | Lin | Jun 2008 | S |
D574119 | Sofy | Jul 2008 | S |
7395990 | Stevens | Jul 2008 | B1 |
7398913 | McClure | Jul 2008 | B2 |
7404499 | Ramsey | Jul 2008 | B1 |
D574569 | Yang et al. | Aug 2008 | S |
D576371 | Zimmerman | Sep 2008 | S |
D578265 | Presnell | Oct 2008 | S |
D578266 | Yang et al. | Oct 2008 | S |
D578268 | Yang et al. | Oct 2008 | S |
D578722 | Yang et al. | Oct 2008 | S |
7438199 | Tidrick | Oct 2008 | B1 |
D580120 | Lin | Nov 2008 | S |
D580613 | Yang et al. | Nov 2008 | S |
D580615 | Yang et al. | Nov 2008 | S |
D581622 | Presnell et al. | Nov 2008 | S |
D582121 | Wang et al. | Dec 2008 | S |
D584470 | Bizzell et al. | Jan 2009 | S |
D585171 | Bizzell et al. | Jan 2009 | S |
D585172 | Lin | Jan 2009 | S |
D585618 | Yang et al. | Jan 2009 | S |
D586065 | Lin | Feb 2009 | S |
D586066 | Lin | Feb 2009 | S |
D586069 | Lin | Feb 2009 | S |
D586070 | Lin | Feb 2009 | S |
7494021 | Yang et al. | Feb 2009 | B2 |
D587874 | Lin | Mar 2009 | S |
D588321 | Schoofs | Mar 2009 | S |
D589670 | Smeets | Mar 2009 | S |
D593271 | Yang et al. | May 2009 | S |
7530578 | Niemeyer et al. | May 2009 | B2 |
7540396 | Yang et al. | Jun 2009 | B2 |
7543716 | Lin | Jun 2009 | B2 |
D596820 | Yang et al. | Jul 2009 | S |
7559433 | Yang et al. | Jul 2009 | B2 |
D599074 | Bizzell et al. | Aug 2009 | S |
D599971 | Lin | Sep 2009 | S |
D603119 | Yang et al. | Oct 2009 | S |
7607552 | Efstathiou | Oct 2009 | B2 |
D604472 | Blanks et al. | Nov 2009 | S |
7614519 | Krauth et al. | Nov 2009 | B2 |
7621420 | Bandoh et al. | Nov 2009 | B2 |
D608069 | Schoofs | Jan 2010 | S |
7656109 | Yang et al. | Feb 2010 | B2 |
D611216 | Yang et al. | Mar 2010 | S |
D611217 | Bizzell et al. | Mar 2010 | S |
D611671 | Yang et al. | Mar 2010 | S |
7694838 | Yang et al. | Apr 2010 | B2 |
7703622 | Bynoe | Apr 2010 | B1 |
D615270 | Yang et al. | May 2010 | S |
D615722 | Yang et al. | May 2010 | S |
7712285 | Stravitz et al. | May 2010 | B2 |
7741801 | Fukuizumi | Jun 2010 | B2 |
7748556 | Yang et al. | Jul 2010 | B2 |
7781995 | Yang et al. | Aug 2010 | B2 |
D623817 | Yang et al. | Sep 2010 | S |
D625068 | Shannon | Oct 2010 | S |
7806285 | Yang et al. | Oct 2010 | B2 |
D627533 | Yang et al. | Nov 2010 | S |
D627944 | Wang et al. | Nov 2010 | S |
D629172 | Liao | Dec 2010 | S |
D629579 | Lin | Dec 2010 | S |
D630404 | Yang et al. | Jan 2011 | S |
D631221 | Yang et al. | Jan 2011 | S |
D632039 | Yang et al. | Feb 2011 | S |
D632864 | Yang et al. | Feb 2011 | S |
D634911 | Yang et al. | Mar 2011 | S |
D635319 | Meyerhoffer | Mar 2011 | S |
7896187 | Haibel | Mar 2011 | B2 |
7922024 | Yang et al. | Apr 2011 | B2 |
7950543 | Yang et al. | May 2011 | B2 |
D639520 | Lin | Jun 2011 | S |
D644390 | Smeets et al. | Aug 2011 | S |
7992742 | Kim | Aug 2011 | B1 |
8006857 | Lin | Aug 2011 | B2 |
D644806 | Yang et al. | Sep 2011 | S |
D644807 | Yang et al. | Sep 2011 | S |
D649728 | Campbell | Nov 2011 | S |
8074833 | Yang et al. | Dec 2011 | B2 |
8096445 | Yang et al. | Jan 2012 | B2 |
D655061 | Scaturro | Feb 2012 | S |
8136688 | Lee et al. | Mar 2012 | B2 |
D657108 | Yang et al. | Apr 2012 | S |
D657109 | Liao | Apr 2012 | S |
8297470 | Yang et al. | Oct 2012 | B2 |
8317055 | Zawrotny et al. | Nov 2012 | B2 |
D672520 | Yang et al. | Dec 2012 | S |
D673750 | Quan | Jan 2013 | S |
D675802 | Yang et al. | Feb 2013 | S |
D675803 | Yang et al. | Feb 2013 | S |
8393489 | Stravitz | Mar 2013 | B1 |
8418869 | Yang et al. | Apr 2013 | B2 |
D684741 | Harris | Jun 2013 | S |
D689255 | Sun Ting Kung et al. | Sep 2013 | S |
8567630 | Yang et al. | Oct 2013 | B2 |
8569980 | Yang et al. | Oct 2013 | B2 |
8575537 | Yao et al. | Nov 2013 | B2 |
8607932 | Cooper | Dec 2013 | B2 |
8672171 | Wynn et al. | Mar 2014 | B2 |
8678219 | Wang et al. | Mar 2014 | B1 |
8686676 | Yang et al. | Apr 2014 | B2 |
D704406 | Kern | May 2014 | S |
8716969 | Yang et al. | May 2014 | B2 |
8720728 | Yang et al. | May 2014 | B2 |
D709662 | Yang et al. | Jul 2014 | S |
8766582 | Yang et al. | Jul 2014 | B2 |
8807378 | Kaberna | Aug 2014 | B2 |
8807379 | Hammond | Aug 2014 | B1 |
D714510 | Yang et al. | Sep 2014 | S |
D715575 | Williams et al. | Oct 2014 | S |
D716015 | van de Leest | Oct 2014 | S |
8851316 | Barrett et al. | Oct 2014 | B2 |
8872459 | Yang et al. | Oct 2014 | B2 |
D717012 | Han | Nov 2014 | S |
D717013 | Han | Nov 2014 | S |
D717014 | Han | Nov 2014 | S |
D717015 | Han | Nov 2014 | S |
D719313 | Kao | Dec 2014 | S |
D725860 | Spivey et al. | Mar 2015 | S |
D725861 | Yang et al. | Mar 2015 | S |
D730008 | Yang et al. | May 2015 | S |
9051093 | Yang et al. | Jun 2015 | B2 |
D755461 | Wall | May 2016 | S |
D758686 | Beumer | Jun 2016 | S |
D759934 | Yang et al. | Jun 2016 | S |
D762037 | Chen | Jul 2016 | S |
D765937 | Chen | Sep 2016 | S |
D766998 | Kao et al. | Sep 2016 | S |
9434538 | Yang et al. | Sep 2016 | B2 |
D770121 | Chen | Oct 2016 | S |
D771344 | Yang et al. | Nov 2016 | S |
D773145 | Yang et al. | Nov 2016 | S |
9481515 | Yang et al. | Nov 2016 | B2 |
D773769 | Chen | Dec 2016 | S |
9573759 | Yang et al. | Feb 2017 | B2 |
9586755 | Yang et al. | Mar 2017 | B1 |
D787828 | Thoma et al. | May 2017 | S |
D790145 | Chen | Jun 2017 | S |
D793642 | Yang et al. | Aug 2017 | S |
D798016 | Yang et al. | Sep 2017 | S |
D804133 | Yang et al. | Sep 2017 | S |
9751692 | Yang et al. | Sep 2017 | B2 |
9790025 | Yang et al. | Oct 2017 | B2 |
9856080 | Yang et al. | Jan 2018 | B2 |
D820544 | Joseph | Jun 2018 | S |
D825876 | Chen | Aug 2018 | S |
D827968 | Chen | Sep 2018 | S |
D829400 | Yang et al. | Sep 2018 | S |
D830029 | Greenspoon et al. | Oct 2018 | S |
D835374 | Yang et al. | Dec 2018 | S |
D835376 | Yang et al. | Dec 2018 | S |
D836278 | Berberet et al. | Dec 2018 | S |
D840628 | Chang | Feb 2019 | S |
D845576 | Lu | Apr 2019 | S |
10279996 | Yang et al. | May 2019 | B2 |
10279997 | Yang et al. | May 2019 | B2 |
D851350 | Lu | Jun 2019 | S |
D853067 | Chen | Jul 2019 | S |
D855919 | Yang et al. | Aug 2019 | S |
D858024 | Yang et al. | Aug 2019 | S |
D858923 | Yang et al. | Sep 2019 | S |
D861076 | Chen | Sep 2019 | S |
10472170 | Yang et al. | Nov 2019 | B2 |
10494175 | Yang et al. | Dec 2019 | B2 |
D874776 | Spadotto | Feb 2020 | S |
10654648 | Rodriguez | May 2020 | B1 |
10683165 | Yang et al. | Jun 2020 | B2 |
10723549 | Yang et al. | Jul 2020 | B2 |
D901815 | Yang et al. | Nov 2020 | S |
10906738 | Barry | Feb 2021 | B2 |
11027916 | Yang et al. | Jun 2021 | B2 |
D925153 | Busch | Jul 2021 | S |
D930933 | Yang et al. | Sep 2021 | S |
11136186 | Yang et al. | Oct 2021 | B2 |
D936927 | Zeng | Nov 2021 | S |
D938125 | Zhang | Dec 2021 | S |
D939174 | Zeng | Dec 2021 | S |
11279555 | Yang et al. | Mar 2022 | B2 |
20010002690 | Rosky | Jun 2001 | A1 |
20010020619 | Pfeifer et al. | Sep 2001 | A1 |
20010045512 | Brent | Nov 2001 | A1 |
20020009567 | Brand | Jan 2002 | A1 |
20020066736 | Pyles | Jun 2002 | A1 |
20020092853 | Wang | Jul 2002 | A1 |
20020096523 | Pyles | Jul 2002 | A1 |
20020096524 | Hardesty | Jul 2002 | A1 |
20020100758 | Pyles | Aug 2002 | A1 |
20020104266 | Ranaudo | Aug 2002 | A1 |
20020116924 | Winkelmann et al. | Aug 2002 | A1 |
20020185199 | Myers et al. | Dec 2002 | A1 |
20030089719 | Berger | May 2003 | A1 |
20030102316 | Forest | Jun 2003 | A1 |
20030201265 | Lin | Oct 2003 | A1 |
20030205979 | Papari et al. | Nov 2003 | A1 |
20030230576 | Lin | Dec 2003 | A1 |
20040016756 | Lin | Jan 2004 | A1 |
20040028572 | Sham et al. | Feb 2004 | A1 |
20040134924 | Hansen et al. | Jul 2004 | A1 |
20040140782 | Okabe et al. | Jul 2004 | A1 |
20040164077 | Kuo | Aug 2004 | A1 |
20040174268 | Scott et al. | Sep 2004 | A1 |
20040175303 | Lin | Sep 2004 | A1 |
20040199401 | Wagner | Oct 2004 | A1 |
20040200938 | Forlivio | Oct 2004 | A1 |
20040206758 | Lin | Oct 2004 | A1 |
20040206760 | Gagnebin | Oct 2004 | A1 |
20040250711 | Ernst | Dec 2004 | A1 |
20040251746 | Ichimaru et al. | Dec 2004 | A1 |
20050017006 | Kuo | Jan 2005 | A1 |
20050017010 | Siegel et al. | Jan 2005 | A1 |
20050029281 | Westermann et al. | Feb 2005 | A1 |
20050129803 | Umeda et al. | Jun 2005 | A1 |
20050258177 | Woodson | Nov 2005 | A1 |
20050258794 | Fukuizumi | Nov 2005 | A1 |
20060027579 | Yang et al. | Feb 2006 | A1 |
20060103086 | Niemeyer et al. | May 2006 | A1 |
20060110537 | Huang et al. | May 2006 | A1 |
20060138149 | Tracy | Jun 2006 | A1 |
20060156948 | Hendriks et al. | Jul 2006 | A1 |
20060163257 | Golbert | Jul 2006 | A1 |
20060175336 | Wang | Aug 2006 | A1 |
20060186121 | Yang et al. | Aug 2006 | A1 |
20060196874 | Yang | Sep 2006 | A1 |
20060237641 | Moeller et al. | Oct 2006 | A1 |
20060249510 | Lin | Nov 2006 | A1 |
20060278643 | Chiou | Dec 2006 | A1 |
20070012699 | Yang et al. | Jan 2007 | A1 |
20070034334 | Ramsey et al. | Feb 2007 | A1 |
20070045326 | Tramontina et al. | Mar 2007 | A1 |
20070090112 | Kalman et al. | Apr 2007 | A1 |
20070114847 | Ichimaru et al. | May 2007 | A1 |
20070181579 | Kuo et al. | Aug 2007 | A1 |
20070209846 | Wilson | Sep 2007 | A1 |
20070215622 | Perez | Sep 2007 | A1 |
20070241109 | Lin | Oct 2007 | A1 |
20070266637 | McGowan | Nov 2007 | A1 |
20070272691 | Wang et al. | Nov 2007 | A1 |
20070289972 | Wynn et al. | Dec 2007 | A1 |
20080011754 | Ramsey | Jan 2008 | A1 |
20080011910 | Ramsey | Jan 2008 | A1 |
20080041863 | Forest | Feb 2008 | A1 |
20080083756 | Daniels | Apr 2008 | A1 |
20080083757 | Parker et al. | Apr 2008 | A1 |
20080099274 | Seel | May 2008 | A1 |
20080128428 | Beckerman | Jun 2008 | A1 |
20080164257 | Boll et al. | Jul 2008 | A1 |
20080236275 | Breed et al. | Oct 2008 | A1 |
20080245794 | Escobar et al. | Oct 2008 | A1 |
20080257889 | Kovacevich et al. | Oct 2008 | A1 |
20080257890 | Kovacevich et al. | Oct 2008 | A1 |
20080257891 | Kovacevich et al. | Oct 2008 | A1 |
20080264948 | Kovacevich et al. | Oct 2008 | A1 |
20080264950 | Kovacevich et al. | Oct 2008 | A1 |
20080272119 | Efstathiou | Nov 2008 | A1 |
20080272127 | Kovacevich et al. | Nov 2008 | A1 |
20090008888 | Boulden | Jan 2009 | A1 |
20090071959 | Cheung | Mar 2009 | A1 |
20090084788 | Yang et al. | Apr 2009 | A1 |
20090136341 | Kenyon | May 2009 | A1 |
20090214606 | Bujard et al. | Aug 2009 | A1 |
20090230131 | McDuffie et al. | Sep 2009 | A1 |
20090261105 | Cunningham et al. | Oct 2009 | A1 |
20090266836 | Mobley | Oct 2009 | A1 |
20100006572 | Chiou | Jan 2010 | A1 |
20100084235 | Lu | Apr 2010 | A1 |
20100096894 | Fukai | Apr 2010 | A1 |
20100122985 | Peters et al. | May 2010 | A1 |
20100147865 | Yang et al. | Jun 2010 | A1 |
20100170904 | Kalman et al. | Jul 2010 | A1 |
20100176126 | Shikano | Jul 2010 | A1 |
20100178105 | Monneret | Jul 2010 | A1 |
20100193518 | Tontarelli | Aug 2010 | A1 |
20100219191 | Prosa | Sep 2010 | A1 |
20100237074 | Yang et al. | Sep 2010 | A1 |
20100252557 | Clements | Oct 2010 | A1 |
20100294769 | Lee et al. | Nov 2010 | A1 |
20110017735 | Wang et al. | Jan 2011 | A1 |
20110049149 | Shih | Mar 2011 | A1 |
20110056952 | Borowski et al. | Mar 2011 | A1 |
20110139781 | Jin et al. | Jun 2011 | A1 |
20110272409 | Kasbohm | Nov 2011 | A1 |
20120111895 | Fitzpatrick et al. | May 2012 | A1 |
20120145932 | Yao et al. | Jun 2012 | A1 |
20120234836 | Barrett et al. | Sep 2012 | A1 |
20120234849 | Hughes et al. | Sep 2012 | A1 |
20120248149 | Pelfrey | Oct 2012 | A1 |
20120261423 | Zawrotny et al. | Oct 2012 | A1 |
20130048641 | Romano | Feb 2013 | A1 |
20130097809 | Weber et al. | Apr 2013 | A1 |
20130105487 | Baik | May 2013 | A1 |
20130240592 | Woodruff | Sep 2013 | A1 |
20130248535 | Wolfe et al. | Sep 2013 | A1 |
20130300119 | Anzalon et al. | Nov 2013 | A1 |
20140183193 | Hammond et al. | Jul 2014 | A1 |
20140238989 | Wang et al. | Aug 2014 | A1 |
20140240964 | Adachi et al. | Aug 2014 | A1 |
20140305946 | Han | Oct 2014 | A1 |
20140345453 | Oh et al. | Nov 2014 | A1 |
20150251849 | Yang et al. | Sep 2015 | A1 |
20150321841 | Salas et al. | Nov 2015 | A1 |
20160137411 | Rogers | May 2016 | A1 |
20160200508 | Thoma et al. | Jul 2016 | A1 |
20170050404 | Henken et al. | Feb 2017 | A1 |
20170127669 | Yang et al. | May 2017 | A1 |
20170166167 | Heller et al. | Jun 2017 | A1 |
20170176986 | High et al. | Jun 2017 | A1 |
20170253429 | Yang | Sep 2017 | A1 |
20180093827 | Yang et al. | Apr 2018 | A1 |
20180178978 | Yang et al. | Jun 2018 | A1 |
20180305120 | Yang et al. | Oct 2018 | A1 |
20190077595 | Wang et al. | Mar 2019 | A1 |
20190185263 | Yang et al. | Jun 2019 | A1 |
20200148467 | Yang et al. | May 2020 | A1 |
20200307907 | Yang et al. | Oct 2020 | A1 |
20200407159 | Yang et al. | Dec 2020 | A1 |
20220097960 | Yang et al. | Mar 2022 | A1 |
20220135321 | Yang et al. | May 2022 | A1 |
20220160126 | Yang et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
622536 | Apr 1992 | AU |
2182840 | Sep 1997 | CA |
2519295 | Mar 2007 | CA |
2075182 | Apr 1991 | CN |
2378327 | May 2000 | CN |
2467467 | Dec 2001 | CN |
200964993 | Oct 2007 | CN |
101177946 | May 2008 | CN |
201105898 | Aug 2008 | CN |
201330049 | Oct 2009 | CN |
201367221 | Dec 2009 | CN |
201372076 | Dec 2009 | CN |
201447201 | May 2010 | CN |
201512253 | Jun 2010 | CN |
201597962 | Oct 2010 | CN |
201907743 | Jul 2011 | CN |
202213911 | May 2012 | CN |
103207416 | Jul 2013 | CN |
103303618 | Sep 2013 | CN |
204587817 | Aug 2015 | CN |
205169479 | Apr 2016 | CN |
107032015 | Aug 2017 | CN |
1610087 | Jul 1950 | DE |
822376 | Nov 1951 | DE |
1283741 | Jul 1966 | DE |
8436939 | Mar 1985 | DE |
9108341 | Oct 1991 | DE |
4225936 | Feb 1994 | DE |
19525885 | Mar 1997 | DE |
19617823 | Nov 1997 | DE |
19809331 | May 1999 | DE |
19811991 | Sep 1999 | DE |
29918687 | Mar 2000 | DE |
19933180 | Jan 2001 | DE |
10036259 | Nov 2001 | DE |
10148997 | Apr 2003 | DE |
20305521 | Jun 2003 | DE |
20217561 | Mar 2004 | DE |
10337806 | Mar 2005 | DE |
0582240 | Jul 1993 | EP |
0903305 | Mar 1999 | EP |
0906876 | Apr 1999 | EP |
1094017 | Apr 2001 | EP |
1162161 | Dec 2001 | EP |
1361176 | Nov 2003 | EP |
1136393 | Apr 2004 | EP |
1447342 | Aug 2004 | EP |
1600373 | Nov 2005 | EP |
1647503 | Apr 2006 | EP |
1686073 | Aug 2006 | EP |
1918223 | May 2008 | EP |
2343250 | Jul 2011 | EP |
3042864 | Jul 2016 | EP |
2887152 | Dec 2006 | FR |
191004921 | Jun 1910 | GB |
1555543 | Nov 1979 | GB |
1555543 | Nov 1979 | GB |
2384418 | Jul 2003 | GB |
02-152670 | Jun 1990 | JP |
H06-56011 | Aug 1994 | JP |
06-272888 | Sep 1994 | JP |
2004-106713 | Apr 2004 | JP |
2004-231237 | Aug 2004 | JP |
D1300450 | May 2007 | JP |
D1300451 | May 2007 | JP |
2007-154831 | Jun 2007 | JP |
D1322056 | Feb 2008 | JP |
D1398668 | Oct 2010 | JP |
2013-231413 | Nov 2013 | JP |
2014-523329 | Sep 2014 | JP |
20040087306 | Oct 2004 | KR |
3003841370000 | Jun 2005 | KR |
3004095430000 | Mar 2006 | KR |
3004095430001 | Jul 2006 | KR |
6908550 | Dec 1970 | NL |
183920 | May 1992 | TW |
230977 | Sep 1994 | TW |
395392 | Jun 2000 | TW |
D112733 | Sep 2006 | TW |
D129485 | Jul 2009 | TW |
D133382 | Feb 2010 | TW |
D133678 | Mar 2010 | TW |
145989 | Mar 2012 | TW |
D162495 | Aug 2014 | TW |
201720729 | Jun 2017 | TW |
WO 9202430 | Feb 1992 | WO |
WO 9633671 | Oct 1996 | WO |
WO 2005080232 | Sep 2005 | WO |
WO 2006079263 | Aug 2006 | WO |
WO 2007139570 | Dec 2007 | WO |
WO 2009114495 | Sep 2009 | WO |
WO 2015134902 | Sep 2015 | WO |
WO 2015138625 | Sep 2015 | WO |
WO 2016054109 | Apr 2016 | WO |
Entry |
---|
U.S. Appl. No. 29/484,903, filed Mar. 13, 2014, Yang et al. |
U.S. Appl. No. 15/476,285, filed Mar. 31, 2017, Yang et al. |
U.S. Appl. No. 29/583,627, filed Jun. 22, 2017, Yang et al. |
U.S. Appl. No. 29/633,369, filed Jan. 12, 2018, Yang et al. |
U.S. Appl. No. 29/633,372, filed Jan. 12, 2018, Yang et al. |
U.S. Appl. No. 16/284,996, filed Feb. 25, 2019, Yang et al. |
Trento Corner 23 Trash Can, Hailo product webpage, May 2008, http://www.hailo.de/html/default.asp?site=12_71_107&lang=en. |
Simplehuman Liner Rim Dual Bucket Rectangular Recycler with Liner Pocket, Stainless Steel, 58 Liter / 15 Gallon, Item No. CW2025, www.Amazon.com, site visited Dec. 29, 2015. |
Web page showing picture of Hero Bullet trash can, archived Nov. 17, 2004, downloaded from http://web.archive.org/web/20041117003115/http://www.simplehuman.com/images/hero_bullet.jpg. |
Schaefer, http://www.schaeferco.com/about_rollcoaters.html, 2007, in 12 pages. |
Agion Product Information Bulletin Regarding Agion Antimicrobial Type AC; publicly available at least as early as Oct. 2015 (in two pages). |
Agion Material Safety Data Sheet; Agion Antimicrobial Type AC; publicly available at least as early as Oct. 2015 (in three pages). |
Extended European Search Report in corresponding European Patent Application No. 19160903.1, dated Jan. 10, 2020, in 10 pages. |
alzashop.com, Simplehuman 45L Pedal Rectangular White Plastic Stainless Steel Trash Can, https://www.alzashop.com/simplehuman-45l-pedal-rectangular-white-plastic-stainless-steel-d5841987.htm, site visited Jul. 20, 2021, in 3 pages. |
Youtube.com, “Automatic trash can pull out cabinet with Arduino (DIY)”, dated Oct. 9, 2019, https://www.youtube.com/watch?v=mmcgTaE45_Y, entire video, including screenshot in 1 page. |
Youtube.com, “trash pullout with servo drive installed”, dated Jun. 17, 2011, https://www.youtube.com/watch?v=t01SbtllEh8, entire video, including screenshots in 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190276232 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62639900 | Mar 2018 | US |