The present invention relates generally to the field of sensing conditions of a roadway, or other travel surface, and the environment surrounding the roadway and conveying this information for use by vehicles travelling on the roadway.
This invention is related to use of sensors arranged in fixed locations in conjunction with roadways, e.g., embedded in the roadway or ancillary structures, to enable information about the roadway and its environment to be obtained from the presence of these sensors and the information provided by the sensors to be considered in the operation of the vehicle and in the actions to be undertaken to alter the conditions of the roadway, if appropriate.
Additional and detailed background of the invention is set forth in the patents issued from the parent applications, namely U.S. Pat. No. 6,662,642, as well as U.S. Pat. No. 6,758,089.
An object of at least one embodiment of the present invention is to provide new and improved sensors for use in conjunction with an approaching or passing vehicle which transmit information about a state measured or detected by the sensor or the location of the sensor wirelessly including electrometrically, audibly or visually, arrangements including such sensors and methods for using such sensors.
Another object of at least one embodiment of the present invention is to provide new and improved sensors for detecting the condition or friction of a road surface which utilize wireless data transmission, wireless power transmission, and/or surface acoustic wave technology, arrangements including such sensors and methods for using such sensors.
Yet another object of at least one embodiment of the present invention is to utilize any of the foregoing sensors for a vehicular component control system in which a component, system or subsystem in the vehicle is controlled based on the information provided by the sensor.
A more general object of the present invention is to provide new and improved sensors which obtain and provide information about the vehicle, about individual components, systems, vehicle occupants, subsystems, or about the roadway, ambient atmosphere, travel conditions and external objects including animals and pedestrians, arrangements including such sensors and methods for using such sensors.
In order to achieve one or more of the objects mentioned above, a driving condition monitoring system for a vehicle on a roadway in accordance with the invention includes stationary mounting structures arranged proximate the roadway, sensors located in the mounting structures in a vicinity of the roadway and apart from the roadway, the sensors being structured and arranged to generate information about the roadway or an environment around the roadway, and an arrangement for initiating a conveyance of the information, either wirelessly including electromagnetically, sonically, visually or by some other convenient method, generated by each sensor to the vehicle or the driver thereof when the vehicle is proximate or approaching the sensor.
In one embodiment, the sensors can wirelessly transmit information in response to an activation signal. Thus, the initiating arrangement can include at least one interrogator arranged on the vehicle to wirelessly transmit an activation signal to the sensors to cause the sensors to wirelessly transmit the generated information and to receive the information generated and transmitted by the sensors. The interrogator can include two receiving antennas whereby, by transmitting the activation signal from one antenna and receiving a return signal at both antennas, a position of the vehicle relative to the sensors is determinable.
Instead of or in addition to an interrogator, the initiating arrangement can also include a proximity sensor associated with the mounting structure sensor for sensing the presence or approach of a vehicle in which case, the mounting structure sensor is arranged to transmit the generated information when the associated proximity sensor senses the presence of a vehicle proximate the mounting structure sensor. The proximity sensor can be a sensor which senses the thermal emissions from the vehicle, a sensor which senses the sound of the vehicle, a camera or other optical sensor which can determine the presence of a vehicle, a radar or laser radar (lidar) sensor or any other sensor which can detect the proximity or approach of a vehicle to the mounting structures on which the mounting structure sensor is arranged.
With regarding to the mounting structure sensors, at least one sensor may be an RFID type which is arranged to return information immediately to the interrogator in the form of a modulated RF signal. A sensor can include a power-receiving arrangement or circuit for receiving power wirelessly from an interrogator. The sensors can include a measuring or detecting component and an energy harvesting system for generating energy for providing energy for the measuring or detecting component and the information transmission compound. The energy harvesting system can be solar-based, i.e., include one or more solar panels or other solar energy generating arrangement or system.
The mounting structure sensors can generate information about travel conditions relating to the roadway or external objects on or in the vicinity of the roadway. Such objects can include, but are not limited to, animals and pedestrians. In this case, special sensors are provided for sensing animals and/or pedestrians. The sensors can transmit an identification code indicative of their position with the information generated by the sensors such that the absolute position of the vehicle is determinable using a map and the known position of the sensors. The sensors can measure friction of a surface of the roadway, atmospheric pressure, atmospheric temperature, temperature of the roadway, moisture content of the roadway and/or humidity of the atmosphere. When several sensors include a SAW or RFID device, the sensors may be arranged to transmit information after a delay and can be arranged to use time-multiplexing such that each sensor has a different delay. Each sensor can transmit information including an identification of the sensor.
A communications device may be arranged on the vehicle for receiving the generated and transmitted information from the sensors and transmitting the information to a remote location which can include methods to make the information available to the Internet and thus to other connected vehicles. A location-determining system may also be arranged on the vehicle for determining the location of the vehicle, in which case, the communications device can transmit the determined location of the vehicle with the information to the remote location.
A driving condition monitoring system for a vehicle on a roadway in accordance with the invention includes sensors located on or in a vicinity of the roadway, each of the sensors being structured and arranged to generate information about the roadway or an environment around the roadway, an initiating arrangement for initiating a transmission of the information generated by each sensor to the vehicle when the vehicle is proximate the sensor, a receiving arrangement on the vehicle for receiving the transmitted information from the sensors, and a communications device arranged on the vehicle and coupled to the receiving arrangement for transmitting the information generated by the sensors and received by the receiving arrangement to a remote location spaced from the vehicle. Each of the sensors may be embedded in the roadway or arranged in mounting structures proximate the roadway and spaced from the roadway. The same features described in the system above can also be applied to this system.
Exemplifying embodiments of the invention are described above and unless specifically noted, it is the applicant's intention that the words and phrases in the specification and claims be given the ordinary and accustomed meaning to those of ordinary skill in the applicable art(s). If applicant intends any other meaning, he will specifically state he is applying a special meaning to a word or phrase.
Likewise, applicant's use of the word “function” herein is not intended to indicate that the applicant seeks to invoke the special provisions of 35 U.S.C. §112, sixth paragraph, to define his invention. To the contrary, if applicant wishes to invoke the provisions of 35 U.S.C. §112, sixth paragraph, to define his invention, he will specifically set forth in the claims the phrases “means for” or “step for” and a function, without also reciting in that phrase any structure, material or act in support of the function. Moreover, even if applicant invokes the provisions of 35 U.S.C. §112, sixth paragraph, to define his invention, it is the applicant's intention that his invention not be limited to the specific structure, material or acts that are described in the preferred embodiments herein. Rather, if applicant claims his inventions by specifically invoking the provisions of 35 U.S.C. §112, sixth paragraph, it is nonetheless his intention to cover and include any and all structure, materials or acts that perform the claimed function, along with any and all known or later developed equivalent structures, materials or acts for performing the claimed function.
Further, the applicant intends that everything disclosed herein can be used in combination on a single vehicle or structure.
The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
There are many instances where a properly placed sensor on or near a roadway which communicates with vehicles on the roadway could sense potentially dangerous situations and warn the vehicle driver. The installation of such sensor and warning systems frequently require power in the form of a connection to the electric grid to operate. In many locations, this grid connection is not available. In many other situations, it is available but requires expensive installation and wiring. What is needed, therefore, is a sensor and communication system which senses a potentially dangerous situation and warns the drivers of approaching vehicles but does not require connection to the grid. In many situations, solar energy harvesting could provide the power for such a system but if it is operating continuously, then sufficient power in many cases cannot be provided by a small solar collector. This is especially a problem when consideration is given to the requirement that this device must operate 24 hours per day. Thus, the solar collector must be used to charge batteries and the energy consumed by the sensor and communication system must not exceed the capacity of the batteries. One way of solving this problem is to substantially reduce the duty cycle of the sensor and communication system. If, for example, the communication system only operates when there is a vehicle in the vicinity that could make use of the sensor information than the power requirements can be substantially reduced.
There are many ways in which the sensor and communication system can communicate with a passing vehicle. A radio frequency signal can be transmitted by the sensing system, however, this requires that all passing vehicles be equipped with apparatus capable of receiving and displaying or otherwise communicating the information to the driver. Since most vehicles will not have such a system, an alternative is for the communication to be accomplished visually. One method is for the communication system to make use of a sign which informs the driver of the potential hazard. This sign could only be illuminated when the hazard is present and there is an approaching vehicle. For example, if the sensor system has detected that black ice exists on the roadway, then a sign saying black ice can be displayed in the field of view of the approaching vehicle. Since it would require energy to maintain this display, the display would only be activated, or illuminated, when a vehicle is known to be present. Therefore, the vehicle presence needs to be sensed by the sensor and communication system which can be done using very low power in a variety of manners. For example, an infrared camera or sensor which monitors the roadway near the sign can detect that a vehicle having an elevated temperature is approaching and then the sign can be activated. Radar systems exist now which use very low power and once again, this radar can monitor the roadway approaching the sign and detect an approaching vehicle. Other systems include optical, such as a camera, or ultrasonic sensor systems which also can determine the presence of an approaching vehicle. During the daytime, light reflected off the vehicle would be sufficient to detect an approaching vehicle by its motion, for example. Similarly, ultrasound operating in a manner similar to radar can detect the approach of a vehicle. Apparatus exists using any of these technologies which require very low power and permit the vehicle to communicate its presence to the sign system.
A sensor for sensing black ice can be embedded in the roadway using SAW technology as described below which can periodically respond to an interrogator signal from the sensor and communication system. Similarly, by monitoring the temperature and the humidity coupled with historical patterns will permit the sensor and communication system to determine that black ice is probable and thus provide such a warning. If the SAW device is passive, then the interrogator must be close to the device. If power is available, then transmission distance can be significantly increased.
There are hundreds of thousands of impacts with large animals, such as deer and elk, by vehicles traveling the roadways in the United States each year. If vehicle drivers could be informed of the presence of such an animal in the vicinity, he or she could be warned to drive cautiously and thereby avoid such an accident. The sensor and communication system can be provided with sensors which detect the presence of such animals. Such sensors can comprise microphones which listen for characteristic animal sounds, infrared sensors which are sensitive to the body temperatures of such animals, and optical and ultrasonic sensors which detect the motion, for example, that would be characteristic of a large animal. These sensor and communication systems can be appropriately placed in areas where animal impacts are common and again when a vehicle approaches a sign, can be illuminated, or a light can be made to flash, warning the driver of the presence of animals.
Many pedestrians are killed or injured as they cross roadways unseen by approaching motorists. The presence of a pedestrian in a crosswalk can similarly be sensed in a similar manner as animals near roadways, as discussed above. Once again, when such a pedestrian is detected a warning sign or light can be provided to warn approaching motorists of the potential danger.
Each of these systems described above use sufficiently low energy that reasonably sized solar panels can provide that energy. Thus, installations of such systems can be very inexpensive and thus can be placed in many areas reducing vehicle accidents. Another low power system employs a passive sign which is visible at all times coupled with a flashing light. The sign says that, for example, “Caution, deer are present in the area when the light is flashing”. The flashing light can be accomplished using low-power LEDs with a low duty cycle thereby conserving energy. The light can be directed so that it is most easily seen by oncoming vehicles. The power usage of such LEDs is sufficiently low that they can probably be left in a flashing mode whenever animals, for example, are present without exhausting the stored energy. If available power is still a concern, then the LEDs can be turned on only when vehicles are approaching, in which case they can also be made much brighter.
Referring now to the drawings wherein the same reference numerals refer to the same or similar elements, as shown in
The connections between the interrogator 10 and the two antennas 280, 281 are not shown but may be a wired or wireless connection. The interrogator 10 may be powered by the vehicle battery and/or other energy generating and/or storage system on the vehicle 290.
If the SAW device 283 has an identification (ID) code encoded into the returned signal generated thereby, then the vehicle 290 can determine, providing a precise map is available, its position on the surface of the earth. One skilled in the art would understand the manner in which an ID code may be integrated into a return signal being provided by a SAW device. If another antenna 286 is provided on the vehicle, for example, at the rear of the vehicle 290, then the longitudinal position of the vehicle 290 can also be accurately determined as the vehicle 290 passes the SAW device 283. The connection between the interrogator 10 and the antenna 2856 is also not shown but may be a wired or wireless connection. Antenna 286 receives a return signal from the SAW device 283 after the interrogator 10 transmits its activation signal.
The SAW device 283 is shown in one lane of a multi-lane roadway but this is an example only and the SAW device 283 may be arranged on any surface on which a land vehicle travels. Of course, the SAW device 283 need not be in the center of the road. Alternate locations for positioning of the SAW device 283 are on overpasses above the road and on poles such as 284 and 285 on the roadside. Poles 284, 285 represent any stationary structure situated proximate, along or on a roadway or other travel surface.
However, if the SAW or other sensing device is not within about a meter from the interrogator 10 on the vehicle, then power must typically be supplied. Thus, if the sensing device 12 is on a roadside structure such as 284 or 285, then a source of power must be supplied which can be in the form of solar-generated electricity and a storage battery, represented by solar panel 14 on the pole 285. Such a system has an advantage over a competing system using radar and reflectors in that it is easier to measure the relative time between the two received pulses than it is to measure time of flight of a radar signal to a reflector and back. Such a system operates in all weather conditions and is known as a precise location system.
Eventually, such a SAW device 283 (or 12) can be placed every tenth of a mile along the roadway or at some other appropriate spacing. Although SAW devices are discussed here, any comparable sensing system can be utilized.
An additional or alternate use of this system is to provide a roadway-based sensor 16 with the capability of determining the presence of black ice on the roadway. This sensor 16 can be provided with a communications unit to enable it to communicate directly with the sensor on a pole 284, 285 adjacent the highway, in which case power must be supplied to the sensor 16 which again can be in the form of a solar collector embedded in the roadway, e.g., solar panel 18 connected to the sensor 16.
Alternatively, as the vehicle 290 passes over the sensor 16, 283, it can detect from this sensor 283 that black ice is present and the vehicle 290 can communicate, using an on-board communications system 20, that information to the sensor 12 on the pole 285. An electronic sign 22 can be mounted on the pole 284 such that a warning is displayed visible to the driver of the vehicle 290 and other approaching vehicles that black ice is present at the location of the pole 285 (such a sign may also be mounted on pole or another structure proximate or along the roadway, as shown in
Additionally or alternatively, if the vehicle 290 or pole 284 is directly or indirectly connected to the Internet, this information that black ice is present can be made available through the Internet to vehicles approaching this area from a greater distance.
As noted in U.S. Pat. No. 6,405,132, in some locations where weather conditions can deteriorate and degrade road surface conditions, various infrastructure-based sensors, of which SAW sensors 283 are examples, can be placed either in or adjacent to the road surface. As described therein, a subsystem is provided on the vehicle and designed to interrogate and obtained information from such road-based systems. An example of such a road-based system would be an RFID tag containing a temperature sensor, e.g., a SAW temperature sensor. This device may be battery-powered or, preferably, would receive its power from energy harvesting (e.g., solar energy, vibratory energy), the vehicle-mounted interrogator, or other host vehicle-mounted source, as the vehicle passes nearby the device. In this manner, the vehicle can obtain the temperature of the road surface and receive advanced warning when the temperature is approaching conditions which could cause icing of the roadway, for example. An RFID based on a surface acoustic wave (SAW) device is one preferred example of such a sensor, see U.S. Pat. No. 6,662,642. An infrared sensor on the vehicle can also be used to determine the road temperature and, along with a humidity sensor, the existence of ice or snow surmised.
In one embodiment, SAW devices 283, in any arrangement shown for example in
If a vehicle is being guided by a DGPS and accurate map system such as disclosed in U.S. patent application Ser. No. 09/679,317, now U.S. Pat. No. 6,405,132, a problem arises when the GPS receiver system loses satellite lock as would happen when the vehicle 290 enters a tunnel, for example. If a precise location system as described above is placed at the exit of the tunnel, then the vehicle 290 will know exactly where it is and can re-establish satellite lock in as little as one second rather than typically 15 seconds as might otherwise be required. Other methods making use of the cell phone system can be used to establish an approximate location of the vehicle suitable for rapid acquisition of satellite lock as described in G. M. Djuknic, R. E. Richton “Geolocation and Assisted GPS”, Computer Magazine, February 2001, IEEE Computer Society, which is incorporated by reference herein in its entirety.
Additionally or alternatively, if the vehicle has an onboard inertial measurement unit (IMU), it can know its accurate position as it leaves the tunnel, or, it will know when it leaves the tunnel and can get its accurate position from a digital map.
More particularly, geolocation technologies that rely exclusively on wireless networks such as time of arrival, time difference of arrival, angle of arrival, timing advance, and multipath fingerprinting offer a shorter time-to-first-fix (TTFF) than GPS. They also offer quick deployment and continuous tracking capability for navigation applications, without the added complexity and cost of upgrading or replacing any existing GPS receiver in vehicles. Compared to either mobile-station-based, stand-alone GPS or network-based geolocation, assisted-GPS (AGPS) technology offers superior accuracy, availability, and coverage at a reasonable cost. AGPS for use with vehicles can comprise a communications unit with a GPS receiver arranged in the vehicle, an AGPS server with a reference GPS receiver that can simultaneously “see” the same satellites as the communications unit, and a wireless network infrastructure consisting of base stations and a mobile switching center. The network can accurately predict the GPS signal the communication unit will receive and convey that information to the mobile or vehicle, greatly reducing search space size and shortening the TTFF from minutes to a second or less. In addition, an AGPS receiver in the communication unit can detect and demodulate weaker signals than those that conventional GPS receivers require. Because the network performs the location calculations, the communication unit only needs to contain a scaled-down GPS receiver. It is accurate within about 15 meters when they are outdoors, an order of magnitude more sensitive than conventional GPS.
A transponder 268 can also be placed in the license plates 287 (
Transponders 268 are contemplated by the inventor to include SAW, RFID or other technologies, reflective or back scattering antennas, polarization antennas, rotating antennas, corner cube or dihedral reflectors etc. that can be embedded within the roadway or placed on objects beside the roadway, in vehicle license plates, for example. An interrogator 10 within the vehicle transmits power to the transponder 268 and receives a return signal. Alternately, as disclosed in U.S. Pat. No. 6,405,132, the responding device can have its own source of power so that the vehicle-located interrogator 10 need only receive a signal in response to an initiated request. The source of power can be a battery, connection to an electric power source such as an AC circuit, solar collector, or in some cases, the energy can be harvested from the environment where vibrations, for example, are present. The range of a license-mounted transponder 268, for example, can be greatly increased if such a vibration-based energy harvesting system is incorporated.
In view of the foregoing, a license plate 287 for a vehicle in accordance with the invention could include a plate having an indicia and arranged to be mounted on the vehicle, as a conventional license plate, and a transponder 268 arranged in the license plate 287 (see FIG. 1A). The transponder 268 is arranged to receive a signal from an interrogator, e.g., a vehicle-mounted interrogator 10 or infrastructure-mounted interrogator, modify the received signal and transmitted the modified signal to the interrogator 10. The transponder 268 may be a SAW transponder, an RFID transponder, and include a reflective or back scattering antenna, a polarization antenna, a rotating antenna, or a corner cube or dihedral reflector, etc., as mentioned above. Further, an energy harvesting component 270 can be arranged in connection with the license plate 287 for providing power to the license plate-mounted transponder 268. The energy harvesting component 270 may be arranged to generate energy during or from movement or vibration of the vehicle 290. Another construction of a license plate 287 includes a plate having an indicia and arranged to be mounted on the vehicle and an RFID tag (as transponder 268) arranged as part of the license plate 287. The RFID tag is arranged to respond to an activation signal and provide the type, size and mass of the vehicle to which the license plate 287 is mounted. The type of vehicle may be an indication of whether the vehicle has special travel privileges.
Yet another embodiment of a SAW sensor in accordance with the invention comprises a substrate made of a material on which a wave is capable of traveling, first and second interdigital transducers arranged on the substrate, at least one antenna coupled to the first and second interdigital transducers, and first and second reflectors spaced from the at least one interdigital transducer such that two properties of the substrate are measured. A coating of a material sensitive to pressure is optionally arranged on the substrate between the first interdigital transducer and the first reflector. The coating can comprise at least one oxygen or nitrogen sensing material. If two antennas are provided, each may be coupled to a respective one of the first and second interdigital transducers. Optionally, a material is arranged on the substrate which is sensitive to the presence or concentration of a gas, vapor, or liquid chemical. Also, a coating of a material sensitive to carbon dioxide may be arranged on the substrate between the first interdigital transducer and the first reflector.
Still another embodiment of a SAW sensor in accordance with the invention comprises a substrate made of a material on which a wave is capable of traveling, an interdigital transducer arranged in connection with the substrate, an antenna coupled to the interdigital transducer, at least one reflector spaced from the interdigital transducer, and at least one coating of a material sensitive to carbon dioxide arranged on the substrate between the interdigital transducer and the reflector such that the sensor provides a measurement of the presence of carbon dioxide. Although carbon dioxide is disclosed, materials are available which will absorb a variety of other chemicals which could indicate atmospheric pollution or chemical warfare. Sensor and communication systems in the field as disclosed can be used to warn passing motorists and thereby others though an Internet connection by the passing vehicles that such chemicals were present in the atmosphere.
In another implementation of the invention, a passing vehicle 290 which has knowledge of a potentially hazardous condition on or near the roadway, i.e. black ice, an animal, a pedestrian, can transmit this information to a local solar powered sensor and communication system allowing that system to display a visual warning to future passing vehicles. In this manner, information relative to a particular area of the roadway can be spread to give motorists an advanced warning. This warning can be in the form of a RF transmission to the vehicle 290, a variable sign, or a blinking LED light as described herein.
For example, black ice can be determined by a properly equipped vehicle which is capable of measuring the friction coefficient between its tires and the roadway.
Based on the frequency and power available, and on FCC limitations, SAW devices can be designed to permit transmission distances of up to 100 feet or more if powered. Since SAW devices can measure both temperature and humidity, they are also capable of monitoring road conditions in front of and around a vehicle. Thus, a properly equipped vehicle can determine the road conditions prior to entering a particular road section if such SAW devices are embedded in the road surface or on mounting structures close to the road surface as shown at 279 in
SAW device 279 is shown in
SAW device 279 represents a general measuring or detecting component that measures or detects a property or condition of the travel surface on which the SAW device is embedded, possibly in a housing resistant to the force of vehicles passing over it. The proximity sensors represents a general detecting sensor that detects the presence of a vehicle within a set distance therefrom and which may be embedded in the travel surface or located in a stationary mounting structure in a vicinity of the travel surface and apart from the travel surface. In one embodiment, each measuring or detecting component (SAW device 279) is activated to measure or detect a property or condition of the travel surface or the environment around the travel surface only when the detecting sensor (proximity sensor 272) coupled thereto detects the presence of a vehicle within the set distance from the detecting sensor.
The energy harvesting system 274 is coupled to the detecting sensor and its coupled measuring or detecting component, and generates energy and provides the generated energy to the measuring or detecting component and to the detecting sensor to enable them to perform their functions. A communication system is part of or coupled to each measuring or detecting component. As shown in
Furthermore, the determination of freezing conditions of the roadway could also be transmitted to a remote location, such as a road monitoring or maintenance facility or traffic monitoring facility, where such information is collected and processed. All information about roadways in a selected area could be collected by the roadway maintenance department and used to dispatch snow removal vehicles, salting/sanding equipment and the like. To this end, the interrogator would be coupled to a communications device arranged on the vehicle and capable of transmitting information using the cell phone network, via a satellite, ground station, over the Internet and via other communications means. A communications channel could also be established to enable bi-directional communications between the remote location and the vehicle.
The information about the roadway obtained from the sensors by the vehicle can be transmitted to the remote location along with data on the location of the vehicle, obtained through a location-determining system possibly using GPS technology. Additional information, such as the status of the sensors, the conditions of the environment obtained from vehicle-mounted or roadway-infrastructure-mounted sensors, the conditions of the vehicle obtained from vehicle-mounted sensors, the occupants obtained from vehicle-mounted sensors, etc., could also be transmitted by the vehicle's transmission device or communications device to receivers at one or more remote locations. Such receivers could be mounted to roadway infrastructure or on another vehicle. In this manner, a complete data package of information obtained by a single vehicle could be disseminated to other vehicles, traffic management locations, road condition management facilities and the like. So long as a single vehicle equipped with such a system is within range of each sensor mounted in the roadway or along the roadway, information about the entire roadway can be obtained and the entire roadway monitored.
The sensor and communication system of this invention is illustrated in
When the presence of an animal 322 is detected, then the vehicle-approach sensors 310 can be activated, if they require energy, and when they indicate the approach of a vehicle 328, a sign 320 can be illuminated, a light can start blinking, or other audio, visual or electromagnetic communication system 326 activated to inform the driver of the approaching vehicle 328 that animals 322 are present. The animals 322, shown here as cows, can be deer, elk, moose or any other animal which could cause significant damage if it impacted with an automobile or truck.
A SAW temperature sensor 60 is illustrated in
An alternate approach as illustrated in
When some other property such as pressure is being measured by the device 65 as shown in
Note that any of the disclosed applications can be interrogated by the central interrogator of this invention and can either be powered or operated powerlessly as described in general above. Block diagrams of three interrogators suitable for use in this invention are illustrated in
Further,
Referring now to
To this end, each sensor includes a measuring or detecting component that measures or detects a property or condition of the roadway or the environment around the roadway. Preferably, each sensor also includes or is connected to an energy harvesting system that generates energy and provides the generated energy to the measuring or detecting component to enable it to measure or detect the property or condition of the roadway or environment around the roadway.
More specifically, an indication of the presence of a vehicle may be obtained by coupling a proximity sensor to the activatable sensor that determines when a vehicle is within a set distance from the activatable sensor. The proximity sensor may be configured to senses thermal emissions from the vehicle or sound of the vehicle, or constitute or include a camera or other optical sensor that obtains images from which proximity of the vehicle to the activatable sensor is determinable, a radar or laser radar (lidar) sensor.
This monitoring step 30 continues, via a loop with determination step 32, until an indication of the presence of a vehicle proximate the sensor is obtained. Since this monitoring may be passive, energy is not consumed.
In step 34, when an indication of the presence of a vehicle is obtained by one of the sensors, the sensor is activated to enable a communication of the sensor-generated information directly from each of the sensors to the vehicle or occupant thereof when the vehicle is detected proximate the sensor. Thus, there may be a sequential activation of sensors on a roadway during the movement of the vehicle toward each sensor. An indication of the presence of a vehicle may involve transmission of an activation signal from an interrogator on the vehicle, and the sensors can include a power-receiving system that receives power wirelessly from the interrogator.
In step 36, the sensor-generated information is communicated or conveyed when the sensor is activated. Options for step 36 include a communication or conveyance directly to a vehicle, e.g., the navigation system of the vehicle to cause an alarm to be presented on a display thereof. The communication from each sensor to the vehicle may be a wireless transmission of a signal, i.e., the sensors are configured to wirelessly transmit the signal directly to the vehicle. Another communication or conveyance may be directly to an occupant of the vehicle, e.g., by means of a sign located in front of the vehicle or otherwise providing a visual indication from a stationary mounting structure at a location proximate the sensor. The communication from each sensor to the sign may be a wireless transmission of a signal, i.e., the sensors are configured to wirelessly transmit the signal directly to the sign. Another conveyance is to provide an audio indication from a stationary mounting structure at a location proximate the sensor.
The sensor is thus configured to communicate the generated information directly to the vehicle or occupant thereof. The sensor-generated information is preferably not communicated from each sensor until that sensor activated. However, a sensor may be activated based on activation of another sensor upstream of the travelling vehicle. A sensor may be a RFID type sensor configured to return information directly to the vehicle or occupant thereof in the form of a modulated RF signal such that the communication from each sensor is wireless transmission of the modulated RF signal.
Additional configurations of the sensor include to generate information about travel conditions relating to the roadway, to generate information about external objects on or in the vicinity of the roadway that potentially affect travel on the roadway, to communicate an identification code indicative of its position with the information generated by the sensor when activated directly to the vehicle or occupant thereof, to measure friction of a surface of the roadway, atmospheric pressure, measure atmospheric temperature, temperature of the roadway, moisture content of the roadway or humidity of the atmosphere, and/or to communicate the generated information after a delay such that the sensors use time-multiplexing such that each sensor has a different delay.
Many changes, modifications, variations and other uses and applications of the subject invention will now become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose preferred embodiments thereof. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention which is limited only by the following claims.
This application is: 1. a continuation-in-part (CIP) of U.S. patent application Ser. No. 12/020,684 filed Jan. 28, 2008, which is: A. a CIP of U.S. patent application Ser. No. 11/082,739 filed Mar. 17, 2005, now U.S. Pat. No. 7,421,321, which is a CIP of U.S. patent application Ser. No. 10/701,361, filed Nov. 4, 2003 now U.S. Pat. No. 6,988,026, which is a CIP of U.S. patent application Ser. No. 10/079,065 filed Feb. 19, 2002, now U.S. Pat. No. 6,662,642, which: 1. claims priority under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/269,415 filed Feb. 16, 2001, now expired, U.S. provisional patent application Ser. No. 60/291,511 filed May 16, 2001, now expired, and U.S. provisional patent application Ser. No. 60/304,013 filed Jul. 9, 2001, now expired; and2. is a CIP of U.S. patent application Ser. No. 09/765,558 filed Jan. 19, 2001, now U.S. Pat. No. 6,748,797, which claims priority under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/231,378 filed Sep. 8, 2000. now expired; andB. a continuation-in-part (CIP) of U.S. patent application Ser. No. 10/940,881 filed Sep. 13, 2004, now U.S. Pat. No. 7,663,502, which is a CIP of U.S. patent application Ser. No. 10/613,453 filed Jul. 3, 2003, now U.S. Part. No. 6,850,824, which is a continuation of U.S. patent application Ser. No. 10/188,673 filed Jul. 3, 2002, now U.S. Pat. No. 6,738,697, which is a CIP of U.S. patent application Ser. No. 10/079,065 filed Feb. 19, 2002, now U.S. Pat. No. 6,662,642, which is: 1. a CIP of U.S. patent application Ser. No. 09/765,558 filed Jan. 19, 2001, now U.S. Pat. No. 6,748,797, which claims priority under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/231,378 filed Sep. 8, 2000, now expired; and2. claims priority under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/269,415 filed Feb. 16, 2001, now expired, U.S. provisional patent application Ser. No. 60/291,511 filed May 16, 2001, now expired, and U.S. provisional patent application Ser. No. 60/304,013 filed Jul. 9, 2001, now expired; and 2. a CIP of U.S. patent application Ser. No. 14/026,513 filed Sep. 13, 2013 which is a divisional of U.S. patent application Ser. No. 12/020,684 filed Jan. 28, 2008. All of which are incorporated by reference herein. This application is related to U.S. patent application Ser. No. 09/679,317 filed Oct. 4, 2000, now U.S. Pat. No. 6,405,132, Ser. No. 09/909,466 filed Jul. 19, 2001, now U.S. Pat. No. 6,526,352, Ser. No. 10/190,805 filed Jul. 8, 2002, now U.S. Pat. No. 6,758,089, Ser. No. 10/216,633 filed Aug. 9, 2002, now U.S. Pat. No. 6,768,944, Ser. No. 10/822,445 filed Apr. 12, 2004, now U.S. Pat. No. 7,085,637, Ser. No. 11/028,386 filed Jan. 3, 2005, now U.S. Pat. No. 7,110,880, Ser. No. 11/034,325 filed Jan. 12, 2005, now U.S. Pat. No. 7,202,776, Ser. No. 11/562,730 filed Nov. 22, 2006, now U.S. Pat. No. 7,295,925, and Ser. No. 12/062,099 filed Apr. 3, 2008, now abandoned, on the grounds that they include common subject matter. All of the references, patents and patent applications that are mentioned herein and in the parent applications are incorporated by reference in their entirety as if they had each been set forth herein in full.
Number | Date | Country | |
---|---|---|---|
60269415 | Feb 2001 | US | |
60291511 | May 2001 | US | |
60304013 | Jul 2001 | US | |
60231378 | Sep 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10188673 | Jul 2002 | US |
Child | 10613453 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12020684 | Jan 2008 | US |
Child | 14275003 | US | |
Parent | 11082739 | Mar 2005 | US |
Child | 12020684 | US | |
Parent | 10701361 | Nov 2003 | US |
Child | 11082739 | US | |
Parent | 10079065 | Feb 2002 | US |
Child | 10701361 | US | |
Parent | 09765558 | Jan 2001 | US |
Child | 10079065 | US | |
Parent | 10940881 | Sep 2004 | US |
Child | 12020684 | US | |
Parent | 10613453 | Jul 2003 | US |
Child | 10940881 | US | |
Parent | 10079065 | Feb 2002 | US |
Child | 10188673 | US | |
Parent | 14026513 | Sep 2013 | US |
Child | 10079065 | US |