A. Field of Invention
This invention generally relates to methods and apparatuses concerning tire treads and more specifically relates to methods and apparatuses concerning a tire tread having a visually observable tread wear indicator.
B. Description of the Related Art
As a tire's tread wears away, the ability to maintain traction diminishes in wet or snow covered roads. Once the tread is worn beyond a certain tread depth, the groove voids become sufficiently small that the tire should be replaced to maintain adequate traction. It is thus well known to provide tire treads with a tread wear indicator (TWI) to indicate how much of the tread is worn. One example of a TWI is provided in Pub. No. US2009/0095388 titled TIRE TREAD WITH TREAD WEAR INDICATOR which is incorporated herein by reference.
While known TWIs generally work well for their intended purpose, there is a need for an improved TWI that provides a unique symbol that indicates tread wear status at multiple depths.
According to one embodiment of this invention, a tire tread may comprise: a tread having first and second shoulder regions and a mid-section between the first and second shoulder regions, the tread also having a tread depth and an outer ground contacting surface; and, a tread wear indicator molded into the first shoulder region of the tread. The tread wear indicator may comprise first, second and third symbols. The first and second symbols may be alphanumeric characters and the third symbol may substantially surround the first and second symbols. The first, second and third symbols may be visible on the ground contacting surface prior to wearing the tread. The first symbol may be invisible and the second and third symbols may be visible on the ground contacting surface after the tread has been worn radially a first amount. The first and second symbols may be invisible and the third symbol may be visible on the ground contacting surface after the tread has been worn radially a second amount that is greater than the first amount.
According to another embodiment of this invention, a tire tread may comprise: a tread having first and second shoulder regions and a mid-section between the first and second shoulder regions, the tread also having an outer ground contacting surface and a tread depth; and, first and second treadwear indicators molded respectively into the first and second shoulder regions of the tread, each of the first and second treadwear indicators comprising substantially the same first, second and third symbols. The first symbol may be substantially S-shaped, the second symbol may be substantially W-shaped and, the third symbol may be substantially triangularly shaped and may substantially surround the first and second symbols. The first, second and third symbols may be visible on the ground contacting surface prior to wearing the tread. The first symbol may be invisible and the second and third symbols may be visible on the ground contacting surface after the tread has been worn radially a first amount of between 70% and 95% inclusively of the tread depth. The first and second symbols may be invisible and the third symbol may be visible on the ground contacting surface after the tread has been worn radially a second amount that is greater than the first amount.
According to yet another embodiment of this invention, a method may comprise the steps of: (A) providing a tire comprising a tire tread having: (1) first and second shoulder regions; (2) a mid-section between the first and second shoulder regions; (3) an outer ground contacting surface; (4) a tread depth and, (5) a first treadwear indicator positioned on the first shoulder region of the tread; wherein the first treadwear indicator comprises first and second symbols that are alphanumeric characters and a third symbol that substantially surrounds the first and second symbols; (B) providing the first, second and third symbols to be visible on the ground contacting surface prior to wearing the tread; (C) wearing the tread radially a first amount resulting in: (1) the first symbol becoming invisible on the ground contacting surface; and, (2) the second and third symbols remaining visible on the ground contacting surface; and, (D) wearing the tread radially a second amount that is greater than the first amount resulting in: (1) the first symbol remaining invisible on the ground contacting surface; (2) the second symbol becoming invisible on the ground contacting surface; and, (3) the third symbol remaining visible on the ground contacting surface.
One advantage of this invention is that a person can easily determine when a tire has reached significant stages of wear.
Another advantage of this invention is that the symbols used on the TWI may include alphanumeric characters that provide immediate meaning to the person inspecting the tire.
Other benefits and advantages of the invention will become apparent to those skilled in the art to which it pertains upon a reading and understanding of the following detailed specification.
The following definitions are applicable to the present invention.
“Axial” and “axially” mean lines or directions that are parallel to the axis of rotation of the tire.
“Carcass” means the tire structure apart from the belt structure, tread, undertread, and sidewall rubber over the plies, but including the beads.
“Equatorial plane (EP)” means the plane perpendicular to the tire's axis of rotation and passing through the center of its tread.
“Groove” means an elongated void area in a tread that may extend circumferentially or laterally about the tread in a straight curved, or zigzag manner. Circumferentially and laterally extending grooves sometimes have common portions and may be sub classified as “wide”, “narrow”, or “sipe”. A “sipe” is a groove having a width in the range from about 0.2% to 0.8% of the compensated tread width, whereas a “narrow groove” has a width in the range from about 0.8% to 3% of the compensated tread width and a “wide groove” has a width greater than 3% thereof. The “groove width” is equal to the tread surface area occupied by a groove or groove portion, the width of which is in question, divided by the length of such groove or groove portion; thus, the groove width is its average width over its length. Grooves, as well as other voids, reduce the stiffness of tread regions in which they are located. Sipes often are used for this purpose, as are laterally extending narrow or wide grooves. Grooves may be of varying depths in a tire. The depth of a groove may vary around the circumference of the tread, or the depth of one groove may be constant but vary from the depth of another groove in the tire. If such narrow or wide groove is of substantially reduced depth as compared to wide circumferential grooves which they interconnect, they are regarded as forming “tie bars” tending to maintain a rib-like character in the tread region involved. A groove may be formed by steel blades inserted into a cast or machined mold or tread ring therefore.
“Inner” means toward the inside of the tire.
“Outer” means toward the outside of the tire.
“Radial” and “radially” are used to mean directions radially toward or away from the axis of rotation of the tire.
“Tread” means a molded rubber component which, when bonded to a tire casing, includes that portion of the tire that comes into contact with the road when the tire is normally inflated and under normal load. The tread has a depth conventionally measured from the tread outer surface to the bottom of the deepest groove of the tire.
The invention may take physical form in certain parts and arrangement of parts, embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof and wherein:
Referring now to the drawings wherein the showings are for purposes of illustrating embodiments of the invention only and not for purposes of limiting the same, and wherein like reference numerals are understood to refer to like components,
With continuing reference to
With reference now to
With reference now to
With reference now to
The TWI 20 may be designed so that the first, second and third symbols 32, 34, 36 are visible on the ground contacting surface 28 prior to wearing the tread 10. This unworn status is shown in
With reference now to
With reference now to FIGS. 1 and 6-7, as noted above for the embodiment shown the TWIs are molded into the tread 10 during the vulcanization process. While this molding of the TWIs 20 into the tread 10 can be done in any manner chosen with the sound judgment of a person of skill in the art, in one embodiment a blade 60 may be used to form the tread wear indicator 20. Each such blade 60 can be fitted into prepared openings in a tread forming mold (not shown) in the shoulder regions 30, 22 as previously discussed. An exterior portion 62 may have a hollow inner portion 64. The exterior portion 62 forms the walls 42, 44, 46 of the third symbol 36. Voids 66 may be used to form the gaps 48 in the walls. The voids 66 may serve the function of forming vent openings to allow entrapped air to escape during molding of the tread 10. A first protruding portion 47 may be S-shaped and used to form the first symbol 32. Similarly, a second protruding portion 43 may be W-shaped and used to form the second symbol 34. Both protruding portions 47, 43 may extend from a blade base surface 72 which forms the top surface of the tread wear indicator 20. A hole 74 may be used to help secure the blade 60 in the mold. The exemplary blade 60 while shown as a single piece construction can be made using any number of pieces welded together to form the blade 60 if so desired.
Numerous embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above methods and apparatuses may incorporate changes and modifications without departing from the general scope of this invention. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof.
Having thus described the invention, it is now claimed:
Number | Name | Date | Kind |
---|---|---|---|
2102784 | Bridges | Dec 1937 | A |
2706509 | White | Apr 1955 | A |
3362376 | Norton | Jan 1968 | A |
3516467 | Sims | Jun 1970 | A |
3578055 | French et al. | May 1971 | A |
3814160 | Creasey | Jun 1974 | A |
3833040 | Bins | Sep 1974 | A |
3929179 | Hines | Dec 1975 | A |
4154564 | French | May 1979 | A |
4226274 | Awaya et al. | Oct 1980 | A |
5303756 | Hill | Apr 1994 | A |
5980668 | Slingluff | Nov 1999 | A |
6220199 | Williams | Apr 2001 | B1 |
6523586 | Eromaki et al. | Feb 2003 | B1 |
7011126 | Heinen | Mar 2006 | B2 |
7670123 | Cuny et al. | Mar 2010 | B2 |
20020036039 | Shimura | Mar 2002 | A1 |
20030019555 | Nakagawa | Jan 2003 | A1 |
20060037683 | Cuny et al. | Feb 2006 | A1 |
20060213594 | Kemp et al. | Sep 2006 | A1 |
20070295432 | Posada et al. | Dec 2007 | A1 |
20090095387 | De Barsy | Apr 2009 | A1 |
20090095388 | Cuny et al. | Apr 2009 | A1 |
20090114322 | O'Brien | May 2009 | A1 |
20090272472 | Takeuchi | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
1066991 | Oct 2001 | EP |
1630008 AL | Jan 2006 | EP |
1066991 | Apr 2006 | EP |
2329967 AL | Aug 2011 | EP |
Number | Date | Country | |
---|---|---|---|
20120125499 A1 | May 2012 | US |