This application claims foreign priority benefits under 35 U.S.C. § 119(a)-(d) to German patent application number DE 10 2019 206 209.1, filed Apr. 30, 2019, which is incorporated by reference in its entirety.
The present disclosure relates to a tray sealing machine. In addition, the present disclosure relates to a method of lifting and lowering a tray holder at a sealing station of a tray sealing machine.
On known tray sealing machines, which are also referred to as tray sealers in practice, it is a technical challenge to gently pick up, within short conveying cycles, the trays, which are filled with products and provided for a sealing process, within a sealing station by a tray holder and to then gently place them onto a support plate unit subsequent to the sealing process.
In particular in the case of trays with pasty, liquid or loose products, an excessively abrupt picking-up of trays may have the effect that such products are partially flung out of or spilled out of the tray.
Also, when already closed packages are deposited, tilting or tumbling should be avoided, so that a gripper working functionally on the tray sealing machine will be able to grip the packages as precisely and quickly as possible for further conveyance. This, however, necessitates that the packages are provided to the gripper such that they are precisely positioned at a predetermined position, in particular in a stationary condition.
DE 69 01 374 T2; discloses a motor-driven lifting mechanism of a packaging machine, in the case of which the lifting speed can be changed during the movement.
Against the background of the above-mentioned technical challenges, it is the object of the present disclosure to improve a tray sealing machine as well as a method, making use of the simplest possible structural means in order to ensure gentle and efficient tray conveyance within a sealing station. In addition, the disclosure should be realizable at a reasonable cost.
/MN The present disclosure relates to a tray sealing machine comprising at least one feed unit for conveying trays in a production direction, a sealing station arranged downstream of the feed unit, when seen in the production direction, and used for producing packages, at least one discharge unit arranged downstream of the sealing station, when seen in the production direction, as well as a gripper unit. The gripper unit is configured to pick up trays provided on the feed unit and convey them into the sealing station for a tray sealing process taking place in the sealing station as well as to pick up packages produced within the sealing station and convey them to the discharge unit, in a conveying cycle.
The sealing station comprises a tool upper part, which includes a sealing tool, as well as a tool lower part including a support plate unit for depositing thereon the trays conveyed into the sealing station and a vertically adjustable tray holder for picking up and conveying the trays, which have been transferred to the support plate unit, to the tool upper part.
The tray sealing machine additionally comprises a lifting and lowering mechanism (referred to hereinafter simply as lifting mechanism) configured to move the tray holder from a first position, at which the tray holder occupies a starting position in an open state of the sealing station, to a second position, at which the tray holder occupies a working position located closer to the tool upper part in a closed state of the sealing station, during a first predetermined motion sequence. The tray holder is adapted to be moved in the course of the first motion sequence by means of the lifting mechanism in such a way that the tray holder will pick up the trays, which are provided on the support plate unit, at a predetermined pick-up speed.
The features characterizing the disclosure are that the tray sealing machine is configured such that a local rate of speed change over time of the tray holder will have changed from a positive value to a negative value in the course of the first motion sequence before the tray holder has reached the predetermined pick-up speed, and/or that the tray holder is adapted to be moved, by means of the lifting mechanism, from the second position back to the first position in the course of a second predetermined motion sequence, which is provided for opening the sealing station, in such a way that the tray holder will transfer the produced packages accommodated therein to the support plate unit at a predetermined depositing speed, with a rate of speed change over time of the tray holder having changed from a negative value to a positive value in the course of the second motion sequence before the tray holder has reached the predetermined depositing speed. After the sealing process has been carried out, the tray holder, together with the sealed packages, is here lowered at the highest possible speed, and is then, in good time, decelerated to the speed level of the depositing speed, so that the packages produced can be deposited gently. In spite of the thus achieved fast lowering of the tray holder, it is nevertheless guaranteed that the packages will be deposited gently. It follows that, both during lifting of the tray holder and during lowering of the tray holder, an acceleration process is first carried out for optimizing the performance of the tray sealing machine and, subsequently, a deceleration process is carried out, so as to arrive at a depositing speed for transferring the packages gently. Hence, the lifting mechanism accelerates the tray holder at a comparatively fast rate in the direction of the trays and ensures that the tray holder is, in good time, decelerated to the speed level of the pick-up speed, which is higher than zero, so that the tray holder can pick up the trays gently.
According to the present disclosure, the tray holder is first accelerated from the first position during the first motion sequence to a speed above the speed level of the pick-up speed and is then decelerated to the predetermined pick-up speed, which is higher than zero, so as to pick up the trays gently by means of this speed. The trays are thus picked up immediately after the deceleration process. This means that the pick-up speed results directly from the deceleration process. The change of sign of the rate of speed change over time takes place between the acceleration process and the deceleration process above the speed level of the pick-up speed.
The acceleration process, which first takes place during the first motion sequence and in the course of Which the speed of the tray holder increases continuously until the deceleration process starts, causes the desired performance optimization of the operation of the tray sealing machine in the case of the present disclosure. The deceleration process following the acceleration process during the first motion sequence has the effect that the tray bolder will reach a suitable pick-up speed allowing gentle picking up of the trays provided.
Preferably, the local rate of speed change over time of the tray holder changes during the first motion sequence from a positive value to a negative value precisely once before the tray bolder has reached the predetermined pick-up speed as a result of the deceleration process. In other words, during the lifting movement, the speed of the tray holder is, during the first motion sequence, first increased continuously up to a predetermined speed, Which is higher than the pick-up speed, and, when the predetermined speed has been reached, it is reduced continuously down to the pick-up speed.
According to the present disclosure, the lifting mechanism already used for the tray holder at the sealing station can easily be controlled by means of a controller of the tray sealing machine, so as to coordinate the tray holder motion sequence according to the present disclosure. It would be imaginable that, as regards different types of trays, respective path curves for the first and/or the second motion sequence are stored for the tray holder and can be retrieved, and that the gentle picking up of trays as well as the gentle deposition of finished packages can be controlled on the basis of these path curves.
Preferably, the tray holder, together with the trays accommodated therein, can be moved at the pick-up speed for a predetermined time interval. The trays can thus be received by the tray holder with high positioning accuracy and in a stationary manner.
According to an advantageous embodiment, the tray sealing machine is configured such that the rate of speed change over time of the tray holder, including the trays accommodated therein, will have changed from a positive value to a negative value during the first motion sequence before the tray holder has arrived at the second position. Just as during the approach to the provided trays, the tray holder, together with the trays, after having picked up the trays, accelerates to a predetermined speed, preferably to a maximum speed of the lifting process, according to this variant, before it is then decelerated, in good time, prior to reaching the second position, i.e., the working position for carrying out a sealing process. This acceleration and deceleration sequence results in shorter conveying cycles of the trays, which have been picked up by means of the tray holder, to the sealing tool.
Preferably, the tray holder is movable at the depositing speed for a predetermined time interval from a transfer moment, at which the packages have been transferred to the support plate unit. This allows the packages to be deposited carefully and in a precisely positioned manner at predetermined positions onto the support plate unit.
Preferably, the tray sealing machine is configured such that the rate of speed change over time of the tray holder will have changed from a negative value to a positive value during the second motion sequence after the packages have been transferred to the support plate unit at the depositing speed and before the tray holder has returned to the first position. This allows the tray holder to return, after having transferred the packages to the support plate unit, to its starting position at maximum speed, so as to be able to pick up again, within a short period of time, provided trays for a subsequent tray sealing process.
As regards control technology, the necessary effort can be minimized when the first motion sequence and the second motion sequence are substantially symmetrical. It would be imaginable that the second motion sequence comprises higher accelerations than the first motion sequence, since the packages have already been closed here.
For processing different types of trays, it will be advantageous when the pick-up speed and/or the depositing speed are variably adjustable at the tray sealing machine.
Preferably, the tray sealing machine is configured such that the tray holder will reach the pick-up speed at a predetermined pick-up position in the course of the first motion sequence, before the trays provided on the support plate unit are received, on tray edges formed thereon, by the tray holder. Here, it would be imaginable that means formed on the tray holder for receiving the respective trays are still approximately 2.5 mm away from the tray edges when the tray holder has arrived at the pick-up position, i.e., when the tray holder has been decelerated to the predetermined pick-up speed.
According to a variant, the tray sealing machine is configured such that the tray holder will reach the depositing speed at a predetermined depositing position during the second motion sequence before the packages have been deposited on the support plate unit by means of package bases formed thereon. It is imaginable that the tray holder has arrived at the predetermined depositing position, when the package bases of the trays accommodated in the tray holder are positioned approximately 2.5 mm above reception plates provided on the support plate unit.
A sealing process can be carried out advantageously, in particular when the sealing tool is supported in a vertically adjustable manner within the tool upper part. The sealing station is preferably configured to carry out an evacuation and/or gas-flushing process so as to generate a desired atmosphere in the interior of the packages.
According to a cost-effective and simple embodiment of the tray sealing machine, the support plate unit, and in particular the support plates formed thereon, is/are mounted stationarily on the sealing station. According to the present disclosure, gentle picking up of the trays and gentle depositing of the sealed packages is achieved by the special stroke movement carried out by means of the lifting mechanism on the sealing station, the lifting mechanism being used for the tray holder. This means that it will not be necessary to provide at the tray sealing machine according to the present disclosure an additional lifting mechanism for the support plate unit.
The present disclosure also relates to a method of lifting and lowering a tray holder at a sealing station of a tray sealing machine. When the tray holder is being lifted, trays, which are provided on a support plate unit, are picked-up by means of the tray holder according to this method and conveyed to a tool upper part positioned above the tray holder, so as to carry out a tray sealing process. The tray holder is moved by means of a filling mechanism from a first position, at which the tray holder occupies a starting position in an open state of the sealing station, to a second position, at which the tray holder occupies a working position located closer to the tool upper part in a closed state of the sealing station, during a first predetermined motion sequence, the tray holder picking up the trays, which are provided on the support plate unit, at a predetermined pick-up speed.
According to the present disclosure, a rate of speed change over time of the tray holder changes from a positive value to a negative value during the first motion sequence before the tray holder reaches the predetermined pick-up speed, and/or, subsequent to a tray sealing process, the tray holder is moved by means of the lifting mechanism from the second position back to the first position in the course of a second predetermined motion sequence in such a way that the tray holder will transfer, at a predetermined depositing speed, produced, i.e., sealed, packages accommodated therein to the support plate unit, with a rate of speed change over time changing from a negative value to a positive value during the second motion sequence before the tray holder reaches the predetermined depositing speed. The acceleration of the tray holder from the second position is here first carried out until a predetermined, in particular maximum lowering speed has been reached, Afterwards, but before the packages accommodated in the tray holder are transferred, the tray holder will be decelerated down to a speed level corresponding to the predetermined depositing speed, on the basis of which the tray holder will gently transfer the packages to the support plate unit. Just as during the lifting movement of the tray holder, it will thus be possible to realize also during the lowering movement of the tray holder a shorter stroke time for optimizing the performance of the tray sealing machine, and, simultaneously, a gentle deposition of the closed packages. According to the present disclosure, the tray holder is first accelerated to a speed level above the pick-up speed and is then decelerated, so as to arrive at the predetermined pick-up speed on the basis of which the provided trays can be picked up gently by the tray holder. The acceleration and deceleration of the tray holder causes a performance-optimized movement of the tray holder as well as gentle picking up of the trays by means of the latter.
LOOM Preferably, from a moment in time at which the trays have been received by the tray holder, the tray holder will be lifted at the pick-up speed for a predetermined time interval. This ensures that the trays picked up by means of the tray holder can assume their exact position on the tray holder before they are lifted still further.
According to an advantageous variant, the rate of speed change over time of the tray holder, including the trays accommodated therein, will change from a positive value to a negative value during the first motion sequence before the tray holder has arrived at the second position. After having received the trays therein, the tray holder is here accelerated still further up to a predetermined speed level, preferably up to a maximum lifting speed, and is then decelerated until it arrives at the second position, i.e., until it will stand still, whereby a particularly fast displacement movement of the tray holder towards the tool upper part is accomplished.
The sealed packages can be transferred to the support plate unit with a particularly high positioning accuracy when, from a transfer moment, at which the packages have been transferred to the support plate unit, the tray holder will be lowered still further at the depositing speed for a predetermined time interval.
A fast return to the first position of the tray holder will be more easily accomplished, when the rate of speed change over time of the tray holder changes during the second motion sequence from a negative value to a positive value after the packages have been transferred to the support plate unit at the depositing speed and before the tray holder has returned to the first position.
The present disclosure will be described on the basis of an embodiment in the following figures, in which
The technical features shown in the figures are provided with like reference numerals throughout the application.
In addition,
In
The sealing tool 8 is lowered from the position shown in
As soon as the trays T have been received by the tray holder 10, the tray holder 10 in
In addition,
According to
When the tray holder 10 is being lowered, the rate of speed change G over time of the tray holder 10 is changed from a negative value to a positive value during the second motion sequence A2 before the tray holder 10 has reached a predetermined depositing speed v4.
Before the depositing speed v4 shown in
The motion sequence A shown in
Number | Date | Country | Kind |
---|---|---|---|
102019206209.1 | Apr 2019 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5475965 | Mondini | Dec 1995 | A |
6834476 | Konishi | Dec 2004 | B2 |
9221604 | Takagawa | Dec 2015 | B2 |
9346576 | Allgaier et al. | May 2016 | B2 |
9376268 | Schiavina | Jun 2016 | B2 |
10144539 | Lang et al. | Dec 2018 | B2 |
10661932 | Mader et al. | May 2020 | B2 |
20060120914 | Salda | Jun 2006 | A1 |
20120013138 | Ickert | Jan 2012 | A1 |
20180155074 | Gabler et al. | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
86102243 | Oct 1987 | CN |
1495118 | May 2004 | CN |
1812817 | Aug 2006 | CN |
102143899 | Aug 2011 | CN |
104271477 | Jan 2015 | CN |
106494682 | Mar 2017 | CN |
2038309 | Feb 1971 | DE |
691 01 374 | Jun 1994 | DE |
695 05 877 | May 1999 | DE |
10 2008 030 510 | Jan 2010 | DE |
20 2009 009 242 | Nov 2010 | DE |
10 2016 123 569 | Jun 2018 | DE |
2 407 388 | Jan 2012 | EP |
2634100 | Sep 2013 | EP |
2 883 684 | Jun 2015 | EP |
3 070 012 | Sep 2016 | EP |
2449597 | Sep 1980 | FR |
2007099339 | Apr 2007 | JP |
9210405 | Jun 1992 | WO |
2011041320 | Apr 2011 | WO |
Entry |
---|
European Search Report dated Oct. 15, 2020, Application No. 20170678.5-1016, Applicant Multivac Sepp Haggenmueller SE & Co. KG, 5 Pages. |
German Search Report for DE 10 2019 206 2091 dated Jan. 31, 2020 (with English Machine Translation), Applicant Multivac Sepp Haggenmueller SE & Co. KG, 14 Pages. |
Chinese Office Action (with English Translation) dated Jul. 12, 2021, Application No. 202010356825.2, 15 Pages. |
Number | Date | Country | |
---|---|---|---|
20200346801 A1 | Nov 2020 | US |