Conventional systems for treatment of earth formations, such as acidizing, in downhole industries typically employ coiled tubing. Coiled tubing is run into a borehole and treatment is performed on one zone of the formation at a time. After treatment of a zone is completed the coiled tubing is moved to align with the next zone and the process is repeated until all desired zones have been treated. This process is time consuming because of the serial nature. Additionally, coiled tubing is unable to reach the toe of wells with long horizontal or highly deviated sections. The maximum flow rate through the coiled tubing is limited because of the flow area available. As such, industry is receptive to new systems and methods that alleviate any of the foregoing concerns.
Disclosed herein is a method of treating a formation. The method includes, running a first string having at least one first port into a completion string having a plurality of second ports, flowing treating fluid through the first string, and flowing treating fluid through the at least one first port and through at least one of the plurality of second ports and into the formation.
Further disclosed herein is a treatment and completion system. The system includes, a completion string positioned within a borehole in an earth formation, a first string runnable within the completion string, having a plurality of first ports distributed along the first string that are configured to be in fluidic communication with a plurality of second ports along the completion string. The plurality of first ports are independently settable to a different flow restriction, and a plurality of seals distributed along the first string or the completion string are configured to seal to the other of the first string and the completion string to isolate the plurality of first ports from one another such that treating fluid can be pumped through the first string and through the plurality of first ports and through the plurality of second ports to treat a plurality of zones of a formation simultaneously.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
The treating system 10 allows for customization of flow restriction through each of the treating ports 22 along the treating string 18. These adjustments can be configured to account for various characteristics and differences between the zones 34. These differences can be due to variations in permeability between the different zones 34, for example. They can also be due to where along the completion string 18 (i.e. relative locations along the completion string 18) each of the treating ports 22 will be located. Flow restriction of the treating ports 22 near a heal 42 of the completion string 18 will likely need to be set at a higher flow restriction level than the treating ports 22 near a toe 46 of the completion string 18 to balance flow of treating fluid between the zones 34 near the heal 42 with the zones 34 near the toe 46.
The treating string 14, unlike conventional treating systems that employ coiled tubing, uses sections of pipe that are connected together in an end-to-end fashion. As such, the treating string 14 can be run through a full length of the completion string 18 regardless of how highly deviated the completion string 18 may be, including when the deviated portion of the completion string 18 is completely horizontal.
Additionally, the inner diameter that defines a flow area through the treating string 14 can be significantly larger than conventional coiled tubing treating lines. As such, treating fluids, such as acid for acidizing the formation 38, for example, can be injected at higher flow rates. These higher flow rates can be beneficial when treating fluid needs to be pumped deep into one or more of the zones 34 including those that have low permeability or are far from the heal. The high flow rates possible allow for treating a plurality of the zones 34 simultaneously, up to and including all the zones 34 along the borehole 50.
In addition to the treating ports 22 being independently customized for flow restriction to the specific desired needs of the zones 34 that will be treated via the treating ports 22, the treating ports 22 can work together in pairs with the second ports 26. Knowing specific distinctive features about second ports 26 allows an operator to customize the treating ports 22 to work in concert with the second-ports 26. This is helpful since some or all of the second ports 26 may be simply slotted openings in a base pipe (as in the present embodiment). In a hydrocarbon recovery application, for example, after injecting a treating fluid, the treating string 14 may be left in place during production of hydrocarbons. In this embodiment employing inflow control devices as the ports 22 can allow for more complete emptying of hydrocarbon from all of the zones 34 than would occur without the inflow control devices 22 being present. Additionally, the inflow control devices delay water breakthrough in highly permeable zones 34 that would likely produce water much earlier if the inflow control devices 22 were not present. Alternately the treating string 14 can be removed from the completion string 18 and hydrocarbons produced through the completion string 18 alone. In yet another embodiment a third string (not shown) could be run into the completion string 18 and production carried out through both the completion string 18 and the third string.
In one embodiment of the treating system 10 the flow restriction levels of the treating ports 22 are adjustable after being run into the completion string 18. Control lines 54 in operable communication with actuators 58 at each of the treating ports 22 can adjust the flow restriction of each of the treating ports 22 as desired in real time. This real time adjustment can include completely closing of the treating ports 22 to thereby allow operators to alter flow rates as well as the total amount of treating fluid supplied to the particular zones 34.
Referring to
The system 110 uses just two seals 130, one on either side of the two outer-most treating ports 122. Although embodiments can use one of the seals 130 between any of the treating ports 122 as each application dictates.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.