The present disclosure relates to systems for trash disposal, and, more specifically, to automated trashcans.
Conventional trashcans generally require the use of a dustpan to manually collect materials and then place the materials into the can. This may require the user to bend or to simultaneously grapple with a broom, the dustpan, and the trashcan, which may be awkward and which may pose a challenge to a user who is physically impaired. In addition, various other operations of a conventional trashcan require manual operation, such as, for example, opening and closing of a lid that encloses the trashcan, monitoring the supply of trash bags available for use within the trashcan, or the purchase of additional trash bags.
Accordingly, there is a need for improved apparatus as well as related methods and compositions of matter that facilitate automatically the above operations as well as other operations described herein.
These and other needs and disadvantages may be overcome by the apparatus and the related methods and compositions of matter disclosed herein. Additional improvements and advantages may be recognized by those of ordinary skill in the art upon study of the present disclosure.
A trashcan system is disclosed herein. In various aspects, the trashcan system includes, an inlet located about a trashcan to be proximate to a surface upon which the trashcan is placed in order to entrain materials disposed upon the surface into air communicated into the inlet. The trashcan system, in various aspects, includes a collector disposed within the trashcan. A chamber of the collector may receive air with materials entrained therein communicated from the inlet, and the chamber may be adapted to collect materials entrained in the air. An exit may be located about the trashcan that communicates with the chamber to exhaust the air from the chamber, in various aspects. A vacuum assembly located about the trashcan, the vacuum assembly cooperates with the inlet, the chamber, and the exit to communicate the air into the inlet, through the chamber, to the exit where the air is exhausted, in various aspects.
This summary is presented to provide a basic understanding of some aspects of the apparatus and methods disclosed herein as a prelude to the detailed description that follows below. Accordingly, this summary is not intended to identify key elements of the apparatus and methods disclosed herein or to delineate the scope thereof.
The Figures are exemplary only, and the implementations illustrated therein are selected to facilitate explanation. The number, position, relationship and dimensions of the elements shown in the Figures to form the various implementations described herein, as well as dimensions and dimensional proportions to conform to specific force, weight, strength, flow and similar requirements are explained herein or are understandable to a person of ordinary skill in the art upon study of this disclosure. Where used in the various Figures, the same numerals designate the same or similar elements. Furthermore, when the terms “top,” “bottom,” “right,” “left,” “forward,” “rear,” “first,” “second,” “inside,” “outside,” and similar terms are used, the terms should be understood in reference to the orientation of the implementations shown in the drawings and are utilized to facilitate description thereof. Use herein of relative terms such as generally, about, approximately, essentially, may be indicative of engineering, manufacturing, or scientific tolerances such as ±0.1%, ±1%, ±2.5%, ±5%, or other such tolerances, as would be recognized by those of ordinary skill in the art upon study of this disclosure.
The present application claims priority to and benefit of U.S. Provisional Patent Application No. 62/048,993 filed on Sep. 11, 2014, the disclosure of which is hereby incorporated by reference in its entirety herein.
A trashcan system is disclosed herein. In various aspects, the trashcan system includes a trashcan with an inlet located proximate to a surface upon which the trashcan is placed. A collector that forms a chamber is disposed within the trashcan, in various implementations, and airflow with materials entrained therein is communicated from around the surface into the inlet and thence into the chamber for collection of the entrained materials in the chamber. The airflow may then be communicated from the chamber through a filter and exhausted through an exit.
The communication of airflow or stoppage of the communication of airflow from the inlet to the chamber may be controlled, at least in part, by emission of a signal indicative of a condition by a sensor. The condition may be, for example, placement of an object, such as a broom, proximate the inlet, or the motioning of an object, such as a broom, proximate the inlet.
A sensor may be placed about the trashcan that, upon detection of a condition, emits a signal that causes a lid to move from a closed position into an open position so that the user may deposit material into a trash bag within a chamber of the trashcan.
Other sensor(s) may be placed about the trashcan that emits signal(s) indicative of various conditions, and the status of the trashcan may comprise the condition(s) indicated by the sensor(s). A controller disposed about the trashcan may determine the status of the trashcan using the signal(s) indicative of the various conditions, and the controller may communicate wirelessly the status to a software application (“App”) operatively received by a handheld electronic device, such as a mobile phone. The status may be indicative of a quantity of trash bags contained within a container portion of the trashcan, a battery charge of a battery portion of a power supply, or the availability of electrical power. The App may communicate with a vendor to allow the user to order trash bags from the vendor when the quantity of trash bags contained within a container portion of the trashcan falls below some minimum number of trash bags. The App may allow the user to order other supplies or parts related to the trashcan system.
In the implementation of
A trash bag 105 (see
Assembly 40, as illustrated, includes lid 45 positionable between a closed position 47 that encloses chamber 25 and an open position 49 (illustrated in phantom) that reveals chamber 25 thereby allowing a user to deposit trash within chamber 108 of trash bag 105 disposed within chamber 25. Note that, for clarity of explanation, only a portion of lid 45 is illustrated in
As illustrated in
Vacuum assembly 30, as illustrated in
Note that, in the exemplary implementation of
Collector 60, in this implementation, defines chamber 65 within which materials 505 are deposited from airflow 111 as airflow 111 passes from inlet 35 through tube 31, collector 60, and tube 33 in succession (airflow 111 is illustrated in
As illustrated in
Controller 124, in this implementation, is in operable communication with vacuum assembly 30, power supply 50, sensors 82, 131, 133, 135, 137 and display 140 to control the operations of vacuum assembly 30, power supply 50, sensors 82, 131, 133, 135, 137 and display 140 or to receive input from display 140 directive of the operation of vacuum assembly 30, power supply 50, sensors 82, 131, 133, 135, 137 or display 140. Sensors 82, 131, 133, 135, 137 communicate signals 92, 141, 143, 145, 147, respectively, to controller 124, and signals 92, 141, 143, 145, 147 may be indicative of conditions detected by corresponding sensors 82, 131, 133, 135, 137. Controller 124 may include a microprocessor, memory, A/D converter, D/A converter, wireless communication hardware, and software may be operably received by controller 124 to control the operations of controller 124, and, thus, vacuum assembly 30, power supply 50, sensors 82, 131, 133, 135, 137 and display 140.
As illustrated in
Sensor 82, which is disposed about container 80 as illustrated in
In implementations in which collector 60 is attached to assembly 40, collector 60, tubes 31, 33, or collector 60 and tubes 31, 33 may be configured to allow for detachment from and reattachment to portions secured to base 38 in order to allow assembly 40 to be removed from body 20 and assembly 40 to be reattached to body 20. Power supply 50 and container 80 may be secured to either assembly 40, base 38, or both assembly 40 and base 38 in ways that allow assembly 40 to be removed from base 38 and assembly 40 to be reattached to base 38. Power supply 50, collector 60, and container 80 may be variously disposed about trashcan 15 including external to outer surface 21, at least in part, in various implementations. Power supply 50, collector 60, or container 80 may be disposed about body 20, assembly 40, or both body 20 and assembly 40, in various implementations
Chamber 65 is bounded, in part, by filter 73 that allows the passage of airflow through filter 73 while filtering out particles of material 505 from airflow 111 as airflow 111 passes from chamber 65 into passageway 34 of tube 33, as illustrated in
As illustrated in
As illustrated in
As illustrated in
Doors 64, 74, 84 are located as illustrated in the Figures for explanatory purposes. It should be recognized that doors 64, 74 may be otherwise located about collector housing 61, or that door 84 may be located about container 80, in other implementations.
Note that sphere 71 is illustrated as a sphere, in other implementations sphere 71 may assume other geometric shapes. While a particular implementation of valve 62 is illustrated in the Figures, it should be understood that valve 62 may be configured as a flap valve, check valve, electro-mechanically actuated valve, or other one way valve, in various other implementations.
Controller 124, as illustrated in
Phone 175 includes any digital processor enabled device including, for example, phones, tablets, computers, or appliances. App 177 may be in the form of software operably received by phone 175. For example, the user may download App 177 to phone 175 upon purchasing trashcan system 10. After installing operatively App 177 onto phone 175, phone 175 may be paired with trashcan 15 to establish communication channel 170 between controller 124 of trashcan 15 and phone 175.
App 177 may perform various functions. For example, App 177 may allow the user to register a warranty from trashcan system 10. Also, the user may use the App 177 to purchase replacement trash bags, such as trash bag 105, filter 73, parts, and other accessories for the trashcan system 10. App 177 may communicate with vendor 180 for example, via Internet, and vendor 180 may vend said trash bags, filter 73, parts, and other accessories to the user. App 177 may allow the user to set alerts for particular dates and times, for example, to remind the user to take out the trash.
Controller 124, as illustrated in
Sensors 133, 135 may be configured as photocells. Sensor 133 is located proximate inlet 35, and sensor 135 is located elsewhere about trashcan 15, as illustrated in
Sensor 131 may be configured as a motion sensor that detects motion. The predetermined time that airflow 111 is produced may be extended based upon signal 141 from sensor 131, with signal 141 being indicative of the motion of an object, such as a broom, proximate inlet 35. The motion of the object is the condition indicated by signal 141, in this implementation. Airflow 111 may be maintained as long as there is motion, such as sweeping, proximate the inlet 35, and airflow 111 may be maintained for some time after the cessation of motion. The predetermined time may thus include an initial set time period that is extended as long as motion persists proximate the inlet 35 and then extended further by a second set time following cessation of motion proximate the inlet 35.
Lid 45, in implementation of trashcan system 10, includes an electromechanical actuating device such as a servo motor, and controller 124 communicates with the electromechanical actuating device portion of lid 45 to position lid between closed position 47 and open position 49. In order to position lid between closed position 47 and open position 49, the user may, for example, motion a hand toward sensor 137 of trashcan 15. Sensor 137 may be a motion sensor, and sensor 137 may be located about body 20 or assembly 40 generally proximate lid 45, as illustrated in
In some implementations, sensor 137 in cooperation with controller 124 may be configured to differentiate between the user's hand and either some other heat emitting object such as an animal or an object at ambient temperature through the use of infrared sensing. In such implementations, when controller 124 in cooperation with sensor 137 determines that the sensed object is not a user's hand, lid 45 will not be positioned from closed position 47 to open position 49.
As illustrated in
Display 140, as illustrated in
Portions of another implementation of a trashcan system 200 are illustrated in
In operation, a vacuum assembly, such as vacuum assembly 30, of a trashcan system, such as trashcan system 10, 200 may be activated to produce airflow, such as airflow 111, to draw material, such as material 505, into an inlet, such as inlet 35. One or more sensor(s), such as sensor 133, 135, in cooperation with a controller, such as controller 124, may activate the vacuum assembly to produce the airflow. The sensor(s) may emits signal(s), such as signals 143, 145, indicative of a condition such as the presence of an object (e.g. a broom), proximate the inlet. The airflow may draw the materials from the inlet through one or more tubes, such as tube 31, into a chamber of a collector housing, such as chamber 65 of collector housing 61. The airflow may occur for a predetermined time. A sensor, such as sensor 131, may emit a signal, such as signal 141, indicative of motion proximate the inlet, such as motion of a broom, and the airflow may be maintained for at least as long as the motion persists. That is, the predetermined time may be increased by the sensing of motion proximate the inlet.
After the predetermined time, the vacuum assembly may reverse rotation to produce a reverse airflow, such as airflow 117, that forces material from the chamber into a trash bag, such as trash bag 105, received within a chamber, such as chamber 25, of the trashcan, such as trashcan 15, in some implementations. The reverse airflow may occur for a second predetermined time. In other implementations, a plunger, such as plunger 270, may be positioned, for example between positions 271, 273, to force material out of the chamber into the trash bag, and positioning of plunger between the positions may be effectuated electro-mechanically as controlled by the controller.
A lid, such as lid 45, may be positioned between a closed position and an open position, such as closed position 47 and open position 49, upon emission of a signal, such as signal 147, indicative of a condition, such as the motion of a user's hand, by a sensor, such as sensor 137.
A sensor, such as sensor 82, may emit a signal, such as signal 92, indicative of the quantity of trash bags within a chamber of a container mounted about the trashcan, such as chamber 85 of container 80. When the signal indicative of the quantity of trash bags indicates that the quantity of trash bags within the chamber is less than some minimum quantity, a wireless signal, such as wireless signal 170, may be sent by the controller to an App operatively received by a phone, such as App 177 operatively received by phone 175. The user may then be alerted via the App on the phone that additional trash bags are needed, and the App may connect to a vendor, such as vendor 180, to allow the user to purchase trash bags from the vendor.
A display, such as display 140 may be provided about the trashcan to allow the user to monitor the status of the trashcan or trashcan system or to alter the operation of the trashcan or the trashcan system. The display may display information indicative of the status of the trashcan or of the trashcan system to the user. Using the display, the user may communicate instructions to the trashcan system including the trashcan to control the operation thereof. For example, the user may switch power to the trashcan from a source, such as source 51, or power from the power supply to components in electrical communication with the power supply, between an ON state and an OFF state using the display. The user may control airflow including airflow into the inlet using the display.
The foregoing discussion along with the Figures discloses and describes various exemplary implementations. These implementations are not meant to limit the scope of coverage, but, instead, to assist in understanding the context of the language used in this specification and in the claims. Upon study of this disclosure and the exemplary implementations herein, one of ordinary skill in the art may readily recognize that various changes, modifications and variations can be made thereto without departing from the spirit and scope of the inventions as defined in the following claims.
This application is a National Phase of PCT Patent Application No. PCT/US2015/049384 having International filing date of Sep. 10, 2015, which claims the benefit of priority of U.S. Patent Application No. 62/048,993 filed on Sep. 11, 2014. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/049384 | 9/10/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/040601 | 3/17/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5205013 | Lopes | Apr 1993 | A |
5946768 | Kelly | Sep 1999 | A |
5953788 | Douglas | Sep 1999 | A |
6199714 | Thompson | Mar 2001 | B1 |
6671924 | Rood | Jan 2004 | B1 |
6928691 | Freeman | Aug 2005 | B2 |
7096532 | Rood | Aug 2006 | B2 |
7356872 | Jones et al. | Apr 2008 | B2 |
7578024 | Hughes | Aug 2009 | B2 |
7656109 | Yang | Feb 2010 | B2 |
9352887 | Poss | May 2016 | B2 |
9751692 | Yang | Sep 2017 | B2 |
9856080 | Yang | Jan 2018 | B2 |
20040177467 | Jones et al. | Sep 2004 | A1 |
20060196874 | Yang | Sep 2006 | A1 |
20080189898 | Hughes | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
2004082450 | Sep 2004 | WO |
Entry |
---|
International Search Report for PCT/US15/49384 Completed Nov. 10, 2015; dated Jan. 19, 2016 2 Pages. |
Written Opinion for PCT/US15/49384 Completed Nov. 10, 2015; dated Jan. 19, 2016 4 Pages. |
Martin, “The emergence of the connected city, Using technology to prevent rat outbreak”, Retrieved on Jan. 8, 2014, url <http://radar.oreilly.com/2014/01/the-emergence-of-the-connected-city.html>. |
Number | Date | Country | |
---|---|---|---|
20170210559 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62048993 | Sep 2014 | US |