Many trays, shelves, and bins have static partitions, but not flexible partitions to support objects.
In an example embodiment, a tray is provided that includes, but is not limited to, a plurality of support arms and a base. Each support arm of the plurality of support arms includes, but is not limited to, a top arm portion, a right hook, a right fulcrum portion mounted between the top arm portion and the right hook, a left hook, and a left fulcrum portion mounted between the top arm portion and the left hook. The base includes, but is not limited to, a base top plate. The base top plate includes, but is not limited to, a right fulcrum platform, a left fulcrum platform, and a spring for each support arm of the plurality of support arms. The right fulcrum portion of the associated support arm is mounted to rotate on the right fulcrum platform. The left fulcrum portion of the associated support arm is mounted to rotate on the left fulcrum platform. The spring is positioned to contact at least one of the right hook or the left hook of the associated support arm when the associated support arm rotates on the right fulcrum platform and on the left fulcrum platform. The spring supports the top arm portion in an approximately upright position.
In another example embodiment, a shelving system is provided that includes, but is not limited to, a ladder, a shelf, and the tray. The shelf includes, but is not limited to, a shelf plate and a shelf bracket mounted to the shelf plate and to the ladder, wherein the tray is mounted to the shelf.
Other principal features of the disclosed subject matter will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Illustrative embodiments of the disclosed subject matter will hereafter be described referring to the accompanying drawings, wherein like numerals denote like elements.
Referring to
A ladder may be mounted in other locations and to other walls that define the interior space. For example, in an alternative embodiment, the ladder may extend horizontally or in another direction. As another example, the ladder may be mounted at a center of the back wall or to a side wall. As yet another example, the ladder(s) may be mounted to door 106. A drawer or other storage space may further be mounted to the shelf. The shelf may be included in a heated or a cooled space or in a space at an ambient temperature. The cooled space, for example, may be a refrigerated space or a freezer space. One or more of the plurality of shelves 102 may extend a portion of a width and/or a depth of the interior space or an entire width and/or an entire depth of the interior space. One or more of the plurality of shelves 102 further may extend a portion of a width of door 106 or an entire width of door 106. Refrigerator 100 may include one or more compressors, one or more evaporators, one or more condensers, one or more dryers, one or more fans, etc. to control cooling of the interior spaces as understood by a person of skill in the art.
Referring to
In the illustrative embodiment, tray 202 is mounted to right brace 206 and left brace 208 using right sliding tray slide 210 and left sliding tray slide 212 to allow tray 202 to be slid out from right brace 206 and left brace 208 and from the interior space to facilitate access to the objects placed on or in tray 202. Tray 202 may form a variety of shapes including a polygon, a circle, an ellipse, etc. of various sizes to fit within the interior space.
In the illustrative embodiment, right sliding tray slide 210 may include a right tray slide 214, a right brace slide 216, and a right glide 218. Right tray slide 214 mounts to a right side of tray 202 using various types of fasteners including adhesive, screws, rivets, pins, etc. Right brace slide 216 mounts to an inner surface of right brace 206 that faces left brace 208 using various types of fasteners including adhesive, screws, rivets, pins, soldering, etc. Right glide 218 mounts slidably to right tray slide 214 and to right brace slide 216 to allow tray 202 to slide relative to shelf frame 204.
In the illustrative embodiment, left sliding tray slide 212 may include a left tray slide (not shown), a left brace slide 220, and a left glide 222. The left tray slide mounts to a left side of tray 202 using various types of fasteners including adhesive, screws, rivets, pins, etc. Left brace slide 220 mounts to an inner surface of left brace 208 that faces right brace 206 using various types of fasteners including adhesive, screws, rivets, pins, etc. Left glide 222 mounts slidably to the left tray slide and to left brace slide 220 to allow tray 202 to slide relative to shelf frame 204. Right sliding tray slide 210 and left sliding tray slide 212 may be identical.
In alternative embodiments, other mounting mechanisms may be used to mount tray 202 within the interior space as well as to mount tray 202 to right brace 206 and/or left brace 208 and/or to shelf frame 204. In alternative embodiments, tray 202 may not be mounted to right brace 206 and/or to left brace 208 and/or right sliding tray slide 210 and left sliding tray slide 212 may not be included. In an alternative embodiment, tray 202 may be fixedly mounted to right brace 206 and left brace 208. In still another alternative embodiment, tray 202 may be mounted directly to shelf frame 204 without mounting to right brace 206 and/or left brace 208. In yet another alternative embodiment, tray 202 may rest on shelf frame 204 without mounting to right brace 206 and/or left brace 208 or attaching to shelf frame 204.
Shelf frame 204 may form a variety of shapes including a polygon, a circle, etc. of various sizes to fit within the interior space and to support tray 202. In the illustrative embodiment, shelf frame 204 includes a front brace 224, a right side brace 226, a left side brace 228, and a back brace 230 that are mounted to each other to form a rectangular aperture and/or to form a rectangular platform below tray 202 and on which tray 202 may rest in alternative embodiments. In the illustrative embodiment, front brace 224 and back brace 230 are mounted to and between right side brace 226 and left side brace 228. In the illustrative embodiment, right side brace 226 is mounted to right brace 206, for example, using various types of fasteners including adhesive, screws, rivets, pins, soldering, etc. though other mounting mechanisms may be used when shelf frame 204 is mounted to right brace 206. In the illustrative embodiment, left side brace 228 is mounted to left brace 208, for example, using various types of fasteners including adhesive, screws, rivets, pins, soldering, etc. though other mounting mechanisms may be used when shelf frame 204 is mounted to left side brace 228. Shelf frame 204 may include a plate having a variety of shapes with zero or more apertures with or without front brace 224, right side brace 226, left side brace 228, and/or back brace 230.
Right brace 206 and left brace 208 may have various shapes and dimensions and may be formed of various materials selected to be strong enough to support a weight of objects placed on tray 202. Right brace 206 may include a right bracket portion 224. Left brace 206 may include a left bracket portion 226. Left brace 208 may form a mirror image of right brace 206 relative to a vertical plane through a center of a space between right brace 206 and left brace 208. Right bracket portion 224 and left bracket portion 226 may be shaped and sized to mount to first right ladder 108 and to the first left ladder, respectively, by insertion within an opening formed in first right ladder 108 and in the first left ladder, respectively. Using various openings formed in first right ladder 108 and in the first left ladder, as understood by a person of skill in the art, a position of shelf 200 can be adjusted within the interior space or on door 106 or shelf 200 and/or tray 202 can be removed from the interior space or from door 106. In alternative embodiments, shelf 200 and/or tray 202 may not be movable within the interior space and/or may not be removable from the interior space. Though not shown, a brace need not be mounted adjacent a wall that forms the interior space. Instead, the brace may be mounted, for example, to first back wall 110 between the side walls that form the interior space as an additional support for tray 202 that extends between the side walls or to provide support for tray 202 that does not extend an entire width between the side walls.
Referring to
In the illustrative embodiment, a number of the plurality of support arms 304 is twelve arranged in two columns though there may a greater or a fewer number of support arms arranged in a greater or a fewer number of columns with one or more support arms in each column. Each column is associated with one of first top plate 302a or second top plate 302b. In an alternative embodiment, first top plate 302a and second top plate 302b may be joined to form a single top plate. In the illustrative embodiment, first top plate 302a and second top plate 302b extend from a front of base 300 to a back of base 300 though in alternative embodiments, first top plate 302a and second top plate 302b may extend from a right side of base 300 to a left side of base 300 or in other directions within base 300 to form a greater or a fewer number of rows or columns. In alternative embodiments, the plurality of support arms 304 may not be aligned from front to back or from left to right or vice versa. The plurality of support arms 304 may be offset from each other to form various arrangements, for example, based on an expected size of objects stored in or on tray 202.
Each support arm 1200 (shown referring to
Referring to
Referring to
Referring to
In the illustrative embodiment, first top plate 302a and second top plate 302b are identical with first top plate 302a mounted on base top plate 1600 to the left of second top plate 302b and with six support arms of the plurality of support arms 304 mounted to each of first top plate 302a and second top plate 302b such that a pair of support arms are aligned from left to right across first top plate 302a and second top plate 302b. In alternative embodiments, first top plate 302a and second top plate 302b may not be identical and may include a different number of arms relative to each other. In alternative embodiments, the support arms may not be aligned. For example, first top plate 302a may include six arms that extend from top to bottom on base top plate 1600 while second top plate 302b may include three arms that extend from left to right or vice versa on base top plate 1600.
Top plate 1100 may include a top wall 1002, a left sidewall 804, and a right sidewall 806 though in alternative embodiments, left sidewall 804, and right sidewall 806 may be formed as top and/or bottom sidewalls. For example, though in the illustrative embodiment, each support arm 1200 extends linearly, in an alternative embodiment, support arm 1200 may be curved and extend between right sidewall 806 and a top sidewall (not shown) or a bottom sidewall (not shown) and/or between left sidewall 804 and the top sidewall or the bottom sidewall. Top plate 1100 may be formed of one or more materials, such as metal, glass, and/or plastic having a sufficient strength and rigidity to support food objects or other objects stored in refrigerator 100. For example, top plate 1100 may be formed of a single piece of material such as plastic using a molding process.
First top plate 302a and second top plate 302b each include a support arm stop trough 800, a support arm fulcrum aperture 802, and a finger channel 1000 for each support of the plurality of support arms 304 mounted to each of first top plate 302a and second top plate 302b. Support arm stop trough 800 and finger channel 1000 are depressions formed in top wall 1002. Support arm stop trough 800 is sized and shaped such that a top arm portion 1206 (shown referring to
Finger channel 1000 is sized and shaped such that a user's finger can fit therein to allow grasping of top arm portion 1206 to lift top arm portion 1206 away from base top plate 1600 such that a right fulcrum portion 1208 (shown referring to
Support arm stop trough 800 and support arm fulcrum aperture 802 are positioned relative to each other based on an orientation of and dimensions of support arm 1200. In the illustrative embodiment, finger channel 1000 is centered between right sidewall 806 and left sidewall 804 and extends from a top and a bottom of support arm stop trough 800 so that the user's finger can grab top arm portion 1206 with a similar force on support arm fulcrum aperture 802 formed in right sidewall 806 and in left sidewall 804. Finger channel 1000 can be placed anywhere between right sidewall 806 and left sidewall 804 or the sidewalls in which support arm fulcrum aperture 802 is formed in alternative embodiments.
Referring to
In the illustrative embodiment, each support arm 1200 of the plurality of support arms 304 may include right hook 1202, left hook 1204, top arm portion 1206, right fulcrum portion 1208, left fulcrum portion 1210, a right hook transition portion 1212, a left hook transition portion 1214, a right side portion 1216, and a left side portion 1218. Right hook 1202, left hook 1204, top arm portion 1206, right fulcrum portion 1208, left fulcrum portion 1210, right hook transition portion 1212, left hook transition portion 1214, right side portion 1216, and left side portion 1218 are formed of a single continuous material with a circular cross section though other shaped cross sections may be used such as elliptical or polygonal. For example, support arm 1200 may be formed of a bent wire formed of a metal material that may be all or partially covered in a coating material such as a rubber or a plastic material though other materials may be used. For example, instead of coated metal, support arm 1200 may be formed of a plastic material. In an alternative embodiment, right hook 1202, left hook 1204, top arm portion 1206, right fulcrum portion 1208, left fulcrum portion 1210, right hook transition portion 1212, left hook transition portion 1214, right side portion 1216, and left side portion 1218 may be formed of one or more materials mounted to each other, for example, using one or more fasteners such as adhesive, soldering, a screw, a rivet, etc.
Right hook 1202, left hook 1204, top arm portion 1206, right fulcrum portion 1208, left fulcrum portion 1210 may be parallel to each other and generally extend parallel to a z-axis shown referring to
A vector P1 is defined to extend through a center of left side portion 1218. A vector P2 is defined to extend through a center of left hook transition portion 1214. An angle 1300 is formed between left hook transition portion 1214 and left side portion 1218 in the x-y plane. Angle 1300 is also formed between right hook transition portion 1212 and right side portion 1216. A center of right hook 1202 and left hook 1204 are offset a distance 1302 from the y-z plane based on a length 1310 of right hook transition portion 1212 and of left hook transition portion 1214 and an angle 1304 defined between vector P2 and the x-axis. Support arm 1200 rotates about the z-axis centered through a point F defined through a center of right fulcrum portion 1208 and of left fulcrum portion 1210 relative to the z-axis.
In an illustrative embodiment, support arm 1200 may be held upright relative to base top plate 1600 using a right spring 1602 (shown referring to
Though in the illustrative embodiment, right side portion 1216 and left side portion 1218 are approximately perpendicular to top arm portion 1206, in alternative embodiments, top arm portion 1206 may be curved between right side portion 1216 and left side portion 1218. Support arm 1200 may have various dimensions based on the types of objects that support arm 1200 is configured to hold. For example, a length of right side portion 1216 and left side portion 1218 may be selected to hold various sized objects that may have various shapes between adjacent support arms 1200 or between support arm 1200 and a wall of base 300 as well as to provide a sufficient height to hold the objects upright when support arm is rotated to be approximately upright. Again, in the illustrative embodiment, top arm portion 1206 fits within support arm stop trough 800, and right fulcrum portion 1208 and left fulcrum portion 1210 fit within support arm fulcrum aperture 802 formed in right sidewall 806 and left sidewall 804, respectively, when support arm 1200 is in the first stop position and mounted to top plate 1100 and to base 300.
Referring to
Base 300 may include base top plate 1600, a base back wall 1608, a base right side wall 1610, a base front wall 1612, and a base left side wall 1614. In the illustrative embodiments, base top plate 1600 has a polygonal shape in a horizontal plane though in alternative embodiments, base top plate 1600 may have other shapes such as circular, elliptical, etc. Base back wall 1608 extends in a generally perpendicular direction upward from a back edge of base top plate 1600. Base right side wall 1610 extends in a generally perpendicular direction upward from a right edge of base top plate 1600. Base front wall 1612 extends in a generally perpendicular direction upward from a front edge of base top plate 1600. Base left side wall 1614 extends in a generally perpendicular direction upward from a left edge of base top plate 1600. Base top plate 1600, base back wall 1608, right side wall 1610, base front wall 1612, and base left side wall 1614 define a generally enclosed space though open on top. Base 300 may be formed of one or more materials, such as metal, glass, and/or plastic having a sufficient strength and rigidity to support food objects or other objects stored in or on tray 202. For example, base 300 may be formed of a single piece of material such as plastic using a molding process.
In the illustrative embodiment, base back wall 1608 and base front wall 1612 have straight sides to form rectangles though base front wall 1612 has a smaller height to facilitate access by the user to objects placed on base top plate 1600. In the illustrative embodiment, top edges of base right side wall 1610 and base left side wall 1614 slope downwards from base back wall 1608 to base front wall 1612 though this is not required. In an alternative embodiment, base 300 need not include one or more of base back wall 1608, base right side wall 1610, base front wall 1612, and base left side wall 1614.
Base top plate 1600 has similar indentations to the one or more top plates 1100 that are mounted to base top plate 1600 based on the number of support arms of the plurality of support arms 304 included on tray 202. For example, base top plate may include base top arm trough 1616 and a base finger channel 1606 for each support arm 1200 included on tray 202. Each finger channel 1000 aligns with and is positioned within an associated base finger channel 1606. Each support arm stop trough 800 aligns with and is positioned within an associated base top arm trough 1616.
Base top plate 1600 may further include a right arm trough 1618, a left arm trough 1620, a right fulcrum platform 1622, a left fulcrum platform 1624, a right sloped platform 1812 (shown referring to
Referring to
Right hook 1202 abuts first right stop platform 1800, and left hook 1204 abuts first left stop platform 1802 when support arm 1200 reaches the first stop position as shown in
Right hook 1202 abuts second right stop platform 1702, and left hook 1204 abuts second left stop platform 1704 when support arm 1200 reaches the second stop position as shown in
As support arm 1200 is rotated between the first stop position and the second stop position, right hook 1202 contacts right tip 1804 of right spring 1602, and left hook 1204 contacts left tip 1806 of left spring 1604 to provide a downward spring like force against right hook 1202 and against left hook 1204, respectively, to hold support arm 1200 approximately upright. Right tip 1804 of right spring 1602 and left tip 1806 of left spring 1604 are further curved downward to further provide support to support arm 1200 in the upright position. Right hook 1202 and left hook 1204 have an upside down slide shape with length, width and depth dimensions of a material selected to provide a sufficient spring like force to counteract a weight of support arm 1200. For example, right spring 1602 and left spring 1604 may be leaf springs formed of the same material used to form base top plate 1600 such as plastic. Right spring 1602 and left spring 1604 are configured to provide a resistive force to support arm 1200 when in the upward position and to disengage with support arm 1200 when in the downward position and in support arm stop trough 800. When right hook 1202 abuts second right stop platform 1702 and left hook 1204 abuts second left stop platform 1704, right hook transition portion 1212 abuts a right flat surface 1808 of right spring 1602 adjacent second right stop platform 1702, and left hook transition portion 1214 abuts a left flat surface 1810 of left spring 1604 adjacent second left stop platform 1704 as shown in
Top plate 1100 covers right spring 1602, left spring 1604, right sloped platform 1812, left sloped platform 1626, first right stop platform 1800, first left stop platform 1802, second right stop platform 1702, and second left stop platform 1704 so that they are not visible to the user. Top plate 1100 also covers right hook 1202, left hook 1204, right fulcrum portion 1208, left fulcrum portion 1210, right hook transition portion 1212, left hook transition portion 1214 so that they are not visible to the user to provide a clean appearance.
Again, as support arm 1200 rotates about the z-axis, right hook transition portion 1212 and left hook transition portion 1214 slide past a ridge of right sloped platform 1812 and of left sloped platform 1626, respectively. At the rotation angle of angle 1304 under the x-z plane, right hook transition portion 1212 and left hook transition portion 1214 rest on the upper surface of right sloped platform 1812 and of left sloped platform 1626, respectively, thus engaging right tip 1804 of right spring 1602 and left tip 1806 of left spring 1604 by right hook 1202 and left hook 1204 of support arm 1200. Right spring 1602 and left spring 1604 apply a load throughout a remained of the range of travel from the vector P1 to the vector P3 positions.
Use of directional terms, such as top, bottom, right, left, front, back, etc. are merely intended to facilitate reference to the various surfaces and elements of the described structures relative to the orientations shown in the drawings and are not intended to be limiting in any manner. For consistency, the components of refrigerator 100 are labeled relative to a front on which a door is mounted.
As used in this disclosure, the term “mount” includes join, unite, connect, couple, associate, insert, hang, hold, affix, attach, fasten, bind, paste, secure, bolt, screw, rivet, solder, weld, glue, adhere, form over, layer, and other like terms. The phrases “mounted on” and “mounted to” include any interior or exterior portion of the element referenced. These phrases also encompass direct mounting (in which the referenced elements are in direct contact) and indirect mounting (in which the referenced elements are not in direct contact). Elements referenced as mounted to each other herein may further be integrally formed together, for example, using a molding process as understood by a person of skill in the art. As a result, elements described herein as being mounted to each other need not be discrete structural elements.
The word “illustrative” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “illustrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Further, for the purposes of this disclosure and unless otherwise specified, “a” or “an” means “one or more”. Still further, using “and” or “or” in the detailed description is intended to include “and/or” unless specifically indicated otherwise.
The foregoing description of illustrative embodiments of the disclosed subject matter has been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the disclosed subject matter to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosed subject matter. The embodiments were chosen and described in order to explain the principles of the disclosed subject matter and as practical applications of the disclosed subject matter to enable one skilled in the art to utilize the disclosed subject matter in various embodiments and with various modifications as suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
409730 | Brown | Aug 1889 | A |
423647 | Wells | Mar 1890 | A |
451729 | Dom | May 1891 | A |
679474 | Early | Jul 1901 | A |
807084 | Muller | Dec 1905 | A |
1096936 | Moore | May 1914 | A |
1106265 | Whittle | Aug 1914 | A |
1119925 | Chatham | Dec 1914 | A |
1277827 | Barber | Sep 1918 | A |
1456446 | Hotaling | May 1923 | A |
1677544 | Gourley | Jul 1928 | A |
1692231 | Thompson | Nov 1928 | A |
1814191 | Seyl | Jul 1931 | A |
1851662 | Casey | Mar 1932 | A |
1952118 | Casey | Mar 1934 | A |
2010740 | Straubel | Aug 1935 | A |
2062802 | Walker | Dec 1936 | A |
D124197 | Lynch | Dec 1940 | S |
2231633 | Metzger | Feb 1941 | A |
2233938 | Jones | Mar 1941 | A |
2289070 | Ralston | Jul 1942 | A |
2360026 | Wall | Oct 1944 | A |
2828178 | Dahlgren | Mar 1958 | A |
2873860 | Holloway | Feb 1959 | A |
2956685 | Levi | Oct 1960 | A |
3084617 | Jamentz | Apr 1963 | A |
3144942 | Peebles | Aug 1964 | A |
3200958 | Hudgeons, Sr. | Aug 1965 | A |
3269547 | Chamberlin | Aug 1966 | A |
3295696 | Cohen | Jan 1967 | A |
3554381 | Guest | Jan 1971 | A |
3559815 | Huddleston | Feb 1971 | A |
3812975 | Gutierrez | May 1974 | A |
3869045 | Lear | Mar 1975 | A |
4023682 | Niece | May 1977 | A |
4084699 | Koepke | Apr 1978 | A |
4087926 | Breslau | May 1978 | A |
4241921 | Miller | Dec 1980 | A |
4461388 | Bustos | Jul 1984 | A |
4512480 | Evenson | Apr 1985 | A |
4593822 | Yeaney | Jun 1986 | A |
4682697 | Cohen | Jul 1987 | A |
4700640 | Andersson | Oct 1987 | A |
5111959 | Glickman | May 1992 | A |
5115919 | Dorman | May 1992 | A |
5152405 | Schriner | Oct 1992 | A |
D341523 | Tiemann | Nov 1993 | S |
D364074 | Yeh | Nov 1995 | S |
5662228 | Mendoza | Sep 1997 | A |
5738019 | Parker | Apr 1998 | A |
6065610 | Elmore | May 2000 | A |
6116153 | Burrows | Sep 2000 | A |
6220684 | Bent | Apr 2001 | B1 |
6227384 | Saylor | May 2001 | B1 |
6516927 | Krulik | Feb 2003 | B2 |
6826858 | Muller | Dec 2004 | B1 |
D500803 | Stravitz | Jan 2005 | S |
D502220 | Stravitz | Feb 2005 | S |
D504702 | Stravitz | May 2005 | S |
7086538 | Stravitz | Aug 2006 | B2 |
D534374 | Wright | Jan 2007 | S |
7296697 | Costa | Nov 2007 | B2 |
D585094 | Smith | Jan 2009 | S |
7497533 | Remmers | Mar 2009 | B2 |
7669523 | Zemel | Mar 2010 | B1 |
D629251 | Tiemann | Dec 2010 | S |
7950537 | Goodman | May 2011 | B1 |
D668103 | Cloutier | Oct 2012 | S |
D694580 | Cloutier | Dec 2013 | S |
8596205 | Driver | Dec 2013 | B2 |
8627764 | Cloutier | Jan 2014 | B1 |
8925745 | Theisen | Jan 2015 | B2 |
9226577 | Stepp | Jan 2016 | B2 |
9320354 | Yoshikawa | Apr 2016 | B2 |
9596931 | Nimgulkar | Mar 2017 | B1 |
20030025424 | Graves | Feb 2003 | A1 |
20040050811 | Leahy | Mar 2004 | A1 |
20050011846 | Stein | Jan 2005 | A1 |
20050016939 | Eby | Jan 2005 | A1 |
20050133468 | Stravitz | Jun 2005 | A1 |
20050161418 | Lynch | Jul 2005 | A1 |
20050173355 | Stravitz | Aug 2005 | A1 |
20060096938 | Kanou | May 2006 | A1 |
20070029270 | Hawkinson | Feb 2007 | A1 |
20070046160 | Egan | Mar 2007 | A1 |
20070247037 | Schenker | Oct 2007 | A1 |
20090065452 | Smith | Mar 2009 | A1 |
20100078402 | Davis | Apr 2010 | A1 |
20100102689 | Chambers | Apr 2010 | A1 |
20100206829 | Clements | Aug 2010 | A1 |
20100307998 | Chen | Dec 2010 | A1 |
20130020270 | Valiulis | Jan 2013 | A1 |
20130134169 | Michaels | May 2013 | A1 |
20130307394 | Dondurur | Nov 2013 | A1 |
20140263111 | Micek | Sep 2014 | A1 |
20150076086 | Tsai | Mar 2015 | A1 |
20150136718 | Sabounjian | May 2015 | A1 |
20150151877 | Gallanosa, II | Jun 2015 | A1 |
20180344029 | Miles | Dec 2018 | A1 |