Treadmill configured to automatically determine user exercise movement

Information

  • Patent Grant
  • 11779812
  • Patent Number
    11,779,812
  • Date Filed
    Friday, March 26, 2021
    3 years ago
  • Date Issued
    Tuesday, October 10, 2023
    a year ago
Abstract
Treadmill configured to automatically determine user exercise movement. In some embodiments, a treadmill may include a deck, a first pulley disposed in the deck, a second pulley disposed in the deck, a tread belt surrounding the first pulley and the second pulley, an electronic sensor incorporated into the treadmill and configured to automatically produce measurement data in response to exercise movement performed by a user over the deck, an electronic console including an electronic display, a processor, and a memory. The memory may include programmed instructions that, when executed, cause the processor to automatically analyze the measurement data produced by the electronic sensor to automatically determine a characteristic of the exercise movement performed by the user over the deck, and automatically present, on the electronic display, an indication of the characteristic of the exercise movement performed by the user over the deck.
Description
BACKGROUND

Aerobic exercise is a popular form of exercise that improves one's cardiovascular health by reducing blood pressure and providing other benefits to the human body. Aerobic exercise generally involves low intensity physical exertion over a long duration of time. Typically, the human body can adequately supply enough oxygen to meet the body's demands at the intensity levels involved with aerobic exercise. Popular forms of aerobic exercise include running, jogging, swimming, and cycling among other activities. In contrast, anaerobic exercise typically involves high intensity exercises over a short duration of time. Popular forms of anaerobic exercise include strength training and short distance running.


Many choose to perform aerobic exercises indoors, such as in a gym or their home. Often, a user uses an aerobic exercise machine to perform an aerobic workout indoors. One type of aerobic exercise machine is a treadmill, which is a machine that has a running deck attached to a support frame. The running deck can support the weight of a person using the machine. The running deck incorporates a tread belt that is driven by a motor. A user can run or walk in place on the tread belt by running or walking at the tread belt's speed. The speed and other operations of the treadmill are generally controlled through a control module that is also attached to the support frame and within a convenient reach of the user. The control module can include a display, buttons for increasing or decreasing a speed of the conveyor belt, controls for adjusting a tilt angle of the running deck, or other controls. Other popular exercise machines that allow a user to perform aerobic exercises indoors include elliptical machines, rowing machines, stepper machines, and stationary bikes to name a few.


One type of treadmill is disclosed in U.S. Pat. No. 4,729,558 issued to Hai P. Kuo. In this reference, an improved running exerciser comprises a base frame having a first shaft and second shaft, a pair of inverted U-shaped members each mounted at one side of the base frame, a track in the form of endless loop around the first shaft and the second shaft, a pulley fastened on one end of the first shaft, a motor assembly having a tubular rod enclosing the first shaft, a pair of conical clutch discs put over a driving shaft of the motor assembly, a belt connecting the pulley to the clutch discs, a speed control mechanism mounted on one of the inverted U-shaped members for regulating speed of the track, and a stand for lifting a front end of the base frame to incline the endless loop to form a slope.


SUMMARY

In some embodiments, a treadmill may include a deck, a first pulley disposed in the deck, a second pulley disposed in the deck, a tread belt surrounding the first pulley and the second pulley, an electronic sensor incorporated into the treadmill and configured to automatically produce measurement data in response to exercise movement performed by a user over the deck, an electronic console including an electronic display, a processor, and a memory. The memory may include programmed instructions that, when executed, cause the processor to automatically analyze the measurement data produced by the electronic sensor to automatically determine a characteristic of the exercise movement performed by the user over the deck, and automatically present, on the electronic display, an indication of the characteristic of the exercise movement performed by the user over the deck.


In some embodiments, the characteristic of the exercise movement performed by the user over the deck may include a repetition count in the exercise movement performed by the user over the deck. In these embodiments, the repetition count may be of a weight lifting exercise movement, a military press exercise movement, a curl exercise movement, a jumping exercise movement, a push-up exercise movement, a leg lift exercise movement, or a sit-up exercise movement.


In some embodiments, the characteristic of the exercise movement performed by the user over the deck may include a type of exercise performed by the user in the exercise movement performed by the user over the deck. In these embodiments, the type of exercise may include a weight lifting exercise, a military press exercise, a curl exercise, a jumping exercise, a push-up exercise, a leg lift exercise, or a sit-up exercise.


In some embodiments, the electronic sensor may include an accelerometer, an optical sensor, a laser displacement sensor, a camera, a capacitance sensor, a strain gauge, or a geophone.


In some embodiments, the electronic sensor may be incorporated into the electronic console.


In some embodiments, the electronic sensor may be incorporated into the deck.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate various embodiments of the present apparatus and are a part of the specification. The illustrated embodiments are merely examples of the present apparatus and do not limit the scope thereof.



FIG. 1 illustrates a perspective view of an example of a treadmill in accordance with the present disclosure.



FIG. 2 illustrates a perspective view of an example of a treadmill in accordance with the present disclosure.



FIG. 3 illustrates a perspective view of an example of a treadmill in accordance with the present disclosure.



FIG. 4 illustrates a cross sectional view of an example of a treadmill in accordance with the present disclosure.



FIG. 5 illustrates a view of an example of display incorporated into an exercise device in accordance with the present disclosure.



FIG. 6 illustrates a perspective view of an example of an instruction system incorporated into an exercise device in accordance with the present disclosure.



FIG. 7 illustrates a perspective view of an example of a treadmill incorporated into an exercise device in accordance with the present disclosure.



FIG. 8 illustrates a perspective view of an example of a display incorporated into an exercise device in accordance with the present disclosure.



FIG. 9 illustrates a perspective view of an example of a display incorporated into an exercise device in accordance with the present disclosure.



FIG. 10 illustrates a cross sectional view of an example of a platform incorporated into an exercise device in accordance with the present disclosure.



FIG. 11 illustrates a cross sectional view of an example of a platform in accordance with the present disclosure.





Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.


DETAILED DESCRIPTION

For purposes of this disclosure, the term “aligned” means parallel, substantially parallel, or forming an angle of less than 35.0 degrees. For purposes of this disclosure, the term “transverse” means perpendicular, substantially perpendicular, or forming an angle between 55.0 and 125.0 degrees. Also, for purposes of this disclosure, the term “length” means the longest dimension of an object. Also, for purposes of this disclosure, the term “width” means the dimension of an object from side to side. For the purposes of this disclosure, the term “above” generally means superjacent, substantially superjacent, or higher than another object although not directly overlying the object. Further, for purposes of this disclosure, the term “mechanical communication” generally refers to components being in direct physical contact with each other or being in indirect physical contact with each other where movement of one component affect the position of the other.


Particularly, with reference to the figures, FIG. 1 depicts an example of a treadmill 100 having a deck 102 with a first pulley disposed in a first portion of the deck 102 and a second pulley incorporated into a second portion of the deck 102. A tread belt 104 surrounds the first pulley and the second pulley. A motor 105 is in mechanical communication with either the first pulley or the second pulley. A cover 106 is superjacent the motor 105. A scale mechanism is incorporated into the deck 102, and a repetition counter 110 is also incorporated into the treadmill.


The treadmill 100 also includes an upright portion 112 that supports a console 114. In this example, the repetition counter 110 is incorporated into the upright portion 112. In this example, the scale mechanism is obscured from view, but is incorporated into the cover 106 near the base of the upright portion 112.


Also incorporated into the treadmill 100 is a free weight rack 116. In this example, a first portion 118 of the free weight rack 116 is connected to a first side 120 of the deck 102, and a second portion 122 of the free weight rack 116 is connected to a second side 124 of the deck 102. The free weight rack 116 may include multiple tiers. In this example, each of the portions of the free weight rack 116 include a first tier 126 and a second tier 128. In some cases, each of the tiers include a cross member that includes features that prevent the free weights from slipping off of the rack. For example, the feature may include a lip, a recess, another type of feature, or combinations thereof.



FIG. 2 depicts an example of a treadmill 200. In this example, the treadmill 200 includes a deck 202, and a tread belt 204 that surrounds a first pulley and second pulley incorporated into the deck 202. A free weight rack 206 is also incorporated into the treadmill 200. In this example, the free weight rack 206 includes a single tier and supports an adjustable dumbbell 208.


A weight scale 210 is incorporated into the deck 202 at a front end 212 of the treadmill 200. In this example, the weight scale 210 is positioned over the motor that drives the first pulley and therefore drives the tread belt 204. As a user stands on the weight scale 210, the weight of the user can be presented in the console 214, in a display incorporated into the weight scale 210, in a mobile device, or in another computing device in communication with the weight scale, or combinations thereof. Additionally, when the user lifts the free weights off of the free weight rack 206, the weight scale measures the combined weight of the user and the free weights. In some cases, the dynamic fluctuation of the weight scale's measurements that occur as the user performs an anaerobic exercise with the free weights is used by the repetition counter to determine how many lifts the user has performed.



FIG. 3 depicts an example of a user 300 performing an anaerobic workout with the free weights 302 on the weight scale 304. In this situation, the dynamic fluctuation of the weight scale's measurements while the user performs lifts with the free weights is used by the repetition counter to determine how many lifts the user has performed. In this example, the amount of weight lifted by the user 300 is depicted in the console 306.



FIG. 4 depicts a cross sectional view of a treadmill 400. In this example, the treadmill 400 includes a deck 402 with a first pulley 403 in a first portion 404 of the deck 402 and a second pulley 406 in a second portion 408 of the deck. A tread belt 410 surrounds the first pulley 403 and the second pulley 406. A motor 412 drives the first pulley 403 to move the tread belt 410. A weight scale 414 is positioned over the motor 412. A rack 416 is attached to the deck 402 adjacent to the weight scale 414. An upright portion 418 of the treadmill 400 is attached to the deck 402, and a console 420 is attached to the upright portion 418.



FIG. 5 depicts an example of a display 500 incorporated into a console of an exercise device. The exercise device may be like the exercise device depicted in the other figures that incorporate a weight scale. In this example, the display includes instructions 502 to perform a certain type of lift, including the weight amount to be lifted and the number of repetitions. The display 500 also includes a repetition counter 504, which presents the number of repetitions that the user has already performed. The display 500 also includes instructions 506 for what the user is to do after the anaerobic exercise is completed. In this case, the instructions includes running on the treadmill for 15 minutes.



FIG. 6 depicts an example of an instruction system 600. In this example, the instruction system 600 includes processing resources 602, such as a processor, and memory resources 604, such as memory. The memory resources 604 may cause the processing resources 602 to carry out functions programmed in the memory resources 604. In this example, the memory resources 604 include an aerobic exercise instructor 606, an anaerobic exercise instructor 608, a weight selector 610, a repetition count instructor 612, a weight verifier 614, a count verifier 616 signature recorder 626, and signature comparer 628. Further, the processing resources 602 may be in communication with a repetition count sensor 618, a scale mechanism 620, a console 622, a speaker 624, platform 630, vibration mechanism 632, vibration isolator 634, and/or combinations thereof.



FIG. 7 depicts an example of a treadmill 700 with a deck 702. The deck 702 includes a first pulley in a first portion 704 and a second pulley in a second portion 706. A tread belt surrounds the first pulley and the second pulley. The treadmill 700 also includes an upright structure 708, and a display 710 connected to the upright structure 708.


The deck 702 also includes a platform 712. The platform 712 includes a vibration mechanism that causes the top surface 714 of the platform 712 to vibrate. Free weights 716, such as dumbbells, kettlebells, or other types of weights, may be positioned adjacent to the top surface 714 to be within a convenient reach of the user. The user may use the weights to perform an anaerobic exercise on the platform. The anaerobic exercise may constitute the entire exercise routine. In other examples, the anaerobic exercise may constitute a portion of the exercise routine. In some cases, the exercise routine includes anaerobic components and aerobic components. The aerobic components of the exercise may include exercises that are performed on the tread belt of the deck.



FIG. 8 is a display 800 that is incorporated into the treadmill. In some examples, the display 800 is incorporated into the upright structure. In yet other examples, the display 800 is incorporated into the deck, such as into the platform.


The display 800 may include a field 802 that depicts different parameters about the user's workout on the platform. For example, the field may depict a vibration amplitude, a time duration of the workout, or a frequency of the vibration. In some cases, just one of the parameters is depicted at a time. In other examples, at least two of the parameters are depicted in the display simultaneously.


An input mechanism 804 may be proximate the display 800. The input mechanism 804 may be a push button, a touch screen input, a level, a dial, a switch, a microphone, another type of input mechanism, or combinations thereof.



FIG. 9 depicts another example of a display 900 incorporated into the treadmill. In this example, the display 900 is connected to the upright structure that is attached to the deck. In this example, the display 900 includes a repetition count 902, a name 904 of the exercise type, an image 906 of the how the exercise type is performed (e.g. visual instructions on performing the exercise type), a heart rate 908, a calorie count 910, and a routine sequence 912. The routine sequence 912 includes the types of exercises that are coming up next in the exercise routine and the number of repetitions to perform. In some examples, the display may include a video segment and an audio segment that describes how the exercise is to be performed.



FIG. 10 depicts an example of a treadmill 1000. In this example, the treadmill 1000 includes a platform 1006 adjacent to the tread belt. The platform 1006 includes a top plate 1008 that is connected to a vibration mechanism 1010. The vibration mechanism 1010, when activated, can vibrate the top plate 1008. Additionally, the platform 1006 may include at least one vibration isolator 1012 that at least mitigates the strength of the vibrations as the vibrations pass from the platform to the other portions of the deck, the upright structure, the display, other components of the treadmill, or combinations thereof. In some examples, the at least one vibration isolator 1012 eliminates vibrations from passing from the platform to the other components of the treadmill.


In this example, the vibration mechanism 1010 includes a camming mechanism where a cam has an eccentric mass. As the eccentric mass rotates about an axle, the rotation generates a vibration in the top plate 1008.



FIG. 11 depicts an example of a treadmill 1100. In this example, at least one vibration isolator 1102 is an active vibration isolator that detects a vibration and then actively imposes a cancelation wave that cancels the vibrations that could be potentially transmitted to the other portions of the treadmill 1100. In this example, the at least one vibration isolator 1102 is attached to components of the treadmill 1100 that are off of the platform's top plate 1104.


General Description

In general, the invention disclosed herein may provide a user with a treadmill that has several advantages over conventional treadmills. The treadmill may include a running deck that has first pulley and a second pulley. A tread belt may surround the first and second pulley. A motor can be attached to either the first or the second pulley so that as the motor rotates its shaft, the connected pulley also rotates which drives movement of the tread belt. In those examples where the treadmill includes just a single motor, the movement of the tread belt drives movement of the other pulley that is not connected to the motor. A user may perform aerobic exercises on the tread belt, such as walking, running, cycling, or another type of aerobic exercise.


The treadmill may also include a platform where the user may perform anaerobic exercises. Free weights or other types of weights that can be used to perform the anaerobic exercises may be positioned on the platform or at least proximate the platform so that the weights are conveniently accessible to the user while standing on the platform. In some cases, the platform includes a top plate on which the user can exercise and at least one weight rack that is separate from the top plate.


In some cases, a free weight rack may be incorporated into the treadmill. In this example, the free weight rack may have a first portion incorporated into a first side of the treadmill and a second portion incorporated into a second side of the treadmill. Each of the portions of the free weight rack may position the free weights within a convenient reach of each of the user's hands. Thus, the free weights may be accessible to the user when the user is on the exercise deck.


For purposes of this disclosure, the term “free weight” refers broadly to free weights that are intended to be used to execute lifts associated with strength training. In some cases, the free weights may be intended to be held in a single hand where free weights for a first hand are positioned in the first portion 118 of the free weight rack 116, and free weights intended for the second hand are positioned in the second portion 122 of the free weight rack 116. These free weights may include dumbbells, kettlebells, balls, adjustable dumbbells, weight plates, Bulgarian bags, other types of weighted bags, barbells, curl bars, other types of free weights, or combinations thereof.


In some cases, the user can work out on the portion of the exercise deck that includes the tread belt. In this example, the user may desire to mix up the anaerobic exercise and aerobic exercise portions of his or her workout. During the anaerobic portions of the workout, the tread belt may be stopped while the user performs the free weight exercises. When the anaerobic portion of the workout is completed, the user may resume the operation of the tread belt to perform an aerobic portion of the workout. In other examples, the user may want to use the free weights while the tread belt is in operation. For example, the user may want to carry dumbbells during a run.


In other examples, the treadmill incorporates a separate area on the exercise deck where the user can perform exercises with the free weights. In some cases, this free weight area may be in the front end of the treadmill proximate the treadmill's upright portion. A console supported by the upright portion can provide information about the user's workout such as the time, distance, and speed at which the user executed the aerobic portions and the anaerobic portions of the workout.


In some examples, the platform includes a vibration mechanism, a weight scale, another feature, or combinations thereof. In examples with the vibration mechanism, the vibration mechanism may be used to vibrate a top plate of the platform. The vibrations may provide multiple benefits. One benefit is that the vibrations cause the user to work harder while performing an anaerobic exercise. The vibrations therefore increase the number of calories burned and stimulate additional stabilization muscles during the anaerobic portion of the workout.


In some examples, the vibration mechanism includes a camming mechanism where a cam has an eccentric mass. As the eccentric mass rotates about an axle, the rotation generates a vibration in the top plate. The eccentric mass may include any appropriate type of shape. While these examples have been described with the vibration mechanism including a camming mechanism, any appropriate type of vibration mechanism may be used in accordance with the principles described in the present disclosure.


The vibrations also provide a benefit for determining at least one parameter of the user's workout. For example, a vibration sensor may be used to measure the vibrations of the top plate when the user is on the top plate to determine the user's weight, the amount of weight being used by the user, the type of exercise being performed by the user, a repetition count of the exercise, another type of exercise, or combinations thereof. In some examples, the vibration sensor may include an accelerometer, a multi-axis accelerometer, a distance sensor, an optical sensor, a laser displacement sensor, a velocity sensor, a capacitance sensor, a proximity probe, a magnet, a piezoelectric device, a potentiometric sensor, a strain gauge, a geophone, another type of sensor, or combinations thereof.


In some examples, the vibration sensor may be used to determine a baseline measurement. The baseline measurement may be the vibrations recorded by the sensor when the plate is vibrating, but the user and other objects are not on the top plate of the platform. In other examples, the baseline measurement may be a vibration signature that was recorded on a different treadmill with a platform. The baseline measurement may have a unique baseline signature that can be compared to other vibration signatures. In some examples, the baseline signature has a consistent amplitude and frequency.


The baseline measurement may be compared to vibration measurements taken when the user is performing an anaerobic exercise on the platform. For instance, when the user is standing on the platform while the platform is vibrating, the vibration signature will be different than the baseline signature. The user's weight affects the signature's amplitude. In those situations where the user is not moving while standing on the vibrating top plate, the signature may also have a consistent amplitude and frequency. The comparison of the vibration signature and the baseline signature can identify the amount of weight on the top plate.


In those situations where the user picks up a free weight, the additional weight of the free weight will further affect the vibration signature. Thus, the vibration signature can identify the combined weight of the user and the free weigh. During the anaerobic portion of the workout, the user will pick up and return the free weights. In those moments where the user is not holding a weight, the vibration signature can be compared with the baseline to determine the user's weight. In some examples, the treadmill may provide instructions for the user to stand still on the vibration plate to determine the user's weight before instructing the user to lift weights. In other examples, the treadmill determines the user's weight by determining the amount of weight on the top plate throughout the exercise routine. As a result, the vibration signature includes moments where the user is holding additional weight and moments where the user is not holding additional weight. In some examples, the treadmill identifies those characteristics of the vibration signature that depict a consistent vibration reading that indicates the lowest weight on the treadmill to determine the user's baseline weight. With the baseline weight, the treadmill can determine the amount of weight being held by the user at any given time during the anaerobic workout.


As the user performs anaerobic exercises on the platform, the user's movements may also affect the vibration signature when the vibration mechanism is active. For example, when the user lifts a weight, the acceleration of the weight's movement may momentarily increase the load on the top plate, which can affect the amplitude of the vibration signature at that moment. This change in the vibration signature may be time stamped and classified as a lift. Each event in the vibration signature with these types of characteristics may also be classified as a lift. To determine the repetition count, the treadmill or processor may count these types of events, such as the number of times when the amplitude changes in the vibration signature. In examples where these events are time stamped, the user's lift rate can be determined.


Additionally, certain movements performed on the top plate may create different patterns in the vibration signature. These patterns may be distinct for certain a types of exercises. As a result, the type of exercise being performed by the user may be distinguished from other types of exercises. For example, performing a military press exercise may generate a different vibration pattern than performing a lung exercise, a curl exercise, a jumping exercise, a push-up exercise, leg lift exercise, a sit-up exercise, another type of exercise, or combinations thereof.


In some examples, the type of exercise is determined by factors other than the vibration signature. In some instances, the treadmill may instruct the user to perform a certain type of exercise. In these examples, the treadmill may determine that the type of exercise instructed to be performed is the exercise being performed by the user. In other examples, a camera is in communication with the treadmill where the user is in the camera's field of view. An analysis may be performed on the footage captured by the camera to determine the type of exercise performed by the user. In yet other examples, the top plate may include a load cell, a scale, a level, or another type of sensor that detects the location of a load on the top plate. While the user may perform many types of exercises in a central region of the top plate, other types of exercises, such as push-ups and sit-ups may load the top plate asymmetrically. This asymmetric loading may be used to determine the exercise type.


While the examples above have been described with reference to how anaerobic exercises affect the amplitude of a vibration signature, the performance of anaerobic exercises may affect the vibration signature in other ways. For example, certain movements on the top plate may generate a different vibration frequency than the vibration frequency imposed by the vibration mechanism. This distinct vibration frequency may increase or decrease the vibration frequency imposed by the vibration mechanism. Additionally, these user imposed vibrations may cause vibrations imposed by the vibration mechanism to cancel, diminish, amplify, or change in another detectable way.


Any appropriate number of vibration sensors may be used in accordance with the principles described in the present disclosure. For example, a vibration sensor may be attached to each corner of the top plate. In other examples, a single sensor is attached to a single side of the top plate. In yet another example, a single sensor is attached to a central region of the top plate. In some cases, the sensor is attached to a top surface of the plate, an underside of the plate, proximate the plate, another location, or combinations thereof. For example, a vibration sensor 1009 may be attached to an underside of the top plate 1008 of the platform 1006 of the treadmill 1000 of FIG. 10.


Further, in some cases, no vibration mechanism is used to impose a vibration on the top plate. The user's movements while performing the anaerobic exercise may generate vibrations in the top plate that can determine parameters about the user's workout, such as the amount of weight added, the type of exercise being performed, the repetition count of the exercise, another type of parameter of the exercise, or combinations thereof.


In some examples, a display is connected to the treadmill. In some instances, the display may provide information, including information about instructions to the user on which exercise to perform, how to perform each exercise, the repetition count, other information relating the anaerobic portion of the workout, or combinations thereof.


The treadmill may also be in communication with a remote device over a network, such as the internet. The user may access the records of his or her exercise history, previous workouts, exercise recommendation, personal information, or combinations thereof. The remote device may record the workout information and/or the physiological information associated with the workout. An example of a user program that may be compatible with the principles described herein can be found at www.ifit.com, which is administered through Icon Health and Fitness, Inc. located in Logan, Utah, U.S.A.


In some examples, the top plate is vibrationally isolated from other components of the treadmill. Vibration isolators may be used to cancel, reduce, and/or eliminate vibrations from the top plate to other portions of the treadmill. In those examples where the platform is included in a rear portion of the treadmill, the vibration isolators may cancel, reduce, and/or eliminate vibrations from passing from the platform into the rear portion of the treadmill, which also protects the front portion of the treadmill, including the upright structure, and the display and other electronics attached to the upright structure, from the vibrations. Further, in those examples where the platform is located in a front portion of the treadmill, the vibration isolators may protect the front portion, which protects the rear portion, and protect the upright structure from the platform's vibrations.


A passive vibration isolator may be used to reduce and/or eliminate vibrations from passing to other components of the treadmill. In some examples, the passive vibration isolators may include an elastomeric material that connects the top plate and/or the platform to other components of the treadmill. The elastomeric material may include rubber.


Another type of passive vibration isolator may include pneumatic, air, or hydraulic bladder, canister, or other types of containers. These bladders or canister may include a compressed air and/or liquid. In some cases, the pressure is maintained with a source that continuously feeds the bladder and/canister. In some examples, the passive isolator may include an air spring in the form of a rubber bladder which provides damping.


In other examples, the isolators may include mechanical springs and/or spring-dampers. Pads or sheets of flexible materials such as elastomers, rubber, cork, dense foam, laminate materials, other types of material, or combinations thereof may also be used as vibration isolators. Elastomer pads, dense closed cell foams, laminate materials, molded and bonded rubber, elastomeric isolators and mounts, or combinations thereof may also be used. In some cases, the isolators are made of layers of neoprene and steel with a low horizontal stiffness.


In some cases, the vibration isolators are active isolators that impose a vibration that reduces and/or cancels the vibrations from the vibration mechanism or from the vibrations generated by the user's workout on the top plate. The active vibration isolators may include a spring, a feedback circuit which includes a sensor, a controller, and an actuator. The vibration from the top plate is processed to determine the characteristics of the top plate. The characteristics of the vibration are fed to the actuator to produce another vibration that either reduces and/or cancels the vibrations from the top plate. The sensors may be positioned on a component of the treadmill or the platform that is connected to the top plate. In some examples, the active isolators may impose the canceling vibrations to components connected to the top plate, but not to the actual top plate. Further, in some examples, a combination of passive isolators and active isolators are used. The passive isolators may be used to reduce the vibrations that travel from the top plate to the other treadmill components, and the active isolators may be attached to the treadmill components that are intended to be vibration free.


The vibration isolators may be used to extend the life of the other treadmill components. For example, the vibration isolators may insulate and/or isolate the display, upright structure, pulleys in the deck, the tread belt, processors, memory, electronics, other components, or combinations thereof.


In some cases, the platform may include a weight scale. The weight scale may be large enough to allow the user to stand and/or exercise on the weight scale. One advantage to working out on a platform with a weight scale is that as the user performs certain types of exercises, like thrusting free weights over his head, the load felt by the weight scale changes. Detecting this change can be used to determine when and if the user actually performed the overhead lift. For example, in situations where the dumbbells are thrust over the user's head, the scale may measure an increased amount of weight. The processing resources in communication with the weight scale may associate a time stamp with the measured increase. Thus, the processing resources can determine statistics about the user's workout (e.g. how long the user executed the workout, how long between each repetition, start times, end times, and so forth).


The weight scale can also determine how much weight the user is using during the workout. For example, the weight scale can determine the weight of the user when the user is standing on the scale without holding weights. When the user picks up free weights, the weight scale can subtract the user's body weight from the total weight being measured. The difference between the total weight and the user's body weight can be determined to be the weight amount the user is holding.


Exercising on the scale can provide inputs for determining how many repetitions the user performed. For example, the weight scale may recognize weight fluctuation patterns that are characteristic of the user lifting or lowering free weights. As these patterns are recognized, the weight scale may cause a repetition counter to increment by one when a lift pattern is recognized.


The weight scale may include any appropriate type of measuring mechanism. In some examples, the weight scale includes a piezoelectric material that changes its electrical properties in response to a mechanical load. In other examples, the weight scale may include a magnetostrictive material that changes its magnetic properties in response the mechanical load. In yet other examples, the weight scale may also include a spring mechanism, a strain gauge, a hydraulic mechanism, a pneumatic mechanism, another type of measuring mechanism, or combinations thereof.


In some cases, the tread belt passes over the region of the treadmill deck that contains the weight scale. In this example, the treadmill can determine when the user is holding weight while standing on the tread belt, like in situations where the user is carrying free weights during a walk or run. In response to determining that the user is carrying free weights during a walk or run, the treadmill can increase the calorie burn count.


In some situations, the treadmill guides the user with a programmed workout. In some cases, the programmed workout alters the tread belt's speed, the incline of the deck, and other factors affecting the aerobic portion of the workout. Additionally, the programmed workout may include anaerobic portions as well. In these instances, the programmed workout may instruct the user to perform certain types of lifts with the free weights. In some cases, the programmed workout may select the amount of weight that the user is to lift. In embodiments where the free weight rack includes an adjustable dumbbell, the treadmill may cause the adjustable dumbbell to select the amount of weight prescribed by the programmed workout. In other instances, the treadmill may allow the user to select the amount of weight to lift even if the programmed workout instructs the user to lift a predetermined amount.


The predetermined weight amount recommended in the programmed workout may be based on information about the user. This information may be derived from history compiled with fitness trackers, previous workouts on the treadmill, age information, height information, body composition information, gender information, other types of personal information, or combinations thereof. In some instances, the treadmill is in communication with a remote computing device that contains a user profile detailing fitness information about the user. The treadmill or a remote computing device may also take into consideration the user's fitness goals when selecting the type of lifts to perform, the amount of weight to perform with the lifts, and the number of repetitions.


The weight scale can be used to determine if the user selected the recommended weight amount. In those situations where the user selected a different weight amount than the recommended amount, the programmed workout can alter an aspect of the workout. For example, if the user selected a weight amount that is heavier than the recommended amount, the programmed workout can reduce the number of repetitions that the user is instructed to lift. Further, the calorie burn count can also be adjustable based on the weight amount that the user actually selects instead of the weight amount instructed by the programmed workout.


The weight scale can also be used to verify that the user performs the number of recommended lifts. In this example, the weight scale can cause a repetition counter to increment by one when the weight scale detects a weight fluctuation pattern characteristic of performing a lift. In some examples, a separate repetition counter is used to determine the number of repetitions performed by the user. For example, an optical camera can be incorporated into the treadmill's upright structure. The optical camera can record and analyze information to determine the number of lifts performed by the user and, in some instances, whether the user performed the type of lift instructed by the programmed workout.


In some cases, the programmed workout's instructions can be presented to the user through a display in the console. The programmed workout can present the number of lifts to perform, the type of lifts to perform, the next type of exercise to perform, and so forth. In some case, the display screen can instruct the user on how to perform the lift. For instance, the programmed workout may instruct the user to perform negatives by lifting up quickly and lowering the weight slowly, or the programmed workout may instruct the user to perform the same type of lift by lifting up and lowering the weight at the same rate. In other examples, a speaker may be used to audibly instruct the user about the programmed workout.


Information relating to both the anaerobic and aerobic portions of the workout can be present to the user. For instance, the repetition count may be presented in the display, the calories burned during the workout may be presented in the display, the user's heart rate or other physiological parameters be presented in the display, and so forth.


In some case, the treadmill is in communication with a remote device, and the information recorded about the workout is sent to the remote device. In one instance, the information is sent to the user's mobile device and the user follows the workout with his or her mobile device.


The instruction system for instructing the user about the workout may include a combination of hardware and programmed instructions for executing the functions of the instruction system. The instruction system may include processing resources that are in communication with memory resources. Processing resources include at least one processor and other resources used to process the programmed instructions. As described herein, the memory resources may represent generally any memory capable of storing data such as programmed instructions or data structures used by the instruction system.


The processing resources may include I/O resources that are capable of being in communication with a remote device that stores user information, workout history, external resources, databases, or combinations thereof. The remote device may be a mobile device, a cloud based device, a computing device, another type of device, or combinations thereof. In some examples, the instruction system communicates with the remote device through a mobile device which relays communications between the instruction system and the remote device. In other examples, the mobile device has access to information about the user. The remote device may collect information about the user throughout the day, such as tracking calories, exercise, activity level, sleep, other types of information, or combination thereof.


The remote device may execute a program that can provide useful information to the instruction system. An example of a program that may be compatible with the principles described herein includes the iFit program which is available through www.ifit.com identified above. An example of a program that may be compatible with the principles described in this disclosure is described in U.S. Pat. No. 7,980,996 issued to Paul Hickman. U.S. Pat. No. 7,980,996 is herein incorporated by reference for all that it discloses. In some examples, user information accessible through the remote device includes the user's age, gender, body composition, height, weight, health conditions, other types of information, or combinations thereof.


The processing resources, memory resources, and remote devices may communicate over any appropriate network and/or protocol through the input/output resources. In some examples, the input/output resources includes a transmitter, a receiver, a transceiver, or another communication device for wired and/or wireless communications. For example, these devices may be capable of communicating using the ZigBee protocol, Z-Wave protocol, BlueTooth protocol, Wi-Fi protocol, Global System for Mobile Communications (GSM) standard, another standard, or combinations thereof. In other examples, the user can directly input some information into the instruction system through a digital input/output mechanism, a mechanical input/output mechanism, another type of mechanism, or combinations thereof.


The memory resources may include a computer readable storage medium that contains computer readable program code to cause tasks to be executed by the processing resources. The computer readable storage medium may be a tangible and/or non-transitory storage medium. The computer readable storage medium may be any appropriate storage medium that is not a transmission storage medium. A non-exhaustive list of computer readable storage medium types includes non-volatile memory, volatile memory, random access memory, write only memory, flash memory, electrically erasable program read only memory, magnetic based memory, other types of memory, or combinations thereof.


The memory resources may include instructions for simulating an aerobic exercise instructor that represent programmed instructions that, when executed, cause the processing resources to control the aerobic portion of the user's workout. The aerobic exercise may include, but is not limited to, walking, running, shuffling, skipping, biking, jumping, or otherwise moving while the tread belt is in operation. The aerobic exercise instructor may control the speed of the tread belt based on the user's heart rate or other physiological readings, the user's goals, programmed workouts, inputs from the user, or combinations thereof.


The memory resources may also include instructions for simulating an anaerobic exercise instructor that represent programmed instructions that, when executed, cause the processing resources to control the anaerobic portions of the user's workout. The anaerobic exercise instructor may instruct the user to perform lifts, perform a number of repetitions, perform a type of lift, perform other aspects of the anaerobic portion of the workout, perform other aspects of the workout, or combinations thereof.


The memory resources may also include a weight selector that represents programmed instructions that, when executed, cause the processing resources to select the amount of weight to lift. In one embodiment, the free weights include an adjustable dumbbell, and a selector is incorporated into the rack. The selector adjusts the dumbbell so that the desired amount of weight is automatically attached to the dumbbell's handle, and the user does not have to make the adjustment manually.


The repetition count instructor represents programmed instructions that, when executed, cause the processing resources to instruct the user to perform a number of lifts. The lift number may be presented to the user through a display, through a speaker, another mechanism, or combinations thereof.


The weight verifier represents programmed instructions that, when executed, cause the processing resources to verify that the user is lifting the weight. In some cases, the weight verifier also verifies that the user is lifting the amount of weight instructed by the instruction system.


The counter verifier represents programmed instructions that, when executed, cause the processing resources to verify that the user is performing the instructed number of lifts. This count verification may be based on images captured with an optical sensor, the fluctuations measured at the weight scale, another type of sensor, or combinations thereof. The count verification may be presented in a console or display integrated into the treadmill, a mobile device in communication with the treadmill, a remote device in communication with the treadmill, or combinations thereof.


The vibration recorder represents programmed instructions that, when executed, cause the processing resources to record vibrations imposed from the top plate. The vibrations may be imposed by the vibration mechanism or by the movements of the user. In some cases, the vibration recorder records the vibrations when no one is on the top plate. This recorded vibration may become a baseline signature to which other vibrations signatures are compared to. The recorder may also record the vibrations of the top plate when a user is standing on the top plate of the platform or otherwise performing exercises on the top plate.


The vibration comparer represents programmed instructions that, when executed, cause the processing resources to compare baseline signature with the vibration signatures taken when the user is on the plate or performing movements on the plate. Based on the characteristics of the vibration signatures the processor may determine the weight of the user, the amount of weight used by the user, the type of exercise performed by the user, the number of repetitions performed by the user, other characteristics about the user's workout, or combinations thereof.


Further, the memory resources may be part of an installation package. In response to installing the installation package, the programmed instructions of the memory resources may be downloaded from the installation package's source, such as a portable medium, a server, a remote network location, another location, or combinations thereof. Portable memory media that are compatible with the principles described herein include DVDs, CDs, flash memory, portable disks, magnetic disks, optical disks, other forms of portable memory, or combinations thereof. In other examples, the program instructions are already installed. Here, the memory resources can include integrated memory such as a hard drive, a solid state hard drive, or the like.


In some examples, the processing resources and the memory resources are located within the treadmill, the adjustable dumbbell, the mobile device, an external device, another type of device, or combinations thereof. The memory resources may be part of any of these device's main memory, caches, registers, non-volatile memory, or elsewhere in their memory hierarchy. Alternatively, the memory resources may be in communication with the processing resources over a network. Further, data structures, such as libraries or databases containing user and/or workout information, may be accessed from a remote location over a network connection while the programmed instructions are located locally.

Claims
  • 1. A treadmill comprising: a deck;a first pulley disposed in the deck;a second pulley disposed in the deck;a tread belt surrounding the first pulley and the second pulley;an electronic sensor incorporated into the treadmill and configured to automatically produce measurement data in response to exercise movement performed by a user over the deck;an electronic console including an electronic display;a processor; anda memory including programmed instructions that, when executed, cause the processor to: automatically analyze the measurement data produced by the electronic sensor to automatically determine a characteristic of the exercise movement performed by the user over the deck, wherein determining the characteristic includes determining a type of exercise performed by the user over the deck; andautomatically present, on the electronic display, an indication of the characteristic of the exercise movement performed by the user over the deck.
  • 2. The treadmill of claim 1, wherein the characteristic of the exercise movement performed by the user over the deck includes a repetition count in the exercise movement performed by the user over the deck.
  • 3. The treadmill of claim 2, wherein the repetition count is of a weight lifting exercise movement.
  • 4. The treadmill of claim 2, wherein the repetition count is of a military press exercise movement.
  • 5. The treadmill of claim 2, wherein the repetition count is of a curl exercise movement.
  • 6. The treadmill of claim 2, wherein the repetition count is of a jumping exercise movement.
  • 7. The treadmill of claim 2, wherein the repetition count is of a push-up exercise movement.
  • 8. The treadmill of claim 2, wherein the repetition count is of a leg lift exercise movement.
  • 9. The treadmill of claim 2, wherein the repetition count is of a sit-up exercise movement.
  • 10. The treadmill of claim 1, wherein the type of exercise is at least one of a weight lifting exercise, a military press exercise, a curl exercise, a jumping exercise, a push-up exercise, a leg lift exercise, or a sit-up exercise.
  • 11. The treadmill of claim 1, wherein the electronic sensor is an accelerometer.
  • 12. The treadmill of claim 1, wherein the electronic sensor is an optical sensor.
  • 13. The treadmill of claim 1, wherein the electronic sensor is a laser displacement sensor.
  • 14. The treadmill of claim 1, wherein the electronic sensor is a camera.
  • 15. The treadmill of claim 1, wherein the electronic sensor is a capacitance sensor.
  • 16. The treadmill of claim 1, wherein the electronic sensor is a strain gauge.
  • 17. The treadmill of claim 1, wherein the electronic sensor is a geophone.
  • 18. The treadmill of claim 1, wherein the electronic sensor is incorporated into the electronic console.
  • 19. The treadmill of claim 1, wherein the electronic sensor is incorporated into the deck.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/378,022, filed on Apr. 8, 2019, which is a continuation of U.S. patent application Ser. No. 15/461,246, filed on Mar. 16, 2017, now U.S. Pat. No. 10,252,109, which claims priority to U.S. Provisional Patent Application No. 62/336,567, filed on May 13, 2016. Each of these applications is incorporated herein by reference in its entirety.

US Referenced Citations (705)
Number Name Date Kind
3123646 Easton Mar 1964 A
3579339 Du Pont May 1971 A
4023795 Pauls May 1977 A
4300760 Bobroff Nov 1981 A
4413821 Centafanti Nov 1983 A
D286311 Martinell et al. Oct 1986 S
4681318 Lay Jul 1987 A
4684126 Dalebout et al. Aug 1987 A
4705028 Melby Nov 1987 A
4728102 Pauls Mar 1988 A
4750736 Watterson Jun 1988 A
4796881 Watterson Jan 1989 A
4813667 Watterson Mar 1989 A
4830371 Lay May 1989 A
4844451 Bersonnet et al. Jul 1989 A
4850585 Dalebout Jul 1989 A
D304849 Watterson Nov 1989 S
4880225 Lucas et al. Nov 1989 A
4883272 Lay Nov 1989 A
D306468 Waterson Mar 1990 S
D306891 Watterson Mar 1990 S
4913396 Dalebout et al. Apr 1990 A
D307614 Bingham et al. May 1990 S
D307615 Bingham et al. May 1990 S
4921242 Watterson May 1990 A
4932650 Bingham et al. Jun 1990 A
D309167 Griffin Jul 1990 S
D309485 Bingham et al. Jul 1990 S
4938478 Lay Jul 1990 A
D310253 Bersonnet et al. Aug 1990 S
4955599 Bersonnet et al. Sep 1990 A
4971316 Dalebout et al. Nov 1990 A
D313055 Watterson Dec 1990 S
4974832 Dalebout Dec 1990 A
4979737 Kock Dec 1990 A
4981294 Dalebout et al. Jan 1991 A
D315765 Measom et al. Mar 1991 S
4998725 Watterson et al. Mar 1991 A
5000442 Dalebout et al. Mar 1991 A
5000443 Dalebout et al. Mar 1991 A
5000444 Dalebout et al. Mar 1991 A
D316124 Dalebout et al. Apr 1991 S
5013033 Watterson et al. May 1991 A
5014980 Bersonnet et al. May 1991 A
5016871 Dalebout et al. May 1991 A
D318085 Jacobson et al. Jul 1991 S
D318086 Bingham et al. Jul 1991 S
D318699 Jacobson et al. Jul 1991 S
5029801 Dalebout et al. Jul 1991 A
5034576 Dalebout et al. Jul 1991 A
5058881 Measom Oct 1991 A
5058882 Dalebout et al. Oct 1991 A
D321388 Dalebout Nov 1991 S
5062626 Dalebout et al. Nov 1991 A
5062627 Bingham Nov 1991 A
5062632 Dalebout et al. Nov 1991 A
5062633 Engel et al. Nov 1991 A
5067710 Watterson et al. Nov 1991 A
5072929 Peterson et al. Dec 1991 A
D323009 Dalebout et al. Jan 1992 S
D323198 Dalebout et al. Jan 1992 S
D323199 Dalebout et al. Jan 1992 S
D323863 Watterson Feb 1992 S
5088729 Dalebout Feb 1992 A
5090694 Pauls et al. Feb 1992 A
5102380 Jacobson et al. Apr 1992 A
5104120 Watterson et al. Apr 1992 A
5108093 Watterson Apr 1992 A
D326491 Dalebout May 1992 S
5122105 Engel et al. Jun 1992 A
5135216 Bingham et al. Aug 1992 A
5135458 Huang Aug 1992 A
5147265 Pauls et al. Sep 1992 A
5149084 Dalebout et al. Sep 1992 A
5149312 Croft et al. Sep 1992 A
5158520 Lemke Oct 1992 A
5171196 Lynch Dec 1992 A
D332347 Raadt et al. Jan 1993 S
5190505 Dalebout et al. Mar 1993 A
5192255 Dalebout et al. Mar 1993 A
5195937 Engel et al. Mar 1993 A
5203826 Dalebout Apr 1993 A
D335511 Engel et al. May 1993 S
D335905 Cutter et al. May 1993 S
D336498 Engel et al. Jun 1993 S
5217487 Engel et al. Jun 1993 A
D337361 Engel et al. Jul 1993 S
D337666 Peterson et al. Jul 1993 S
D337799 Cutter et al. Jul 1993 S
5226866 Engel et al. Jul 1993 A
5242339 Thornton Sep 1993 A
5244446 Engel et al. Sep 1993 A
5247853 Dalebout Sep 1993 A
5259611 Dalebout et al. Nov 1993 A
D342106 Campbell et al. Dec 1993 S
5279528 Dalebout et al. Jan 1994 A
D344112 Smith Feb 1994 S
D344557 Ashby Feb 1994 S
5282776 Dalebout Feb 1994 A
5295931 Dreibelbis et al. Mar 1994 A
5302161 Loubert et al. Apr 1994 A
D347251 Dreibelbis et al. May 1994 S
5316534 Dalebout et al. May 1994 A
5318491 Houston Jun 1994 A
D348493 Ashby Jul 1994 S
D348494 Ashby Jul 1994 S
5328164 Soga Jul 1994 A
D349931 Bostic et al. Aug 1994 S
5336142 Dalebout et al. Aug 1994 A
5344376 Bostic et al. Sep 1994 A
D351202 Bingham Oct 1994 S
D351435 Peterson et al. Oct 1994 S
D351633 Bingham Oct 1994 S
D352534 Dreibelbis et al. Nov 1994 S
D353422 Bostic et al. Dec 1994 S
5372559 Dalebout et al. Dec 1994 A
5374228 Buisman et al. Dec 1994 A
5382221 Hsu et al. Jan 1995 A
5385520 Lepine Jan 1995 A
5387168 Bostic Feb 1995 A
5393690 Fu et al. Feb 1995 A
D356128 Smith et al. Mar 1995 S
5409435 Daniels Apr 1995 A
5429563 Engel et al. Jul 1995 A
5431612 Holden Jul 1995 A
D360915 Bostic et al. Aug 1995 S
5468205 McFall et al. Nov 1995 A
5489249 Brewer et al. Feb 1996 A
5492517 Bostic et al. Feb 1996 A
D367689 Wilkinson et al. Mar 1996 S
5511740 Loubert et al. Apr 1996 A
5512025 Dalebout et al. Apr 1996 A
D370949 Furner Jun 1996 S
D371176 Furner Jun 1996 S
5527245 Dalebout et al. Jun 1996 A
5529553 Finlayson Jun 1996 A
5540429 Dalebout et al. Jul 1996 A
5549533 Olson et al. Aug 1996 A
5554085 Dalebout Sep 1996 A
5562285 Anfinsen Oct 1996 A
5569128 Dalebout Oct 1996 A
5591105 Dalebout et al. Jan 1997 A
5591106 Dalebout et al. Jan 1997 A
5595556 Dalebout et al. Jan 1997 A
5607375 Dalebout Mar 1997 A
5611539 Watterson Mar 1997 A
5622527 Watterson et al. Apr 1997 A
5626538 Dalebout et al. May 1997 A
5626540 Hall May 1997 A
5626542 Dalebout et al. May 1997 A
D380024 Novak et al. Jun 1997 S
5637059 Dalebout Jun 1997 A
D380509 Wilkinson et al. Jul 1997 S
5643153 Nylen et al. Jul 1997 A
5645509 Brewer et al. Jul 1997 A
D384118 Deblauw Sep 1997 S
5662557 Watterson et al. Sep 1997 A
5667461 Hall Sep 1997 A
5669857 Watterson et al. Sep 1997 A
5672140 Watterson et al. Sep 1997 A
5674156 Watterson et al. Oct 1997 A
5674453 Watterson et al. Oct 1997 A
5676624 Watterson et al. Oct 1997 A
5683331 Dalebout Nov 1997 A
5683332 Watterson et al. Nov 1997 A
D387825 Fleck et al. Dec 1997 S
5695433 Buisman Dec 1997 A
5695434 Dalebout et al. Dec 1997 A
5695435 Watterson et al. Dec 1997 A
5702325 Watterson et al. Dec 1997 A
5704879 Watterson et al. Jan 1998 A
5718657 Dalebout et al. Feb 1998 A
5720200 Anderson et al. Feb 1998 A
5720698 Dalebout et al. Feb 1998 A
D392006 Dalebout et al. Mar 1998 S
5722922 Watterson et al. Mar 1998 A
5733229 Dalebout et al. Mar 1998 A
5743833 Watterson et al. Apr 1998 A
5762584 Daniels Jun 1998 A
5762587 Dalebout et al. Jun 1998 A
5772560 Watterson et al. Jun 1998 A
5810698 Hullett et al. Sep 1998 A
5827155 Jensen Oct 1998 A
5830114 Halfen et al. Nov 1998 A
5860893 Watterson et al. Jan 1999 A
5860894 Dalebout et al. Jan 1999 A
5899834 Dalebout et al. May 1999 A
5921892 Easton Jul 1999 A
D412953 Armstrong Aug 1999 S
D413948 Dalebout Sep 1999 S
5951441 Dalebout Sep 1999 A
5951448 Bolland Sep 1999 A
5951449 Oppriecht Sep 1999 A
D416596 Armstrong Nov 1999 S
6003166 Hald et al. Dec 1999 A
6019710 Dalebout et al. Feb 2000 A
6027429 Daniels Feb 2000 A
6033347 Dalebout et al. Mar 2000 A
D425940 Halfen et al. May 2000 S
6059692 Hickman May 2000 A
D428949 Simonson Aug 2000 S
6113519 Goto Sep 2000 A
6123646 Colassi Sep 2000 A
6171217 Cutler Jan 2001 B1
6171219 Simonson Jan 2001 B1
6174267 Dalebout Jan 2001 B1
6193631 Hickman Feb 2001 B1
6228003 Hald et al. May 2001 B1
6238323 Simonson May 2001 B1
6251052 Simonson Jun 2001 B1
6261022 Dalebout et al. Jul 2001 B1
6280362 Dalebout et al. Aug 2001 B1
6296594 Simonson Oct 2001 B1
D450872 Dalebout et al. Nov 2001 S
6312363 Watterson et al. Nov 2001 B1
D452338 Dalebout et al. Dec 2001 S
D453543 Cutler Feb 2002 S
D453948 Cutler Feb 2002 S
6350218 Dalebout et al. Feb 2002 B1
6387020 Simonson May 2002 B1
6413191 Harris et al. Jul 2002 B1
6422980 Simonson Jul 2002 B1
6447424 Ashby et al. Sep 2002 B1
6458060 Watterson et al. Oct 2002 B1
6458061 Simonson Oct 2002 B2
6471622 Hammer et al. Oct 2002 B1
6506142 Itoh Jan 2003 B2
6527678 Wang Mar 2003 B1
6547698 Inagawa Apr 2003 B2
6563225 Soga et al. May 2003 B2
6601016 Brown et al. Jul 2003 B1
6623140 Watterson Sep 2003 B2
6626799 Watterson et al. Sep 2003 B2
6652424 Dalebout Nov 2003 B2
6685607 Olson Feb 2004 B1
6695581 Wasson et al. Feb 2004 B2
6701271 Willner et al. Mar 2004 B2
6702719 Brown et al. Mar 2004 B1
6712740 Simonson Mar 2004 B2
6719667 Wong Apr 2004 B2
6730002 Hald et al. May 2004 B2
6743153 Watterson et al. Jun 2004 B2
6746371 Brown et al. Jun 2004 B1
6749537 Hickman Jun 2004 B1
6761667 Cutler et al. Jul 2004 B1
6770015 Simonson Aug 2004 B2
6783482 Oglesby Aug 2004 B2
6786852 Watterson et al. Sep 2004 B2
6796925 Martinez Sep 2004 B2
6808472 Hickman Oct 2004 B1
6821230 Dalebout et al. Nov 2004 B2
6830540 Watterson Dec 2004 B2
6863641 Brown et al. Mar 2005 B1
6866613 Brown et al. Mar 2005 B1
6875160 Watterson et al. Apr 2005 B2
6878101 Colley Apr 2005 B2
D507311 Butler et al. Jul 2005 S
6918858 Watterson et al. Jul 2005 B2
6921351 Hickman et al. Jul 2005 B1
6974404 Watterson et al. Dec 2005 B1
6997852 Watterson et al. Feb 2006 B2
7025713 Dalebout Apr 2006 B2
D520085 Willardson et al. May 2006 S
7044897 Myers et al. May 2006 B2
7052442 Watterson May 2006 B2
7060006 Watterson et al. Jun 2006 B1
7060008 Watterson et al. Jun 2006 B2
7070539 Brown et al. Jul 2006 B2
7070542 Reyes Jul 2006 B2
7097588 Watterson Aug 2006 B2
D527776 Willardson et al. Sep 2006 S
7112168 Dalebout et al. Sep 2006 B2
7125369 Endelman Oct 2006 B2
7128693 Brown et al. Oct 2006 B2
7132939 Tyndall Nov 2006 B2
7153240 Wu Dec 2006 B1
7166062 Watterson et al. Jan 2007 B1
7166064 Watterson et al. Jan 2007 B2
7169087 Ercanbrack et al. Jan 2007 B2
7169093 Simonson et al. Jan 2007 B2
7172536 Liu Feb 2007 B2
7192387 Mendel Mar 2007 B2
7192388 Dalebout et al. Mar 2007 B2
7250022 Dalebout Jul 2007 B2
7282016 Simonson Oct 2007 B2
7285075 Cutler et al. Oct 2007 B2
7344481 Watterson et al. Mar 2008 B2
7377882 Watterson May 2008 B2
7425188 Ercanbrack Sep 2008 B2
7429236 Dalebout et al. Sep 2008 B2
7452311 Barnes Nov 2008 B2
7455622 Watterson et al. Nov 2008 B2
7470219 Larson Dec 2008 B2
7482050 Olson Jan 2009 B2
D588655 Utykanski Mar 2009 S
7510509 Hickman Mar 2009 B2
7537546 Watterson et al. May 2009 B2
7537549 Nelson et al. May 2009 B2
7537552 Dalebout et al. May 2009 B2
7540828 Watterson et al. Jun 2009 B2
7549947 Watterson et al. Jun 2009 B2
7556590 Watterson et al. Jul 2009 B2
7563203 Dalebout et al. Jul 2009 B2
7575536 Hickman Aug 2009 B1
7578771 Towley, III et al. Aug 2009 B1
7601105 Gipson, III et al. Oct 2009 B1
7604573 Dalebout et al. Oct 2009 B2
D604373 Dalebout et al. Nov 2009 S
7618350 Dalebout et al. Nov 2009 B2
7618357 Dalebout Nov 2009 B2
7625315 Hickman Dec 2009 B2
7625321 Simonson et al. Dec 2009 B2
7628730 Watterson et al. Dec 2009 B1
7628737 Kowallis et al. Dec 2009 B2
7637847 Hickman Dec 2009 B1
7645212 Ashby et al. Jan 2010 B2
7645213 Watterson Jan 2010 B2
7658698 Pacheco et al. Feb 2010 B2
7674205 Dalebout et al. Mar 2010 B2
7713171 Hickman May 2010 B1
7713172 Watterson et al. May 2010 B2
7713180 Wickens May 2010 B2
7717828 Simonson et al. May 2010 B2
7736279 Dalebout et al. Jun 2010 B2
7740563 Dalebout et al. Jun 2010 B2
7749144 Hammer Jul 2010 B2
7766797 Dalebout Aug 2010 B2
7771320 Riley Aug 2010 B2
7771329 Dalebout et al. Aug 2010 B2
7775936 Wilkinson Aug 2010 B2
7775940 Dalebout et al. Aug 2010 B2
7789800 Watterson et al. Sep 2010 B1
7798946 Dalebout et al. Sep 2010 B2
7806589 Tashman Oct 2010 B2
7815548 Barre Oct 2010 B2
7815550 Watterson et al. Oct 2010 B2
7857731 Hickman et al. Dec 2010 B2
7862475 Watterson Jan 2011 B2
7862478 Watterson et al. Jan 2011 B2
7862483 Hendrickson et al. Jan 2011 B2
7862489 Savsek Jan 2011 B2
7887470 Chen Feb 2011 B2
D635207 Dalebout et al. Mar 2011 S
7901324 Kodama Mar 2011 B2
7901330 Dalebout et al. Mar 2011 B2
7909740 Dalebout et al. Mar 2011 B2
7980996 Hickman Jul 2011 B2
7981000 Watterson et al. Jul 2011 B2
7985164 Ashby Jul 2011 B2
8007409 Ellis Aug 2011 B2
8029415 Ashby et al. Oct 2011 B2
8033960 Dalebout et al. Oct 2011 B1
D650451 Olson et al. Dec 2011 S
8075453 Wilkinson Dec 2011 B1
D652877 Dalebout et al. Jan 2012 S
8152702 Pacheco Apr 2012 B2
8157708 Daly Apr 2012 B2
D659775 Olson et al. May 2012 S
D659777 Watterson et al. May 2012 S
D660383 Watterson et al. May 2012 S
D664613 Dalebout et al. Jul 2012 S
8251874 Ashby et al. Aug 2012 B2
8257232 Albert Sep 2012 B2
8298123 Hickman Oct 2012 B2
8298125 Coiledge et al. Oct 2012 B2
D671177 Sip Nov 2012 S
D671178 Sip Nov 2012 S
8308618 Bayerlein Nov 2012 B2
D673626 Olson et al. Jan 2013 S
8568278 Riley Oct 2013 B2
8608624 Shabodyash Dec 2013 B2
8690735 Watterson et al. Apr 2014 B2
D707763 Cutler Jun 2014 S
8740753 Olson et al. Jun 2014 B2
8747285 Hof Jun 2014 B2
8758201 Ashby et al. Jun 2014 B2
8771153 Dalebout et al. Jul 2014 B2
8784270 Watterson Jul 2014 B2
8784275 Mikan Jul 2014 B2
8784278 Flake Jul 2014 B2
8808148 Watterson Aug 2014 B2
8814762 Butler Aug 2014 B2
D712493 Ercanbrack et al. Sep 2014 S
8840075 Olson Sep 2014 B2
8845493 Watterson et al. Sep 2014 B2
8870726 Watterson et al. Oct 2014 B2
8876668 Hendrickson et al. Nov 2014 B2
8894549 Colledge Nov 2014 B2
8894555 Olson Nov 2014 B2
8911330 Watterson et al. Dec 2014 B2
8920288 Dalebout Dec 2014 B2
8920347 Bayerlein Dec 2014 B2
8979709 Toback Mar 2015 B2
8986165 Ashby Mar 2015 B2
8992364 Law et al. Mar 2015 B2
8992387 Watterson et al. Mar 2015 B2
D726476 Ercanbrack Apr 2015 S
9028368 Ashby et al. May 2015 B2
9028370 Watterson May 2015 B2
9039578 Dalebout May 2015 B2
D731011 Buchanan Jun 2015 S
9072930 Ashby et al. Jul 2015 B2
9119983 Rhea Sep 2015 B2
9119988 Murray Sep 2015 B2
9123317 Watterson et al. Sep 2015 B2
9126071 Smith Sep 2015 B2
9126072 Watterson Sep 2015 B2
9138615 Olson et al. Sep 2015 B2
9142139 Watterson et al. Sep 2015 B2
9144703 Dalebout et al. Sep 2015 B2
9149683 Smith Sep 2015 B2
9186535 Ercanbrack Nov 2015 B2
9186549 Watterson et al. Nov 2015 B2
9186552 Deal Nov 2015 B1
9227101 Maguire Jan 2016 B2
9233272 Villani Jan 2016 B2
9254416 Ashby Feb 2016 B2
9278248 Tyger Mar 2016 B2
9278249 Watterson Mar 2016 B2
9278250 Buchanan Mar 2016 B2
9289648 Watterson Mar 2016 B2
9292935 Koduri et al. Mar 2016 B2
9308417 Grundy Apr 2016 B2
9339683 Dilli May 2016 B2
9339691 Brammer May 2016 B2
9352185 Hendrickson et al. May 2016 B2
9352186 Watterson May 2016 B2
9364714 Koduri et al. Jun 2016 B2
9375605 Tyger Jun 2016 B2
9378336 Ohnemus Jun 2016 B2
9381394 Mortensen et al. Jul 2016 B2
9387387 Dalebout Jul 2016 B2
9393453 Watterson Jul 2016 B2
9403047 Olson et al. Aug 2016 B2
9403051 Cutler Aug 2016 B2
9421416 Mortensen et al. Aug 2016 B2
9457219 Smith Oct 2016 B2
9457220 Olson Oct 2016 B2
9457222 Dalebout Oct 2016 B2
9460632 Watterson Oct 2016 B2
9463356 Rhea Oct 2016 B2
9468794 Barton Oct 2016 B2
9468798 Dalebout Oct 2016 B2
9480874 Cutler Nov 2016 B2
9492704 Mortensen et al. Nov 2016 B2
9498668 Smith Nov 2016 B2
9517378 Ashby et al. Dec 2016 B2
9521901 Dalebout Dec 2016 B2
9533187 Dalebout Jan 2017 B2
9539461 Ercanbrack Jan 2017 B2
9550091 Emerson Jan 2017 B2
9579544 Watterson Feb 2017 B2
9586086 Dalebout et al. Mar 2017 B2
9586090 Watterson et al. Mar 2017 B2
9604099 Taylor Mar 2017 B2
9616276 Dalebout et al. Apr 2017 B2
9616278 Olson Apr 2017 B2
9623281 Hendrickson Apr 2017 B2
9636567 Brammer et al. May 2017 B2
9675839 Dalebout Jun 2017 B2
9682307 Dalebout Jun 2017 B2
9694234 Dalebout et al. Jul 2017 B2
9694242 Ashby Jul 2017 B2
9737755 Dalebout Aug 2017 B2
9750454 Walke Sep 2017 B2
9757605 Olson et al. Sep 2017 B2
9764186 Dalebout Sep 2017 B2
9767785 Ashby Sep 2017 B2
9776032 Moran Oct 2017 B2
9795822 Smith et al. Oct 2017 B2
9795855 Jafarifesharaki Oct 2017 B2
9808672 Dalebout Nov 2017 B2
9849326 Smith Dec 2017 B2
9878210 Watterson Jan 2018 B2
9889334 Ashby et al. Feb 2018 B2
9889339 Douglass Feb 2018 B2
9937376 Mclnelly et al. Apr 2018 B2
9937377 Mclnelly et al. Apr 2018 B2
9937378 Dalebout et al. Apr 2018 B2
9937379 Mortensen Apr 2018 B2
9943719 Smith et al. Apr 2018 B2
9943722 Dalebout Apr 2018 B2
9948037 Ashby Apr 2018 B2
9968816 Olson et al. May 2018 B2
9968821 Finlayson et al. May 2018 B2
9968823 Cutler May 2018 B2
9980465 Hayashi May 2018 B2
10010755 Watterson Jul 2018 B2
10010756 Watterson Jul 2018 B2
10029145 Douglass Jul 2018 B2
D826350 Hochstrasser Aug 2018 S
10046196 Ercanbrack Aug 2018 B2
D827733 Hochstrasser Sep 2018 S
10065064 Smith et al. Sep 2018 B2
10071285 Smith et al. Sep 2018 B2
10085586 Smith et al. Oct 2018 B2
10086254 Watterson Oct 2018 B2
10118064 Cox Nov 2018 B1
10136842 Ashby Nov 2018 B2
10186161 Watterson Jan 2019 B2
10188890 Olson et al. Jan 2019 B2
10207143 Dalebout Feb 2019 B2
10207145 Tyger Feb 2019 B2
10207147 Ercanbrack Feb 2019 B2
10207148 Powell Feb 2019 B2
10212994 Watterson Feb 2019 B2
10220259 Brammer Mar 2019 B2
10226396 Ashby Mar 2019 B2
10226664 Dalebout Mar 2019 B2
10252109 Watterson Apr 2019 B2
10258828 Dalebout et al. Apr 2019 B2
10272317 Watterson Apr 2019 B2
10279212 Dalebout et al. May 2019 B2
10293211 Watterson et al. May 2019 B2
D852292 Cutler Jun 2019 S
10342461 Basta Jul 2019 B2
10343017 Jackson Jul 2019 B2
10376736 Powell et al. Aug 2019 B2
10388183 Watterson Aug 2019 B2
10391361 Watterson Aug 2019 B2
D864320 Weston Oct 2019 S
D864321 Weston Oct 2019 S
10426989 Dalebout Oct 2019 B2
10433612 Ashby et al. Oct 2019 B2
10441840 Dalebout Oct 2019 B2
10441844 Powell Oct 2019 B2
10449416 Dalebout Oct 2019 B2
10471299 Powell Nov 2019 B2
D868909 Cutler Dec 2019 S
10492519 Capell Dec 2019 B2
10493349 Watterson Dec 2019 B2
10500473 Watterson Dec 2019 B2
10537764 Smith et al. Jan 2020 B2
10543395 Powell et al. Jan 2020 B2
10561877 Workman Feb 2020 B2
10561893 Chatterton Feb 2020 B2
10561894 Dalebout Feb 2020 B2
10569121 Watterson Feb 2020 B2
10569123 Hochstrasser Feb 2020 B2
10625114 Ercanbrack Apr 2020 B2
10625137 Dalebout Apr 2020 B2
10661114 Watterson et al. May 2020 B2
10668320 Watterson Jun 2020 B2
10671705 Capell et al. Jun 2020 B2
10688346 Brammer Jun 2020 B2
10702736 Weston et al. Jul 2020 B2
10709925 Dalebout et al. Jul 2020 B2
10726730 Watterson Jul 2020 B2
10729965 Powell Aug 2020 B2
10758767 Olson Aug 2020 B2
10786706 Smith Sep 2020 B2
10864407 Watterson Dec 2020 B2
10918905 Powell et al. Feb 2021 B2
10932517 Ashby et al. Mar 2021 B2
10940360 Dalebout et al. Mar 2021 B2
10953268 Dalebout et al. Mar 2021 B1
10953305 Dalebout et al. Mar 2021 B2
10967214 Olson Apr 2021 B1
10994173 Watterson May 2021 B2
11000730 Dalebout et al. May 2021 B2
11013960 Watterson et al. May 2021 B2
11033777 Watterson et al. Jun 2021 B1
11058913 Dalebout et al. Jul 2021 B2
11058914 Powell Jul 2021 B2
11058918 Watterson et al. Jul 2021 B1
11187285 Wrobel Nov 2021 B2
20020016235 Ashby et al. Feb 2002 A1
20020077221 Dalebout et al. Jun 2002 A1
20020128127 Chen Sep 2002 A1
20020159253 Dalebout et al. Oct 2002 A1
20030171189 Kaufman Sep 2003 A1
20040091307 James May 2004 A1
20040127335 Watterson et al. Jul 2004 A1
20040171464 Ashby et al. Sep 2004 A1
20040171465 Hald et al. Sep 2004 A1
20050049123 Dalebout et al. Mar 2005 A1
20050077805 Dalebout et al. Apr 2005 A1
20050107229 Wickens May 2005 A1
20050164839 Watterson et al. Jul 2005 A1
20050272577 Olson et al. Dec 2005 A1
20050277520 Van Waes Dec 2005 A1
20060135322 Rocker Jun 2006 A1
20060217237 Rhodes Sep 2006 A1
20060240959 Huang Oct 2006 A1
20070066448 Pan Mar 2007 A1
20070117683 Ercanbrack et al. May 2007 A1
20070123395 Ellis May 2007 A1
20070197353 Hundley Aug 2007 A1
20070232463 Wu Oct 2007 A1
20070254778 Ashby Nov 2007 A1
20080242520 Hubbard Oct 2008 A1
20080300110 Smith et al. Dec 2008 A1
20090105052 Dalebout et al. Apr 2009 A1
20100242246 Dalebout et al. Sep 2010 A1
20100317488 Cartaya Dec 2010 A1
20110131005 Ueshima Jun 2011 A1
20120237911 Watterson Sep 2012 A1
20120295774 Dalebout et al. Nov 2012 A1
20130014321 Sullivan Jan 2013 A1
20130123083 Sip May 2013 A1
20130165195 Watterson Jun 2013 A1
20130172152 Watterson Jul 2013 A1
20130172153 Watterson Jul 2013 A1
20130178334 Brammer Jul 2013 A1
20130178768 Dalebout Jul 2013 A1
20130190136 Watterson Jul 2013 A1
20130196298 Watterson Aug 2013 A1
20130196822 Watterson et al. Aug 2013 A1
20130218585 Watterson Aug 2013 A1
20130244836 Maughan Sep 2013 A1
20130267383 Watterson Oct 2013 A1
20130268101 Brammer Oct 2013 A1
20130274067 Watterson et al. Oct 2013 A1
20130281241 Watterson Oct 2013 A1
20140024499 Watterson Jan 2014 A1
20140073970 Ashby Mar 2014 A1
20140121071 Strom et al. May 2014 A1
20140135173 Watterson May 2014 A1
20140274574 Shorten et al. Sep 2014 A1
20140274579 Olson Sep 2014 A1
20140287884 Buchanan Sep 2014 A1
20140309085 Watterson et al. Oct 2014 A1
20150182781 Watterson Jul 2015 A1
20150238817 Watterson Aug 2015 A1
20150250418 Ashby Sep 2015 A1
20150251055 Ashby Sep 2015 A1
20150253210 Ashby et al. Sep 2015 A1
20150253735 Watterson Sep 2015 A1
20150253736 Watterson Sep 2015 A1
20150258560 Ashby Sep 2015 A1
20150367161 Wiegardt Dec 2015 A1
20160058335 Ashby Mar 2016 A1
20160059064 Smith et al. Mar 2016 A1
20160063615 Watterson Mar 2016 A1
20160092909 Watterson Mar 2016 A1
20160101311 Workman Apr 2016 A1
20160107065 Brammer Apr 2016 A1
20160121074 Ashby May 2016 A1
20160148535 Ashby May 2016 A1
20160148536 Ashby May 2016 A1
20160158595 Dalebout Jun 2016 A1
20160206248 Sartor et al. Jul 2016 A1
20160206922 Dalebout et al. Jul 2016 A1
20160228746 Jayakumar Aug 2016 A1
20160250519 Watterson Sep 2016 A1
20160253918 Watterson Sep 2016 A1
20160339298 Kats Nov 2016 A1
20160346595 Dalebout et al. Dec 2016 A1
20160346617 Srugo et al. Dec 2016 A1
20170036053 Smith et al. Feb 2017 A1
20170056711 Dalebout et al. Mar 2017 A1
20170056715 Dalebout et al. Mar 2017 A1
20170056726 Dalebout et al. Mar 2017 A1
20170124912 Ashby et al. May 2017 A1
20170128769 Long May 2017 A1
20170193578 Watterson Jul 2017 A1
20170266483 Dalebout et al. Sep 2017 A1
20170266489 Douglass et al. Sep 2017 A1
20170266503 Watterson et al. Sep 2017 A1
20170266532 Watterson Sep 2017 A1
20170270820 Ashby Sep 2017 A1
20180001135 Powell Jan 2018 A1
20180036585 Powell Feb 2018 A1
20180084817 Capell et al. Mar 2018 A1
20180085630 Capell et al. Mar 2018 A1
20180089396 Capell et al. Mar 2018 A1
20180099116 Ashby Apr 2018 A1
20180099179 Chatterton et al. Apr 2018 A1
20180099180 Wilkinson Apr 2018 A1
20180099205 Watterson Apr 2018 A1
20180111034 Watterson Apr 2018 A1
20180117383 Workman May 2018 A1
20180117385 Watterson et al. May 2018 A1
20180117393 Ercanbrack May 2018 A1
20180154207 Hochstrasser Jun 2018 A1
20180154208 Powell et al. Jun 2018 A1
20180200566 Weston Jul 2018 A1
20190058370 Tinney Feb 2019 A1
20190080624 Watterson Mar 2019 A1
20190168072 Brammer Jun 2019 A1
20190178313 Wrobel Jun 2019 A1
20190192898 Dalebout Jun 2019 A1
20190192952 Powell Jun 2019 A1
20190209893 Watterson Jul 2019 A1
20190223612 Watterson Jul 2019 A1
20190269971 Capell et al. Sep 2019 A1
20190275366 Powell Sep 2019 A1
20190282852 Dalebout Sep 2019 A1
20190328079 Ashby et al. Oct 2019 A1
20190329091 Powell et al. Oct 2019 A1
20190376585 Buchanan Dec 2019 A1
20200009417 Dalebout Jan 2020 A1
20200222751 Dalebout Jul 2020 A1
20200338389 Dalebout Jul 2020 A1
20200254295 Watterson Aug 2020 A1
20200254309 Watterson Aug 2020 A1
20200254311 Watterson Aug 2020 A1
20200391069 Olson Aug 2020 A1
20200368575 Hays Nov 2020 A1
20210001177 Smith Jan 2021 A1
20210046351 Ercanbrack Feb 2021 A1
20210046353 Dalebout Feb 2021 A1
20210086018 Dalebout Mar 2021 A1
20210086032 Watterson Mar 2021 A1
20210106899 Willardson Apr 2021 A1
Foreign Referenced Citations (4)
Number Date Country
100829744 May 2018 KR
20000030717 Jun 2000 WO
200914330 Jan 2009 WO
2017196446 Nov 2017 WO
Non-Patent Literature Citations (48)
Entry
U.S. Appl. No. 29/568,648, filed Jun. 20, 2016, ICON Health & Fitness, Inc.
U.S. Appl. No. 29/702,127, filed Sep. 16, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 13/088,007, filed Apr. 5, 2011, Scott R. Watterson.
U.S. Appl. No. 15/821,386, filed Nov. 22, 2017, ICON Health & Fitness, Inc.
U.S. Appl. No. 15/973,176, filed May 7, 2018, Melanie Douglass.
U.S. Appl. No. 16/378,022, filed Apr. 8, 2019, William T. Dalebout.
U.S. Appl. No. 16/435,104, filed Jun. 7, 2019, Dale Alan Buchanan.
U.S. Appl. No. 16/506,085, filed Jul. 9, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/697,833, filed Jul. 13, 2018, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/796,952, filed Jan. 25, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/804,146, filed Feb. 11, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/804,685, filed Feb. 12, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/852,118, filed May 22, 2019, David Hays.
U.S. Appl. No. 62/866,576, filed Jun. 25, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/887,391, filed Aug. 15, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/887,398, filed Aug. 15, 2019, ICON Health & FItness, Inc.
U.S. Appl. No. 62/897,113, filed Sep. 9, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/842,118, filed May 23, 2019, ICON Health & Fitness, Inc.
U.S. Appl. No. 62/912,451, filed Sep. 9, 2019, Megan Jane Ostler.
U.S. Appl. No. 29/702,127, filed Sep. 16, 2019, Gordon Cutler.
U.S. Appl. No. 63/073,081, filed Sep. 1, 2020, Darren C. Ashby.
U.S. Appl. No. 17/014,935, filed Sep. 8, 2020, Megan Jane Ostler.
U.S. Appl. No. 63/079,697, filed Sep. 17, 2020, Jared Willardson.
U.S. Appl. No. 63/086,793, filed Oct. 2, 2020, Darren C. Ashby.
U.S. Appl. No. 17/066,485, filed Oct. 9, 2020, Jared Weston.
U.S. Appl. No. 17/096,350, filed Nov. 12, 2020, William T. Dalebout.
U.S. Appl. No. 17/141,880, filed Jan. 5, 2021, Wade A. Powell.
U.S. Appl. No. 63/134,036, filed Jan. 5, 2021, Gaylen Ercanbrack.
U.S. Appl. No. 17/149,299, filed Jan. 14, 2021, William T. Dalebout.
U.S. Appl. No. 17/159,814, filed Jan. 27, 2021, William T. Dalebout.
U.S. Appl. No. 17/172,880, filed Feb. 10, 2021, Darren C. Ashby.
U.S. Appl. No. 63/150,066, filed Feb. 16, 2021, Kent M. Smith.
U.S. Appl. No. 17/178,173, filed Feb. 17, 2021, Evan Charles Tinney.
U.S. Appl. No. 63/156,801, filed Mar. 4, 2021, Eric S. Watterson.
U.S. Appl. No. 17/204,704, filed Mar. 17, 2021, Chris Nascimento.
U.S. Appl. No. 17/209,714, filed Mar. 23, 2021, Chase Brammer.
U.S. Appl. No. 63/165,498, filed Mar. 24, 2021, Mark Archer.
U.S. Appl. No. 63/200,903, filed Apr. 2, 2021, Eric S. Watterson.
U.S. Appl. No. 17/217,938, filed Apr. 8, 2021, Eric S. Watterson.
International Search Report issued in PCT/US17/23002 dated Jun. 28, 2017.
U.S. Appl. No. 62/310,503, filed Mar. 18, 2016, titled “Coordinated Weight Selection”; 29 pages.
U.S. Appl. No. 16/299,688, filed Mar. 12, 2019 titled: “Coordinated Weight Selection”; 29 pages.
Korean Intellectual Property Office; International Search Report and Written Opinion issued in PCT/US17/22989 dated May 23, 2017, 12 pages.
Octane Fitness; “Consumer Adapter Kit for Cross Circuit Pro—Safety and Assembly Instructions”; Instruction Manual; 2011; 4 pages; located at: https://www.octanefitness.com/home/wp-content/uploads/sites/2/2014/01/106082-001-REV-A-INSTRUCTIONS-CONSUMER-ADAPTER-FOR-CCPRO-2.22.11.pdf.
Octane Fitness; Cross Circuit Pro Kit—XT One Assembly & Set-Up Instructions; Instruction Manual; 2016; 20 pages; located at: https://www.octanefitness.com/wp-content/uploads/2016/11/110786-001-REV-C-INSTRUCTIONS-CROSS-CIRCUIT-PRO-XT-ONE-UnR.pdf.
Octane Fitness; Product Programs and Features; Instruction Manual; 2017; 56 pages; located at: https://www.octanefitness.com/home/wp-content/uploads/sites/2/2017/04/110751-001-REV-E-PROGRAMS-FEATURES-COMM-ENG.pdf.
Octane Fitness; Octane Fitness Cross Circuit; Webpage; accessed on Nov. 30, 2018; located at: https://www.octanefitness.com/commercial/cross-circuit/.
U.S. Appl. No. 62/336,567, filed May 13, 2016, titled “Weight Platform Treadmill”.
Related Publications (1)
Number Date Country
20210213331 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62336567 May 2016 US
Continuations (2)
Number Date Country
Parent 16378022 Apr 2019 US
Child 17214123 US
Parent 15461246 Mar 2017 US
Child 16378022 US