Drugs and radiation therapy are conventional approaches to treating cancer. One example is Cisplatin or cis-diamminedichloroplatinum(II) (CDDP), which is a platinum-based chemotherapy drug used to treat various types of cancers, including sarcomas, some carcinomas (e.g. small cell lung cancer and ovarian cancer), lymphomas and germ cell tumors. It was the first member of its class, which now also includes carboplatin and oxaliplatin. Cisplatin acts by crosslinking DNA in various different ways, in a manner that is not cell cycle specific, making it impossible for rapidly dividing cells to duplicate their DNA for mitosis. The damaged DNA sets off DNA repair mechanisms, which activate apoptosis when repair proves impossible.
Another example is Paclitaxel, more commonly referred to by the trade name Taxol®, which is a member of the larger family of compounds known as taxanes. Currently, paclitaxel is used in the treatment of breast, ovarian, certain non-small-cell lung cancers, and Kaposi's sarcoma. This potent anti-neoplastic drug; binds to the N-terminal region of β-tubulin and promotes the formation of highly stable microtubules that resist depolymerization, thus preventing normal cell division and arresting the cell cycle at the G2/M phase. The microtubule damage induces apoptosis through a JNK-dependent pathway in the early phase followed by a JNK-independent pathway, perhaps related to the activation of protein kinase A or of Raf-1 kinase, that results in phosphorylation of Bcl-2. Major metabolite in human liver microsome is 6α-hydroxypaclitaxel (6α-OHP). This enzymatic conversion can be used as a potential marker reaction for human CYP2C8.
An additional cancer treatment modality that has been introduced recently is Photo-Dynamic Therapy (PDT). PDT is a rapidly growing area of medical treatment. The diseases that can be successfully treated by PDT include skin cancer, brain tumors, tumors under the surface of the skin, and tumors located on the lining of internal organs. Photodynamic Therapy involves the use of light-activated dyes (photosensitizers) that preferably localize in target cells (e.g. in tumors) but not in normal, healthy cells. Photosensitizers utilize energy from treatment light to produce a cytotoxic oxygen species which kills cancerous or diseased cells. This toxic oxygen species is not a radical but is actually an excited state of oxygen. The excited state is more reactive than ordinary oxygen, and the atoms are in a different quantum spin state than is normally the case. PDT may also work by destroying the blood vessels that feed the cancer cells and by helping the immune system to attack the cancer.
PDT, using the drug Photofrin®, has now been approved as a therapy for a limited number of applications in various parts of the world including the UK and it is now clear that there are some indications where PDT is at least as good as and possibly better than alternative treatments. However it has to be emphasized that PDT is still largely an experimental therapy and is currently only applicable to a very small range of patients. This limitation results in part from the fact that most tumors are located in areas where light from external sources is not effective. To overcome this problem catheters, having light sources at their tip, are inserted through the skin (or a natural cavity like the GI tract) into the body.
Depending on the part of the body being treated, the photosensitizing substances are either injected intravenously into the diseased area or applied to the skin. The photosensitizer selectively accumulates in the tumor region. After allowing time for the accumulation to occur, a light source is applied to the area to be treated. The light causes the drug to react with oxygen, which forms a chemical that kills the cancer cells. Because blood and melanin are relatively absorptive in the shorter visible wavelengths, it is preferable to use infrared light. Therefore, the ideal photosensitizer has an absorbance peak in the infrared part of the spectrum. This ensures that light used in the treatment is able to penetrate maximally through healthy tissue to arrive at the tumor. However, other wavelengths can be selected according to the absorption and sensitivity of the various substances used.
Light-emitting diodes (LEDs) are considered an appropriate light source for PDT. LEDs have a relatively narrow bandwidth (usually 20 to 30 nm), and are available in a wide range of wavelengths, including the near infrared (NIR) and infrared (IR)—from 650 nm to 950 nm. The flexibility provided by chip-on-board techniques makes it possible to fabricate customized LED illuminators for various PDT applications.
In more established Photodynamic Therapy treatments, such as skin cancer therapy, the diseased zone is exposed to an LED area light for a precisely calculated exposure time. In newer or more experimental areas of treatment, miniature LED arrays are actually implanted into tissue, or are placed on catheters and are moved through the body. In some procedures, LED dice are fixed to a flexible, compact substrate. However, for any tumor situated more than about 1 cm away from the accessible surface, the light source must be implanted. Since LEDs must be hooked up to a power supply in order to function, this generally requires that lead wires connect the LED or other light source to an external device. As the duration of an effective treatment may be long, even weeks, the wires that penetrate the skin may lead to contamination, dysfunction and significant discomfort.
A light generating circuit is implanted in a subject's body and aimed at a target region such as a tumor. A photosensitizer is introduced into the target region, and an AC electric field is induced in the region. The field causes the light generating circuit to generate light, which activates the photosensitizer and the field itself also has a beneficial effect. The beneficial effects of the field and the activated photosensitizer are thereby obtained simultaneously.
As described in U.S. Pat. Nos. 6,868,289 and 7,016,725 each of which is incorporated herein by reference, and in U.S. patent application Ser. Nos. 11/111,439 (filed Apr. 21, 2005) and 11/537,026 (filed Sep. 29, 2006), each of which is incorporated herein by reference, intermediate frequency (100-300 kHz) alternating electric fields, termed TTFields, damage as well as inhibit the growth of numerous types of cancer cells in vitro and in vivo. The efficacy of the treatment is enhanced by sequentially applying fields of varying directions and by the use of special insulated electrodes.
TTFields act by two mechanisms of action: First, they disrupt the normal polymerization-depolymerization process of the spindle microtubules during mitosis. Secondly, they cause a physical disruption of cells towards the end of cytokinesis by producing a unidirectional force on all charge, polar and polarizable intracellular constituents, pushing them towards the narrow neck between the two daughter cells. See Kirson, E. D., et al., Disruption of cancer cell replication by alternating electric fields, Cancer Res., 2004. 64(9): p. 3288-95, which is incorporated herein by reference.
The therapeutic efficacy of TTFields was found to be high and the therapeutic index extremely high (no side effects), however, treatment duration was relatively long and the required field intensities were relatively high. In order to improve the treatment efficacy, this invention is designed to enhance the treatment efficacy of TTFields by combining them with photodynamic treatment, PDT.
PDT, or Photodynamic Therapy involves the use of light-activated dyes (photosensitizers) that preferably localize in target cells (e.g. in tumors) but not in normal, healthy cells. When illuminated by a source of appropriate light, the photosensitizers utilize energy from the illumination light to produce cytotoxic agents such as oxygen species which kill cancerous or diseased cells.
In some preferred embodiments, LEDs are used to provide the illumination, and the LEDs are activated by the TTFields (instead of using lead wires connected to a power supply). A single LED or multiple LEDs wired in parallel may be used to provide the illumination.
Because the LEDs 30 light up when the AC field is applied, the illumination is provided simultaneously with treatment by the TTFields. Thus, when a proper sensitizing agent is present in the tumor, one obtains the combined TTF plus PDT therapeutic effects simultaneously. The inset of
Typical LEDs generate significant light output at current of about 2-10 mA, with a voltage drop across the LED in the range of about 2-5 V. That means that its forward resistance is about 1 KΩ. (The reverse resistance is obviously much higher.) If the contact area between each of the metal contacts, which are connected to the two LED leads, is about 1 mm2 or more, the contact resistance will only be a few Ohms. Typical tissue (e.g., muscle) has a specific resistance of 100 Ω-cm. Thus, if one uses fields of 1 V/cm or more, when the trajectory of the distance D between the contact points along the lines if the field is in the order of 2 cm or more, the potential drop between the contact points will be 2 V or more, which is sufficient to light up the LED.
In
When the LED axis is oriented parallel to the field generating electrodes (orientation B in
Optionally, a resistor or an active circuit can be added to adjust the potential drop to an optimal level. Optionally, a suitable current limiting and voltage limiting circuit may be used to prevent the LED from burning out, the design of which will be apparent to persons skilled in the relevant arts. For example, a resistor may be added in series with the LED, with a Zener diode wired in parallel with the series combination of the resistor and the LED. Two Zener diodes of opposite polarity may be used to take care of both forward and reverse voltages.
Practically any standard LED can be used, but the spectral emission of the LED should preferably be matched to the optimal absorption or activation spectrum of the molecule sensitized by the light. In cases where the absorption spectra can not be matched by an LED, white light emitting LEDs can be used. Examples of suitable LEDs include the HLMP-CW24-SV0 from Agilant Technologies, the NSPW300BS from Nichia, and the TLHB440, TLHG440, TLHO440, TLHP440, TLHR440, TLHY440 Series of LEDs from Vishay.
An advantage of this combination is the dual therapeutic effect and the fact that both effects can be obtained in internal organs without the need to use wire leads that penetrate the body surface (skin or other types of lining).
In alternative embodiments the LEDs may be replaced by other light sources. These may include: low voltage incandescent lamps, fluorescent light source, halogen light source, etc. Also voltage sensitive dyes, as part of the implant, or as chromophores added to the photosensitizers or as part of molecules injected to the patient together with the photosensitizers so as to bind to similar cells. The voltage sensitive dyes, bound to molecules or other entities that bind to the relevant cells for long periods of time, can also be used systemically or locally.
Since TTFields show no systemic toxicities, the fields can be used in conjunction with other anti-cancer treatments with a synergistic effect due to the different mechanisms of action by which the various treatments act. Examples of other anti-cancer treatments that can be combined with TTFields include, but are not limited to, five general categories:
The first categories is surgery, including but not limited to open surgery, laparoscopic surgery, minimal resection surgery, debulking surgery, complete resection surgery, etc.
The second category is local ablation techniques including but not limited to radio-surgery, RF ablation, and focused ultrasound.
The third category is ionizing radiation using various dosing and focusing regimen including but not limited to whole organ radiation (e.g. brain), regional radiation (e.g. Y shaped), focal radiation, single dose radiation, fractionated dose radiation, and hyper-fractionated dose radiation.
The fourth category is chemotherapy, including but not limited to {a} Alkylating agents that act mainly by forming covalent bonds between DNA bases, including but not limited to Nitrogen Mustards (e.g., Cyclophosphamide), Aziridines and Epoxides (e.g., Thiopeta), Alkyl Sulfonates (e.g. Busulfan), Nitrosureas (e.g., BCNU and CCNU), Hydrazine and Triazine derivatives (e.g., Procarbazine and Temozolomide); {b} Cisplatin and its analogs that act by forming DNA adducts which lead to intra-strand and inter-strand linking leading to the formation of DNA filaments, including but not limited to Carboplatin, Cisplatin, and Oxaliplatin; {c} Antimetabolites including but not limited to Folate metabolism inhibitors (e.g., Methotrexate, Trimetrexate, Tomudex), 5-fluoropyrimidines (e.g., 5-FU), Oral Fluoropyramidines (e.g., Tegafur, Uracil, Capecitabine), Necleoside analogs (e.g., Cytarabine), Gemcitabine, and 6-thiopurines (e.g., 6-MP and 6-TG); {d} Topoisomerase Interactive Agents that affect the topologic states of DNA by interfering or modulating DNA cleavage, strand passage and re-ligation, including but not limited to Epipodophyllotoxins (e.g., Etoposide and Teniposide), Camptothecin Analogs, Anthracyclines (e.g., Doxorubicin, Daunorubicin, Epirubicin, Idarubicin), Mitoxantrone and Losoxantrone, and Dactinomycin; {e} Antimicrotubule Agents, which interfere with the proper polymerization/depolymerization of microtubules, including but not limited to Vinca alkaloids (e.g., Vincristine, Vinorelbine and Vinblastine), Taxanes (e.g., Paclitaxel, Docetaxel), and Estramustine Phosphate; and {f} Numerous miscellaneous agents exist which cannot be classified into any of the above groups, including but not limited to Suramin, Bleomycin, L-Asparaginase, and Amifostine.
The fifth category is biological therapies, including but not limited to {a} Inteferons; {b} Interleukin-2; {c} Hormonal therapies including but not limited to Tamoxifen, Toremifene, Raloxifene, Medroxyprogesterone and Megestrol, Aromatase inhibitors, GNRH analogues, Antiandrogens, Diethylstilbesterol and Estradiol, and Octreotide; {d} Differentiation agents that catalyze the differentiation of cancerous cells into their mature (differentiated) forms and then to programmed cell death, including but not limited to Retinoids (e.g., All-Trans-Retinoic Acid), Arsenic Trioxide, Histone Deacetylase inhibitors, Vitamin D, and Cytokines; {e} Therapeutic Monoclonal Antibodies; and {f} Antiangiogenesis agents (e.g., VEGF inhibitors).
Since TTFields show no systemic toxicities, it appears that TTFields can be applied to patients before, during and/or after any other anti-cancer treatment to attack the cancer using two different modalities. In addition, it may be possible to lower the toxicity of current anti-cancer treatments by using lower doses of these agents together with TTFields, and still maintain the existing efficacy profile. The dosages, strengths, and timing of the various treatments may be changed to optimize the results that are desired. Note that the most beneficial combination regimen may differ considerably depending on the type of cancer treated, the exact stage of the disease and the type of anticancer treatment used, it should be relatively simple to determine the best combination regimen experimentally. TTFields can also be applied together with more than one of the other anti-cancer approaches (e.g., with PDT plus another therapy).
Note that above-described embodiments are merely preferred implementations of the invention, and numerous alternative embodiments and variations will be apparent to persons skilled in the relevant arts, and are included within the scope of the invention.
This application claims the benefit of U.S. provisional application No. 60/893,173, filed Mar. 6, 2007.
Number | Name | Date | Kind |
---|---|---|---|
2220269 | Patzold et al. | Nov 1940 | A |
3991770 | LeVeen | Nov 1976 | A |
4016886 | Doss et al. | Apr 1977 | A |
4121592 | Whalley | Oct 1978 | A |
4263920 | Tasto et al. | Apr 1981 | A |
4467809 | Brighton | Aug 1984 | A |
4472506 | Liburdy | Sep 1984 | A |
4622952 | Gordon | Nov 1986 | A |
4626506 | Zimmermann et al. | Dec 1986 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4822470 | Chang | Apr 1989 | A |
4846178 | Fuxue et al. | Jul 1989 | A |
4846196 | Wiksell et al. | Jul 1989 | A |
4923814 | Marshall | May 1990 | A |
4936303 | Detwiler et al. | Jun 1990 | A |
4971991 | Umemura et al. | Nov 1990 | A |
5099756 | Franconi et al. | Mar 1992 | A |
5158071 | Umemura et al. | Oct 1992 | A |
5236410 | Granov et al. | Aug 1993 | A |
5269304 | Matthews | Dec 1993 | A |
5312813 | Costerton et al. | May 1994 | A |
5386837 | Sterzer | Feb 1995 | A |
5389069 | Weaver | Feb 1995 | A |
5441532 | Fenn | Aug 1995 | A |
5441746 | Chagnon | Aug 1995 | A |
5468223 | Mir | Nov 1995 | A |
5571152 | Chen et al. | Nov 1996 | A |
5606971 | Sarvazyn | Mar 1997 | A |
5674267 | Mir et al. | Oct 1997 | A |
5718246 | Vona | Feb 1998 | A |
5807257 | Bridges | Sep 1998 | A |
5964726 | Korenstein et al. | Oct 1999 | A |
5976092 | Chinn | Nov 1999 | A |
5984882 | Rosenschein et al. | Nov 1999 | A |
6027488 | Hofmann et al. | Feb 2000 | A |
6043066 | Mangano et al. | Mar 2000 | A |
6055453 | Hofmann et al. | Apr 2000 | A |
6068650 | Hofmann et al. | May 2000 | A |
6096020 | Hofmann | Aug 2000 | A |
6319901 | Bernard et al. | Nov 2001 | B1 |
6366808 | Schroeppel et al. | Apr 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6447499 | Gray | Sep 2002 | B2 |
6856839 | Litovitz | Feb 2005 | B2 |
6868289 | Palti | Mar 2005 | B2 |
7016725 | Palti | Mar 2006 | B2 |
7089054 | Palti | Aug 2006 | B2 |
7136699 | Palti | Nov 2006 | B2 |
7146210 | Palti | Dec 2006 | B2 |
7333852 | Palti | Feb 2008 | B2 |
7467011 | Palti | Dec 2008 | B2 |
7519420 | Palti | Apr 2009 | B2 |
7565205 | Palti | Jul 2009 | B2 |
7565206 | Palti | Jul 2009 | B2 |
20020193832 | Gray | Dec 2002 | A1 |
20020193833 | Dimmer et al. | Dec 2002 | A1 |
20030060856 | Chornenky et al. | Mar 2003 | A1 |
20030191506 | Shloznikov | Oct 2003 | A1 |
20050209640 | Palti | Sep 2005 | A1 |
20050209641 | Palti | Sep 2005 | A1 |
20050240173 | Palti | Oct 2005 | A1 |
20050240228 | Palti | Oct 2005 | A1 |
20060149341 | Palti | Jul 2006 | A1 |
20060233867 | Palti | Oct 2006 | A1 |
20060241547 | Palti | Oct 2006 | A1 |
20060276858 | Palti | Dec 2006 | A1 |
20060282122 | Palti | Dec 2006 | A1 |
20070033660 | Palti | Feb 2007 | A1 |
20070225766 | Palti | Sep 2007 | A1 |
20070239213 | Palti | Oct 2007 | A1 |
20080221630 | Palti | Sep 2008 | A1 |
20080319372 | Palti | Dec 2008 | A1 |
20090043346 | Palti | Feb 2009 | A1 |
20090076366 | Palti | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0330797 | Sep 1989 | EP |
1419660 | Dec 1975 | GB |
2026322 | Feb 1980 | GB |
2043453 | Oct 1980 | GB |
0160994 | Aug 2001 | WO |
Entry |
---|
Hofmann et al., “Electronic Genetic-Physical and Biological Aspects of Cellular Electomanipulation”, IEEE Eng. in Med. and Biology Mag., Dec. 1986, p. 6-23, New York. |
Berg et al., “Electric Field Effects on Bilogical Membranes:Electoincorporation and Electofusion”,Ettore Maj Inter. Science, 1987,p. 135-166,vol. 32,Phys. Science, New York. |
Kirson et al., “Disruption of Cancer Cell Replication by Alternating Electric Fields”, Cancer Research 64, May 2004, p. 3288-3295, Haifa, Israel. |
Asbury et al., “Trapping of DNA in Nonuniform Oscillating Electric Fields”, Biophysical Journal, Feb. 1998, p. 1024-1030, vol. 74,Seattle, WA. |
Janigro et al., “Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells”, BMC Cancer, 2006, 6:72. |
Giladi et al., Microbial Growth Inhibition by Alternating Electric Fields, Antimicrobial Agents and Chemotherapy, Oct. 2008, p. 3517-3522. |
Search Report and Written Opinion from corresponding application PCT/IB2008/003361. |
Number | Date | Country | |
---|---|---|---|
20080221630 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60893173 | Mar 2007 | US |