The present invention relates to a traveling toy system in which a towed object is towed on the top surface of an upper track member by a self-driven towing vehicle running by itself on a lower track member.
Japanese Patent Application Publication No. 1995-47171 (JP1995-47171A: Patent Document 1) discloses a play toy (traveling toy system) used in a horse racing game, which includes a lower track member, an upper track member disposed above the lower track member with an interval therebetween and having a bottom surface facing the lower track member and a top surface facing the bottom surface in the thickness direction thereof, a carrier (self-driven towing vehicle) provided with a driving source and running by itself on the lower track member, and a moving object (towed object) connected to the carrier (self-driven towing vehicle) by means of magnetic attraction force and running on the top surface of the upper track member. In this conventional play toy, a toy horse fabricated as a dedicated accessory is mounted on the moving object (towed object).
U.S. Pat. No. 6,012,957 (Patent Document 2) discloses a traveling toy system in which a four-wheel toy vehicle running on an upper track member and a self-driven towing vehicle running on a lower track member are connected by means of magnetic force.
U.S. Pat. No. 6,095,892 (Patent Document 3) discloses a traveling toy system in which a two-wheel toy vehicle running on an upper track member and a self-driven towing vehicle running on a lower track member are connected by means of a mechanical connecting means.
When the towed object is towed by means of magnetic force as in the conventional traveling toy systems of Patent Documents 1 and 2, it is difficult to promptly find the presence of the self-driven towing vehicle under the upper track member if the self-driven towing vehicle and the towed object are disconnected. When the mechanical connecting means protrudes through the upper track member as in the conventional traveling toy system of Patent Document 3, the presence of the self-driven towing vehicle can be found at once. Even in this configuration, since a part of the mechanical connecting means is protruding above the upper track member, the self-driven towing vehicle on the lower track member may be displaced if an external force is mistakenly applied to the protruding portion of the mechanical connecting means, which makes it difficult for the self-driven towing vehicle to run. Therefore, it is preferred that a part of the mechanical connecting means do not protrude above the upper track member even when the mechanical connecting means is employed. However, when the mechanical connecting means does not protrude through the upper track member, it is difficult to promptly find the presence position of the self-driven towing vehicle under the upper track member if the self-driven towing vehicle and the towed object are disconnected, as with the conventional traveling toy systems of Patent Documents 1 and 2.
An object of the present invention is to provide a traveling toy system in which the position of the self-driven towing vehicle under the upper track member can be confirmed at once.
Another object of the present invention is to provide a traveling toy system in which the self-driven towing vehicle and the towed object can be connected smoothly.
A traveling toy system according to the present invention includes a lower track member, an upper track member, a self-driven towing vehicle and a towed object. The upper track member is disposed above the lower track member with an interval therebetween and has a bottom or rear surface facing the lower track member and a top or front surface facing the bottom surface in the thickness direction thereof. The lower track member and the upper track member may be configured of a single unit component or composed of plural components.
The self-driven towing vehicle is arbitrarily configured and operated. Typically, the self-driven towing vehicle is provided with a driving source and runs by itself on the lower track member. Electric motors are generally used for the driving source of the self-driven towing vehicle. A driving apparatus driving the electric motor may be configured to be operated with a cell as its power source. However, if a current carrying path is disposed on the lower track member, the driving apparatus may be configured to drive the electric motor with electric power supplied from the current carrying path. The operation of the self-driven towing vehicle may be controllable by a controller like a slot car, but the operation thereof may be uncontrollable such that the driving/non-driving is determined only by means of the ON/OFF of a switch. A control method of the operation-controllable self-driven towing vehicle may be the same as that used in the publicly-known slot cars. The towed object running on the upper track member is also configured arbitrarily.
The towed object is magnetically or mechanically connected to the self-driven towing vehicle and runs on the top surface of the upper track member. When the towed object is “magnetically connected” to the self-driven towing vehicle, a magnetic attraction force of a permanent magnet is utilized. Then, the permanent magnet may be fixed onto one of the self-driven towing vehicle and the towed object, and another permanent magnet or some magnetic body may be fixed onto the other of them. The magnitude of the coercive force of the permanent magnet to be used may be appropriately selected according to the thickness of the upper track member. When the towed object is “mechanically connected” to the self-driven towing vehicle, a through-hole is formed in the upper track member to pass through the upper track member in the thickness direction and continuously extending along the upper track member. Then, the self-driven towing vehicle and the towed object are connected via a connecting member passing through the through-hole.
For example, when the towed object and the self-driven towing vehicle are connected by means of a permanent magnet or connected via a mechanical connecting means disposed under the upper track member, it may become hard to know the position of the self-driven towing vehicle if the towed object and the self-driven towing vehicle are disconnected. In the present invention, to solve such a problem, an upper track member may include light permeable regions arranged continuously or at intervals along a running direction of the towed object. The self-driven towing vehicle may include a light emitting means for emitting light recognizable through the light permeable regions as viewed from the top surface of the upper track member. With such configuration, lights emitted from the light emitting means of the self-driven towing vehicle can be confirmed through the light permeable regions even if the towed object and the self-driven towing vehicle are disconnected. As a result, the position of the self-driven towing vehicle can easily be confirmed and the towed object and the self-driven towing vehicle can smoothly be reconnected in a short time.
If the upper track member is made of a light permeable material (for example, if the upper track member is made of a transparent or translucent material), the continuous light permeable region may easily be formed. With such configuration, light emitted from the light emitting means can be confirmed through the upper track member without definitely determining where to attach the light emitting means on the self-driven towing vehicle.
The light permeable regions may be each formed of a through-hole passing through the upper track member in the thickness direction. For example, a slit passing through the upper track member in the thickness direction is formed when mechanical connecting means is used so that lights emitted from the light emitting means may be poured through the slit to the top surface side of the upper track member.
Publicly-known light emitting elements such as a light emitting diode and a lamp may be used as the light emitting means. The light emitting means may emit either a continuous light or a flashing light. The light emitting means emitting a flashing light may draw more attention of viewers.
A driving circuit driving the light emitting means may be configured to cause the light emitting means to always emit light, but more preferably, to cause the light emitting means to emit light only while the self-driven towing vehicle and the towed object are disconnected. Limiting the light emitting period may extend the life of the light emitting element, and help reduce power consumption.
When the light emitting means does not emit light (stops emitting light) while the self-driven towing vehicle and the towed object are connected, it is preferred that the light emitting means be mounted at a position that allows for visual confirmation that the light emitting means does not emit light while the self-driven towing vehicle and the towed object are connected. Such configuration enhances the convenience since completion of the connection may be confirmed by visually confirming that the light emitting means emits no light.
The present invention may also be directed to a track assembly for a toy system to be used for the traveling toy system. The track assembly for a toy system is constituted from the above-mentioned lower track member and the upper track member. The upper track member includes light permeable regions arranged continuously or at intervals along a running direction of the towed object. Preferably, the light permeable regions are so transparent that the presence of the self-driven towing vehicle can be confirmed through the light permeable regions as the upper track member is viewed from the top surface of the upper track member. Thus, the presence of the self-driven towing vehicle may easily be confirmed.
Preferred embodiments of a traveling toy system according to the present invention will be described in detail hereinbelow with reference to the drawings.
Sixteen spacers 23 are disposed between the lower track member 3 and the upper track member 5. These spacers 23 are disposed along the outer edge and inner edge of the base portion 3A of the lower track member 3 at even intervals in the circumferential direction. The spacer 23 integrally has a projection (not illustrated) at its bottom end to fit into a fitting hole 25 formed in the base portion 3A of the lower track member 3. A fitting hole 23A is formed in the top end of the spacer 23. The upper track member 5 integrally has projections (not illustrated) at an outer peripheral portion of the bottom surface of the upper track member 5 to fit into the fitting holes 23A formed in the spacer 23. The upper track member is supported on the lower track member 3 via the spacers 23 with the projections formed on the bottom ends of the spacers 23 being fitted in the fitting holes 25 of the base portion 3A and the projections formed on the bottom surface of the upper track member 5 being fitted in the fitting holes 23A of the spacers 23.
The annular upper track member 5 may be constituted from one plate or may be composed of a plurality of plates. The upper track member 5 includes two annular light permeable regions 5B and 5C. The light permeable regions 5B and 5C may be configured to be transparent or translucent, or may be formed of a through-hole, as long as light can be transmitted. In the present embodiment, the two light permeable regions 5B and 5C are made of a translucent plastic material. The two light permeable regions 5B and 5C transmit light emitted from an after-mentioned light emitting means 47 (
According to the present embodiment, each of the two light permeable regions 5B and 5C has a continuous annular configuration, but they may be configured of a plurality of light permeable portions arranged discontinuously. If the plurality of light permeable portions are arranged discontinuously and annularly, the light permeable regions may be constituted from a through-hole so as to simplify the configuration of the light-permeable regions.
According to the present embodiment, even if the towed object 27 and the self-driven towing vehicle 21 are disconnected, the light emitted from the light emitting means 47 of the self-driven towing vehicle 21 may be confirmed through the light permeable regions. Thus the position of the self-driven towing vehicle 21 can be confirmed easily and the towed object 27 and the self-driven towing vehicle 21 can be reconnected in a short time.
Subsequent explanation is made on the self-driven towing vehicle 21 to be used in the present embodiment, mainly referring to
The towing vehicle body 29 includes a plate-like portion 29A on the front side thereof, and the plate-like portion 29A integrally includes a fitted portion 29B (with reference to
If the towed object 27 and the self-driven towing vehicle 21 are connected by means of a permanent magnet, it may become hard to know the position of the self-driven towing vehicle 21 at the time that the connection therebetween is broken. In the present embodiment, to cope with this situation, the light emitting means 47 formed of a light emitting diode is disposed on a top wall portion 29C of the towing vehicle body 29 of the self-driven towing vehicle 21 to emit light toward the upper track member 5. The light emitting means 47 may be attached to anywhere as long as the bottom surface of the light permeable regions 5B or 5C provided in the upper track member 5 can be illuminated. For example, as shown in
Subsequently, detailed explanation will be made on the towed object 27 that is towed by the self-driven towing vehicle 21 to run on the upper track member 5, with reference to
The commercially-available imitation toy IT applicable to the attachment 53 is a four-wheel toy vehicle in which two wheels W are mounted to two axles S1 and S2 (with reference to
Although the wheels of the four-wheel toy vehicle may be in contact with the top surface 5A of the upper track member 5, there are many imitation toys that cannot change the direction of axles. Accordingly, if the towed object runs with its wheels being in contact with the top surface, the wheels themselves may work as a resistance, thereby making it difficult to perform drifting, for example. In this embodiment, It is preferred that the towed object 27 be configured so that the wheels of the commercially-available imitation toy IT are not in contact with the top surface of the upper track member 5 with the imitation toy being supported by the attachment 53. In the towed object 27, the four engaging portions 51A to 51D engaging with the axles S1 and S2 respectively each include a plate-like portion 54 having a slit portion 57 into which the axles S1 and S2 are fitted, and a base 52 formed integrally with the lower end of the plate-like portion 54 and extending in a direction orthogonal to the plate-like portion 54. The slit portion 57 opens upward and sideward so that the axle S1 or S2 is inserted into an opening portion 55 that opens upward. With such four engaging portions 51A to 51D, the two axles S1 and S2 may be easily engaged with the engaging portions 51A and 51B and the engaging portions 51C and 51D, respectively merely by means of a motion of placing the four-wheel toy vehicle IT on the towed object 27. As a result, the four-wheel toy vehicle IT can be replaced easily with the towed object 27 being placed on the upper track member 5.
The attachment 53 used in the present embodiment is dedicated for supporting a commercially-available four-wheel toy vehicle in which two wheels W are attached to the axle S1 (front axle) and the axle S2 (rear axle) respectively. The attachment 53 is configured so that the positional relationship of the four engaging portions 51A to 513 may be changed according to differences of the tread dimension between the two wheels fixed to both ends of the axle and the wheel-base dimension between two axles.
Specifically, the attachment 53 includes a first structural member 59, a second structural member 61, and an adjustable connecting mechanism 63. The first structural member 59 includes the two engaging portions 51A and 51B engaging with the front axle S1 (
According to the present embodiment, a four-joint parallel link mechanism in which four links are connected via four joints is used as the engaging portion supporting mechanisms 67A to 67D. As a result, the positional adjustment between the pair of engaging portions (adjustment of tread dimension) may easily be performed by means of an operation of sliding the engaging portions 51A and 51B or the engaging portions 51C and 51D along the top surface 5A of the upper track member 5. In the four-joint parallel link mechanism of the present embodiment, as denoted with reference numerals as representatively shown in
In the present embodiment, the bottom surface of the bases 52 and the bottom surfaces of the supporting members 65 and 69 facing the top surface 5A of the upper track member 5 are formed with raised portions 71 to be slidable on the top surface 5A. The raised portions 71 provided on the bottom surfaces of the bases 52 of the four engaging portions 51A to 51D and the raised portions 71 provided on the bottom surfaces of the first and second supporting members 65 and 69 are widely scattered and are in contact with the top surface 5A of the upper track member 5. As a result, the towed object 27 is prevented from being tilted or falling even if the towed object 27 runs on the top surface 5A of the upper track member 5 at a high speed. Since the towed object 27 is supported substantially by means of a point contact with the plural raised portions 71, frictional resistance will not excessively increase. In the present embodiment, the plural raised portions 71 are employed. Compared with those configurations in which a wheel or roller is provided in the towed object 27, the towed object 27 may be less conspicuous.
The adjustable connecting mechanism 63 of the attachment 53 includes an elongated frame 73. The first supporting member 65 of the first structural member 59 is fixed to one end of the frame 73 and the second supporting member 69 of the second structural member 61 is slidably attached to the frame 73. With such adjustable connecting mechanism 63 configured in this manner, the dimension (wheel-base dimension) between the first structural member 59 and the second structural member 61 may be adjusted easily by sliding the second supporting member 69 along the frame 73 as shown in
In the present embodiment, the self-driven towing vehicle 21 and the towed object 27 are magnetically connected (by utilizing the magnetic attraction force). As mentioned above, the permanent magnet 45 is fixedly disposed to the self-driven towing vehicle 21 in a position facing the bottom surface 5D of the upper track member 5 (with reference to
In the above-mentioned embodiment, the self-driven towing vehicle 21 and the towed object 27 are magnetically connected. However, if the towed object is mechanically connected to the self-driven towing vehicle, a through-hole 105E is formed to pass through an upper track member 105 in a thickness direction of the upper track member and continuously extend along the upper track member 105 as shown in
If the light permeable regions are so transparent that the presence of the self-driven towing vehicle 21 may be confirmed through the light permeable regions 5B and 5C as the upper track member 5 is viewed from above, or if the light permeable regions are formed of through-holes, the self-driven towing vehicle may visually be confirmed even if the light emitting means 47 does not emit light.
According to the present invention, light emitted from the light emitting means of the self-driven towing vehicle may be confirmed through the light permeable regions even if the towed object and the self-driven towing vehicle are disconnected. As a result, the position of the self-driven towing vehicle may be confirmed easily and the towed object and the self-driven towing vehicle may be reconnected smoothly in a short time.
Number | Date | Country | Kind |
---|---|---|---|
2007-139779 | May 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/059513 | 5/23/2008 | WO | 00 | 11/23/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/146726 | 12/4/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2918284 | Baca | Dec 1959 | A |
3622158 | Tepper et al. | Nov 1971 | A |
5295889 | Ejima | Mar 1994 | A |
5320351 | Suzuki | Jun 1994 | A |
5382021 | Tatesaka et al. | Jan 1995 | A |
5469036 | Eto | Nov 1995 | A |
5472192 | Eto | Dec 1995 | A |
5601490 | Nakagawa et al. | Feb 1997 | A |
5649863 | Wada et al. | Jul 1997 | A |
5688175 | Matsuura et al. | Nov 1997 | A |
5716275 | Wada et al. | Feb 1998 | A |
5741181 | Nakagawa et al. | Apr 1998 | A |
5865661 | Cyrus et al. | Feb 1999 | A |
5954584 | Yagi | Sep 1999 | A |
5976019 | Ikeda et al. | Nov 1999 | A |
6012957 | Cyrus et al. | Jan 2000 | A |
6095892 | Moe | Aug 2000 | A |
6394898 | Nagao et al. | May 2002 | B1 |
6840837 | Kobayashi | Jan 2005 | B2 |
6872140 | Ishida | Mar 2005 | B2 |
7235013 | Kobayashi | Jun 2007 | B2 |
Number | Date | Country |
---|---|---|
07-047171 | Feb 1995 | JP |
10-071276 | Mar 1998 | JP |
10-216355 | Aug 1998 | JP |
2001-178961 | Jul 2001 | JP |
2004-147838 | May 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20100173562 A1 | Jul 2010 | US |