Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations

Information

  • Patent Grant
  • 7674753
  • Patent Number
    7,674,753
  • Date Filed
    Tuesday, December 5, 2006
    18 years ago
  • Date Issued
    Tuesday, March 9, 2010
    14 years ago
Abstract
Presented herein are improved bridging agents comprising a degradable material, improved subterranean treatment fluids comprising such improved bridging agents, and methods of using such improved subterranean treatment fluids in subterranean formations. An example of a method presented is a method of drilling a well bore in a subterranean formation. Another example of a method presented is a method of forming a self-degrading filter cake in a subterranean formation. Another example of a method presented is a method of degrading a filter cake in a subterranean formation. An example of a composition of the present invention is a treatment fluid including a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material. Another example of a composition presented is a bridging agent comprising a degradable material.
Description
BACKGROUND OF THE INVENTION

The present invention relates to subterranean treatment operations, and more particularly, to improved bridging agents comprising a degradable material, to improved subterranean treatment fluids comprising such improved bridging agents, and to methods of using such improved subterranean treatment fluids in subterranean formations.


A subterranean treatment fluid used in connection with a subterranean formation may be any number of fluids (gaseous or liquid) or mixtures of fluids and solids (e.g., solid suspensions, mixtures and emulsions of liquids, gases and solids) used in subterranean operations. An example of a subterranean treatment fluid is a drilling fluid. Drilling fluids are used, inter alia, during subterranean well-drilling operations to, e.g., cool the drill bit, lubricate the rotating drill pipe to prevent it from sticking to the walls of the well bore, prevent blowouts by serving as a hydrostatic head to counteract the sudden entrance into the well bore of high pressure formation fluids, and also remove drill cuttings from the well bore. Another example of a subterranean treatment fluid is a “drill-in and servicing fluid.” “Drill-in and servicing fluids,” as referred to herein, will be understood to include fluids placed in a subterranean formation from which production has been, is being, or may be cultivated. For example, an operator may begin drilling a subterranean borehole using a drilling fluid, cease drilling at a depth just above that of a potentially productive formation, circulate a sufficient quantity of a drill-in and servicing fluid through the bore hole to completely flush out the drilling fluid, then proceed to drill into the desired formation using the well drill-in and servicing fluid. Drill-in and servicing fluids often are utilized, inter alia, to minimize damage to the permeability of such formations.


Subterranean treatment fluids generally are aqueous-based or oil-based, and may comprise additives such as viscosifiers (e.g., xanthan) and fluid loss control additives (e.g., starches). Subterranean treatment fluids further may comprise bridging agents, which may aid in preventing or reducing loss of the treatment fluid to, inter alia, natural fractures within the subterranean formation. Calcium carbonate is an example of a conventional bridging agent. In certain circumstances, a bridging agent may be designed to form a filter cake so as to plug off a “thief zone” (a portion of a subterranean formation, most commonly encountered during drilling operations, into which a drilling fluid may be lost). Generally, bridging agents are designed to form fast and efficient filter cakes on the walls of the well bores within the producing formations to minimize potential leak-off and damage. Generally, the filter cakes are removed before hydrocarbons are produced from the formation.


Conventionally, the filter cakes are removed from well bore walls by contacting the filter cake with one or more subsequent fluids. For example, where an aqueous-based treatment fluid comprising bridging agents is used to establish a filter cake, operators conventionally have employed enzymes and oxidizers to remove the viscosifier and fluid loss control additive, and then used an acid, or a delayed-generation acid, to clean up the calcium carbonate bridging agent. The removal of filter cakes established by oil-based treatment fluids, however, is often much more difficult.


When an oil-based treatment fluid comprising bridging agents is placed in a subterranean formation, a filter cake often results that covers the walls of the well bore. Because the fluids that subsequently will be placed in the well bore often will be aqueous-based, an operator ordinarily might prefer to remove this filter cake with an aqueous-based cleanup fluid that may be compatible with the subsequent fluids. However, attempts to remove the filter cake with an aqueous-based cleanup fluid generally have been unsuccessful, due at least in part to the fact that oil and water are immiscible, which may impair the aqueous-based cleanup fluid's ability to clean the filter cake off the well bore walls. Accordingly, operators have attempted to introduce acid into the well bore, to try to dissolve the calcium carbonate bridging agents which are acid-soluble. This method has been problematic, however, because such calcium carbonate bridging agents are generally well-mixed within the filter cake. Multi-stage cleanup operations usually ensue, and may include, in a first stage, the introduction of water-wetting and oil-penetrating surfactants, followed by multiple stages that involve the introduction of an acid solution into the well bore. Additionally, some operators have attempted to use an oil-based treatment fluid having a particular pH to establish a filter cake (which, as noted above, is essentially a water-in-oil emulsion when formed by an oil-based treatment fluid), and followed the oil-based treatment fluid with a cleanup fluid having a pH that is sufficiently different to invert the emulsion (e.g., the filter cake) to become water-external, thereby water-wetting the bridging particles within the filter cake.


These conventional methods have been costly, laborious to perform, and generally have not produced the desired results, largely because the filter cake is not cleaned evenly-rather, the cleanup methods described above generally only achieve “pinpricks” in the filter cake itself. These pinpricks may be problematic because the well bore is typically under hydrostatic pressure from the column of treatment fluid, which may be lost through these pinpricks where the filter cake has been penetrated. Thus, any fluid that subsequently is placed within the well bore may be lost into the formation, as such fluid may follow the path of least resistance, possibly through the pinpricks.


SUMMARY

The present invention relates to subterranean treatment operations, and more particularly, to improved bridging agents comprising a degradable material, to improved subterranean treatment fluids comprising such improved bridging agents, and to methods of using such improved subterranean treatment fluids in subterranean formations.


One embodiment of the present invention provides a method comprising: drilling a well bore in a subterranean formation using a treatment fluid comprising a base fluid, a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material that comprises an aliphatic polyester.


Another embodiment of the present invention provides a method comprising: placing a treatment fluid in a subterranean formation, the treatment fluid comprising a base fluid, a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material that comprises an aliphatic polyester; and permitting the bridging agent to form a self-degrading filter cake upon a surface in the formation, whereby fluid loss to the formation through the self-degrading filter cake is reduced.


Another embodiment of the present invention provides a method comprising: providing a filter cake in a subterranean formation that comprises a bridging agent that comprises a degradable material that comprises an aliphatic polyester; and permitting the degradable material to degrade.


The features and advantages of the present invention will be readily apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.







DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to subterranean treatment operations, and more particularly, to improved bridging agents comprising a degradable material, to improved subterranean treatment fluids comprising such improved bridging agents, and to methods of using such improved subterranean treatment fluids in subterranean formations. While the compositions and methods of the present invention are useful in a variety of subterranean applications, they may be particularly useful in subterranean drilling operations.


The subterranean treatment fluids of the present invention generally comprise a base fluid, a viscosifier, a fluid loss control additive, and a bridging agent of the present invention, the bridging agent comprising a degradable material capable of undergoing an irreversible degradation downhole. Optionally, other additives may be added as desired.


The base fluid may comprise any number of organic fluids. Examples of suitable organic fluids include, but are not limited to, mineral oils, synthetic oils, esters, kerosene, diesel, and the like. Generally, these organic fluids may be referred to generically as “oils.” Where a treatment fluid of the present invention comprises one or more of these organic fluids, and is used as a drilling fluid in drilling operations, such drilling fluid may be referred to as an “oil-based fluid” or an “oil-based mud.” Generally, any oil in which a water solution of salts can be emulsified may be suitable for use as a base fluid in the treatment fluids of the present invention. Generally, the base fluid may be present in an amount sufficient to form a pumpable treatment fluid. More particularly, the base fluid typically is present in the treatment fluid in an amount in the range of from about 20% to about 99% by volume of the treatment fluid. In certain exemplary embodiments, the base fluid may be present in the treatment fluid in an amount in the range of from about 20% to about 95% by volume of the treatment fluid.


The treatment fluids of the present invention comprise a viscosifier. A broad variety of viscosifiers may be suitable. For example, the viscosifier may be an organophilic clay, a synthetic oil-soluble polymer, or a polymeric fatty acid. An example of a synthetic oil-soluble polymer is commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade name “BARAPAK.” An example of a polymeric fatty acid is commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade name “X-VIS.” Generally, the viscosifier is present in the treatment fluids of the present invention in an amount sufficient to provide a desired capability for solids suspension. In certain exemplary embodiments, the viscosifier may be present in the treatment fluid in an amount in the range of from about 1 to 20 pounds of viscosifier per barrel of treatment fluid. In certain exemplary embodiments, the viscosifier may be present in the treatment fluid in an amount in the range of from about 2 to about 15 pounds of viscosifier per barrel of treatment fluid.


The treatment fluids of the present invention further comprise a fluid loss control additive. Generally, any fluid loss control additive may be suitable for use in the treatment fluids of the present invention. Examples of suitable fluid loss control additives include, but are not limited to, synthetic oil-soluble polymers, powdered hydrocarbon resins, and organophilic lignite. An example of a synthetic oil-soluble polymer is commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade name “BARAPAK.” In certain exemplary embodiments, the fluid loss control additive may be a synthetic oil-soluble copolymer commercially available from Halliburton Energy Services, Inc., under the trade name “ADAPTA.” Generally, the fluid loss control additive is present in the treatment fluid in an amount sufficient to provide a desired degree of fluid loss control. In certain exemplary embodiments, the fluid loss control additive is present in the treatment fluid in an amount in the range of from about 1 to about 30 pounds of fluid loss control additive per barrel of treatment fluid. In certain exemplary embodiments, the fluid loss control additive is present in the treatment fluid in an amount in the range of from about 2 to about 20 pounds of fluid loss control additive per barrel of treatment fluid.


The treatment fluids of the present invention further comprise a bridging agent of the present invention that comprises a degradable material capable of undergoing an irreversible degradation downhole. The term “irreversible,” as used herein, means that the degradable material once degraded should not recrystallize or reconsolidate while downhole, e.g., the degradable material should degrade in situ but should not recrystallize or reconsolidate in situ. The terms “degradation” or “degradable” refer to both the two relatively extreme cases of hydrolytic degradation that the degradable material may undergo, e.g., bulk erosion and surface erosion, and any stage of degradation in between these two. This degradation can be a result of, inter alia, a chemical or thermal reaction, or a reaction induced by radiation.


The bridging agent of the present invention becomes suspended in the treatment fluid and, as the treatment fluid begins to form a filter cake within the subterranean formation, the bridging agent becomes distributed throughout the resulting filter cake. In certain exemplary embodiments, the filter cake forms upon the face of the formation itself. After the requisite time period dictated by the characteristics of the particular degradable material utilized, the degradable material undergoes an irreversible degradation. This degradation, in effect, causes the degradable material to substantially be removed from the filter cake. As a result, voids are created in the filter cake. Removal of the degradable material from the filter cake allows produced fluids to flow more freely.


Generally, the bridging agent comprising the degradable material is present in the treatment fluids of the present invention in an amount sufficient to assist in creating an efficient filter cake. As referred to herein, the term “efficient filter cake” will be understood to mean a filter cake comprising no material beyond that required to provide a desired level of fluid loss control. In certain embodiments, the bridging agent comprising the degradable material is present in the treatment fluid in an amount ranging from about 0.1% to about 32% by weight. In certain exemplary embodiments, the bridging agent comprising the degradable material is present in the treatment fluid in the range of from about 3% and about 10% by weight. In certain exemplary embodiments, the bridging agent is present in the treatment fluid in an amount sufficient to provide a fluid loss of less than about 15 mL in tests conducted according to the procedures set forth by API Recommended Practice (RP) 13. One of ordinary skill in the art with the benefit of this disclosure will recognize an optimum concentration of degradable material that provides desirable values in terms of enhanced ease of removal of the filter cake at the desired time without undermining the stability of the filter cake during its period of intended use.


Nonlimiting examples of suitable degradable materials that may be used in conjunction with the present invention include, but are not limited to, degradable polymers, hydrated organic or inorganic compounds, and/or mixtures of the two. In choosing the appropriate degradable material, one should consider the degradation products that will result. Also, these degradation products should not adversely affect other operations or components. One of ordinary skill in the art, with the benefit of this disclosure, will be able to recognize when particular components of the treatment fluids of the present invention would be incompatible or would produce degradation products that would adversely affect other operations or components.


As for degradable polymers, a polymer is considered to be “degradable” herein if the degradation is due to, inter alia, chemical and/or radical process such as hydrolysis, oxidation, enzymatic degradation, or UV radiation. The degradability of a polymer depends, at least in part, on its backbone structure. For instance, the presence of hydrolyzable and/or oxidizable linkages in the backbone often yields a material that will degrade as described herein. The rates at which such polymers degrade are dependent on, inter alia, the type of repetitive unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, hydrophobicity, surface area, and additives. The manner in which the polymer degrades also may be affected by the environment to which the polymer is subjected (e.g., temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and the like).


Suitable examples of degradable polymers that may be used in accordance with the present invention include, but are not limited to, those described in the publication of Advances in Polymer Science, Vol. 157 entitled “Degradable Aliphatic Polyesters” edited by A. C. Albertsson, pages 1-138. Specific examples include homopolymers, random, block, graft, and star- and hyper-branched aliphatic polyesters. Such suitable polymers may be prepared by polycondensation reactions, ring-opening polymerizations, free radical polymerizations, anionic polymerizations, carbocationic polymerizations, and coordinative ring-opening polymerization for, e.g., lactones, and any other suitable process. Specific examples of suitable polymers include, but are not limited to, polysaccharides such as dextran or cellulose; chitin; chitosan; proteins; orthoesters (also known as “orthoethers”); aliphatic polyesters; poly(lactide); poly(glycolide); poly(ε-caprolactone); poly(hydroxybutyrate); poly(anhydrides); aliphatic polycarbonates; poly(orthoesters) (also known as “poly(orthoethers)”); poly(amino acids); poly(ethylene oxide); and polyphosphazenes. Of these suitable polymers, aliphatic polyesters and polyanhydrides may be preferred in many situations.


Suitable aliphatic polyesters have the general formula of repeating units shown below:




embedded image



where n is an integer between 75 and 10,000 and R is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatoms, and mixtures thereof. Of the suitable aliphatic polyesters, poly(lactide) is preferred. Poly(lactide) is synthesized either from lactic acid by a condensation reaction or more commonly by ring-opening polymerization of cyclic lactide monomer. Since both lactic acid and lactide can achieve the same repeating unit, the general term poly(lactic acid) as used herein refers to writ of formula I without any limitation as to how the polymer was made (such as from lactides, lactic acid, or oligomers), and without reference to the degree of polymerization or level of plasticization.


The lactide monomer exists generally in three different forms: two stereoisomers L- and D-lactide and racemic D,L-lactide (meso-lactide). The oligomers of lactic acid, and oligomers of lactide are defined by the formula:




embedded image



where m is an integer: 2≦m≦75. In certain exemplary embodiments, m is an integer: 2≦m≦10. These limits correspond to number average molecular weights below about 5,400 and below about 720, respectively. The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties. Poly(L-lactide), for instance, is a semicrystalline polymer with a relatively slow hydrolysis rate. This could be desirable in applications of the present invention where a slower degradation of the degradable material is desired. Poly(D,L-lactide) may be a more amorphous polymer with a resultant faster hydrolysis rate. This may be suitable for other applications where a more rapid degradation may be appropriate. The stereoisomers of lactic acid may be used individually or combined in accordance with the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ε-caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times. Additionally, the lactic acid stereoisomers can be modified by blending high and low molecular weight polylactide or by blending polylactide with other polyesters.


Plasticizers may be present in the polymeric degradable materials of the present invention. The plasticizers may be present in an amount sufficient to provide the desired characteristics, for example, (a) more effective compatibilization of the melt blend components, (b) improved processing characteristics during the blending and processing steps, and (c) control and regulation of the sensitivity and degradation of the polymer by moisture. Suitable plasticizers include, but are not limited to, derivatives of oligomeric lactic acid, selected from the group defined by the formula:




embedded image



where R is a hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatom, or a mixture thereof and R is saturated, where R′ is a hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatom, or a mixture thereof and R′ is saturated, where R and R′ cannot both be hydrogen, where q is an integer: 2≦q≦75; and mixtures thereof. In certain exemplary embodiments, q is an integer: 2≦q≦10. As used herein, the term “derivatives of oligomeric lactic acid” includes derivatives of oligomeric lactide.


Aliphatic polyesters useful in the present invention may be prepared by substantially any of the conventionally known manufacturing methods, including, but not limited to, those described in U.S. Pat. Nos. 6,323,307; 5,216,050; 4,387,769; 3,912,692; and 2,703,316, the relevant disclosures of which are incorporated herein by reference. In addition to the other qualities above, the plasticizers may enhance the degradation rate of the degradable polymeric materials.


Polyanhydrides are another type of particularly suitable degradable polymer useful in the present invention. Examples of suitable polyanhydrides include poly(adipic anhydride), poly(suberic anhydride), poly(sebacic anhydride), and poly(dodecanedioic anhydride). Other suitable examples include, but are not limited to, poly(maleic anhydride) and poly(benzoic anhydride).


The physical properties of degradable polymers depend on several factors, including, inter alia, the composition of the repeat units, flexibility of the chain, presence of polar groups, molecular mass, degree of branching, crystallinity, and orientation. For example, short-chain branches reduce the degree of crystallinity of polymers while long-chain branches lower the melt viscosity and impart, inter alia, elongational viscosity with tension-stiffening behavior. The properties of the material utilized further can be tailored by blending, and copolymerizing it with another polymer, or by changing the macromolecular architecture (e.g., hyper-branched polymers, star-shaped, or dendrimers, etc.). The properties of any such suitable degradable polymers (e.g., hydrophobicity, hydrophilicity, rate of degradation, etc.) can be tailored by introducing select functional groups along the polymer chains. For example, poly(phenyllactide) will degrade at about ⅕th of the rate of racemic poly(lactide) at a pH of 7.4 at 55° C. One of ordinary skill in the art, with the benefit of this disclosure, will be able to determine the appropriate functional groups to introduce to the polymer chains to achieve the desired physical properties of the degradable polymers.


In certain exemplary embodiments, the bridging agents used in the treatment fluids of the present invention comprise a degradable aliphatic polyester and a hydrated organic or inorganic compound. Examples of such hydrated organic or inorganic compounds include, but are not limited to, sodium acetate trihydrate, L-tartaric acid disodium salt dihydrate, sodium citrate dihydrate, sodium tetraborate decahydrate, sodium hydrogen phosphate heptahydrate, sodium phosphate dodecahydrate, amylose, starch-based hydrophilic polymers, or cellulose-based hydrophilic polymers. In certain exemplary embodiments, the degradable aliphatic polyester is poly(lactic acid). In certain exemplary embodiments, the hydrated organic or inorganic compound is sodium acetate trihydrate. In certain exemplary embodiments, the lactide units of the aliphatic polyester and releasable water from the hydrated organic or inorganic compound may be present in stoichiometric amounts. In certain exemplary embodiments, the bridging agent comprises a degradable aliphatic polyester and a hydrated organic or inorganic compound in combination with a bridging agent that comprises calcium carbonate in an amount in the range of about 1 pound to about 100 pounds of calcium carbonate per barrel of treatment fluid.


Optionally, the degradable materials used in the present invention may comprise one or more crosslinked degradable polymers. In some embodiments, it may be desirable to include a crosslinked degradable polymer, among other purposes, to increase the impact strength, tensile strength, compressive stength, high temperature dimensional stability, creep resistance, and modulus of the degradable material.


Crosslinked degradable polymers suitable for use in the present invention may comprise any crosslinked polymer known in the art that is capable of undergoing an irreversible degradation downhole. By way of example and not limitation, certain crosslinked degradable polymers may be prepared via a two-step process that involves (1) polymerizing and/or functionalizing a degradable polymer to form a functionalized degradable polymer and (2) crosslinking the molecules of the functionalized degradable polymer. Examples of processes that may be used to prepare crosslinked degradable polymers that may be suitable for use in the present invention are described in an article entitled “Structure Modification and Crosslinking of Methacrylated Polylactide Oligomers” by Antti O. Helminen et al. in The Journal of Applied Polymer Science, Vol. 86, pages 3616-3624 (2002), and WIPO Patent Application Publication No. WO 2006/053936 by Jukka Seppälä, the relevant disclosures of which are herein incorporated by reference.


For example, a degradable polymer (e.g., a polyester or poly(lactide)) may be polymerized to include different numbers of hydroxyl functional groups, or an existing degradable polymer may be functionalized with different numbers of hydroxyl functional groups, to form a functionalized degradable polymer having one or more carbon-carbon double bonds. These functional groups may be provided via reaction of the degradable polymer with a functionalizing agent that may comprise one or more diols, polyfunctional alcohols, dicarboxylic acids, polyfunctional carboxylic acids, anhydrides, derivatives thereof, and combinations thereof. The choice of a particular functionalizing agent used may depend on several factors that will be recognized by a person of ordinary skill in the art with the benefit of this disclosure, including, but not limited to, the molecular structure and/or size of the functionalized degradable polymer desired. After at least one functionalized degradable polymer is generated, a crosslinking initiator and/or energy source may be used to form a radical at the double-bond site, and these radicals formed on different molecules of the functionalized degradable polymer may interact with each other so as to form one or more crosslinks between them. The crosslinking initiator may comprise any substance that is capable of forming a radical on the functionalized degradable polymer. Examples of suitable crosslinking initiators may include organic peroxy compounds (e.g., diazyl peroxides, peroxy esters, peroxy dicarbonates, monoperoxy carbonates, diperoxy ketals, dialkyl peroxides, sulfonyl peroxides, ketone peroxides, and peroxy carboxylic acids), inorganic peroxides (e.g., hydrogen peroxide, oxygen, ozone, and azo compounds), redox initiators, derivatives thereof, and combinations thereof. Suitable energy sources may comprise a heat source, a light source, a radiation source, and combinations thereof. The energy sources suitable for use in the present invention may vary by numerous different properties and settings, including but not limited to, wavelength of light produced, intensity of light produced, amount of heat produced, and the like. In certain embodiments, the light source may comprise an instrument that is capable of emitting blue light (e.g., light having a wavelength of about 400 nm to about 500 nm).


In certain embodiments of the present invention where this method of preparing the crosslinked degradable polymer is used, the crosslinking initiator may be formulated to remain inactive until it is “activated” by, among other things, certain conditions in the fluid (e.g., pH, temperature, etc.) and/or contact with some other substance. In some embodiments, the crosslinking initiator may be delayed by encapsulation with a coating that delays its release until a desired time or place. The choice of a particular crosslinking initiator and/or energy source will be governed by several considerations that will be recognized by one skilled in the art, including but not limited to the following: the type of functionalized degradable polymer included, the molecular weight of the functionalized degradable polymer, the pH of the treatment fluid, temperature, and/or the desired time at which to crosslink the degradable polymer. The exact type and amount of crosslinking initiator and/or the particular parameters of the energy source used depends upon the specific degradable polymer to be crosslinked, formation temperature conditions, and other factors recognized by those individuals skilled in the art, with the benefit of this disclosure.


Optionally, a crosslinking accelerator may be used, inter alia, to increase the rate at which the functionalized degradable polymers form crosslinks. Examples of suitable crosslinking accelerators that may be used include, but are not limited to, metal compounds (e.g., cobalt compounds), organic amines, and the like. The choice of whether to use a crosslinking accelerator, and, if used, the exact type and amount of the crosslinking accelerator is within the ability of those individuals skilled in the art, with the benefit of this disclosure.


The choice of degradable material can depend, at least in part, on the conditions of the well, e.g., well bore temperature. For instance, lactides have been found to be suitable for lower temperature wells, including those within the range of about 60° F. to about 150° F., and polylactides have been found to be suitable for well bore temperatures above this range. Hydrated organic or inorganic compounds also may be suitable for higher temperature wells.


Also, we have found that a preferable result is achieved if the degradable material degrades slowly over time as opposed to instantaneously. The slow degradation of the degradable material helps, inter alia, to maintain the stability of the filter cake. The time required for degradation of the degradable material may depend on factors including, but not limited to, the temperature to which the degradable material is exposed, as well as the type of degradable material used. In certain exemplary embodiments, a bridging agent of the present invention comprises a degradable material that does not begin to degrade until at least about 12 to about 24 hours after its placement in the subterranean formation. Certain exemplary embodiments of the treatment fluids of the present invention may comprise degradable materials that may begin degrading in less than about 12 hours, or that may not begin degrading until after greater than about 24 hours.


The specific features of the degradable material may be modified so as to maintain the filter cake's filtering capability when the filter cake is intact while easing the removal of the filter cake when such removal becomes desirable. In certain exemplary embodiments, the degradable material has a particle size distribution in the range of from about 0.1 micron to about 1.0 millimeters. Whichever degradable material is utilized, the bridging agents may have any shape, including, but not limited to, particles having the physical shape of platelets, shavings, flakes, ribbons, rods, strips, spheroids, toroids, pellets, tablets, or any other physical shape. One of ordinary skill in the art with the benefit of this disclosure will recognize the specific degradable material and the preferred size and shape for a given application.


The filter cake formed by the treatment fluids of the present invention is a “self-degrading” filter cake as defined herein. As referred to herein, the term “self-degrading filter cake” will be understood to mean a filter cake that may be removed without the assistance of a separate “clean up” solution or “breaker” through the well bore, wherein the purpose of such clean up solution or breaker is solely to degrade the filter cake. Though the filter cakes formed by the treatment fluids of the present invention are “self-degrading” filter cakes, an operator nevertheless occasionally may elect to circulate a separate clean up solution or breaker through the well bore under certain circumstances, such as when the operator desires to enhance the rate of degradation of the filter cake.


Optionally, the treatment fluids of the present invention also may comprise additives such as weighting agents, emulsifiers, salts, filtration control agents, pH control agents, and the like. Weighting agents are typically heavy minerals such as barite, ilmenite, calcium carbonate, iron carbonate, or the like. Suitable salts include, but are not limited to, salts such as calcium chloride, potassium chloride, sodium chloride, and sodium nitrate. Examples of suitable emulsifiers include polyaminated fatty acids, concentrated tall oil derivatives, blends of oxidized tall oil and polyaminated fatty acids, and the like. Examples of suitable polyaminated fatty acids are commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade names “EZMUL” and “SUPERMUL.” An example of a suitable concentrated tall oil derivative is commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade name “FACTANT.” Examples of suitable blends of oxidized tall oil and polyaminated fatty acids are commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade names “INVERMUL®” and “LE MUL.” Examples of suitable filtration control agents include lignites, modified lignites, powdered resins, and the like. An example of a suitable lignite is commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade name “CARBONOX.” An example of a suitable modified lignite is commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade name “BARANEX.” An example of a suitable powdered resin is commercially available from Halliburton Energy Services, Inc., of Houston, Tex., under the trade name “BARABLOK.” Examples of suitable pH control agents include, but are not limited to, calcium hydroxide, potassium hydroxide, sodium hydroxide, and the like. In certain exemplary embodiments, the pH control agent is calcium hydroxide.


In an exemplary embodiment of a method of the present invention, a treatment fluid of the present invention may be used as a drilling fluid in a subterranean formation, e.g., by circulating the drilling fluid while drilling a well in contact with a drill bit and a subterranean formation. Accordingly, an exemplary method of the present invention comprises the step of drilling a well bore in a subterranean formation using a treatment fluid comprising a base fluid, a viscosifier, a fluid loss control additive, and a bridging agent that comprises a degradable material. Additional steps may include, inter alia, the step of forming a filter cake in the well bore, and the step of permitting the filter cake to degrade.


Another example of a method of the present invention comprises the steps of: placing a treatment fluid in a subterranean formation, the treatment fluid comprising a base fluid, a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material; and permitting the bridging agent to form a self-degrading filter cake upon a surface within the formation, whereby fluid loss to the formation through the self-degrading filter cake is reduced. Another example of a method of the present invention is a method of degrading a filter cake in a subterranean formation, the filter cake having been deposited therein by a treatment fluid comprising a bridging agent, comprising the steps of utilizing a bridging agent comprising a degradable material and permitting the degradable material to degrade.


An example of a treatment fluid of the present invention comprises 68.9% ACCOLADE BASE by weight, 20.1% water by weight, 3% LE SUPERMUL by weight, 1% ADAPTA by weight, and 7% calcium chloride by weight.


To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the entire scope of the invention.


EXAMPLE 1

A sample drilling fluid was prepared by adding 80 pounds of calcium carbonate to a barrel of a nonaqueous-based fluid commercially available under the trade name “ACCOLADE,” from Halliburton Energy Services, Inc., of Houston, Tex. The sample drilling fluid was tested using a Model 90B dynamic filtration system that is commercially available from Fann Instruments, Inc., of Houston, Tex. The sample drilling fluid was circulated through a hollow cylindrical core within the Model 90B, at 100 psi differential pressure and agitated at a setting of 100 sec−1. Filtrate was permitted to leak outwards through the core, thereby building a filter cake on the inside of the core over a time period of 4.5 hours. Next, the sample drilling fluid was displaced from the core and replaced with a conventional breaker solution comprising from 1% to 3% acetic acid by weight. In one test run, the conventional breaker solution comprised 1% acetic acid; in another test run, the conventional breaker solution comprised 3% acetic acid. The conventional breaker solution was permitted to remain in the core, in contact with the filter cake, under 100 psi differential pressure, without stirring. For each test run, the conventional breaker solution fully penetrated the filter cake in about 30 minutes, determined by observation of rapid fluid loss through the core, triggering termination of the test. This simulates, inter alia, the effect of the conventional breaker solution in a subterranean formation, wherein the conventional breaker solution in the well bore would be lost into the formation upon breakthrough of the filter cake.


Upon inspection of the filter cake, the penetration was visually observed to have occurred through tiny “pin pricks” within the filter cake, e.g., the conventional breaker solution did not achieve significant clean up of the filter cake, but rather, penetrated through only a very small area. In practice, such breakthrough would likely be undesirable, because the conventional breaker solution would penetrate the filter cake and be lost into the formation through such pinpricks, yet the vast majority of the filter cake would remain unaffected, thereby potentially blocking subsequent production of hydrocarbons from the formation. Accordingly, the above example demonstrates, inter alia, the limitations of conventional drilling fluids and conventional breaker solutions.


EXAMPLE 2

A white, solid, degradable composite material of the present invention comprising polylactic acid and sodium acetate trihydrate was placed in a test cell at 250° F. and covered in mineral oil. The material was maintained at 250° F. for about 24 hours, during which time a yellow liquid layer of the degraded composite formed at the base of the cell. This example demonstrates, inter alia, that the degradable materials used in exemplary embodiments of the bridging agents of the present invention may be degraded by heat alone, apart from contact with any external degrading agent.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range of values, and set forth every range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.

Claims
  • 1. A method comprising: drilling a well bore in a subterranean formation using a treatment fluid comprising a base fluid, a viscosifier, a fluid loss control additive, and a bridging agent comprising a degradable material that comprises an aliphatic polyester.
  • 2. The method of claim 1 further comprising the step of permitting the bridging agent to form a filter cake in the well bore.
  • 3. The method of claim 2 further comprising the step of permitting the filter cake to degrade.
  • 4. The method of claim 1 wherein the degradable material further comprises a compound that is hydrated organic or inorganic compound.
  • 5. The method of claim 4 wherein the hydrated organic or inorganic compound comprises sodium acetate trihydrate, L-tartaric acid disodium salt dihydrate, sodium citrate dihydrate, sodium tetraborate decahydrate, sodium hydrogen phosphate heptahydrate, sodium phosphate dodecahydrate, amylose, a starch-based hydrophilic polymer, or a cellulose-based hydrophilic polymer.
  • 6. The method of claim 4 wherein the aliphatic polyester is present in the degradable material in a stoichiometric amount.
  • 7. The method of claim 4 wherein the hydrated organic or inorganic compound is present in the degradable material in a stoichiometric amount.
  • 8. The method of claim 1 wherein the viscosifier is selected from the group consisting of organophilic clays, synthetic oil-soluble polymers, polymeric fatty acids, and combinations thereof.
  • 9. The method of claim 1 wherein the viscosifier is present in the treatment fluid in an amount in the range of from about 1 to about 20 pounds viscosifier per barrel of treatment fluid.
  • 10. The method of claim 1 wherein the fluid loss control additive comprises a synthetic oil-soluble polymer, a powdered hydrocarbon resin, or organophilic lignite.
  • 11. The method of claim 1 wherein the bridging agent is present in the treatment fluid in an amount in the range of from about 0.1% to about 32% by weight of the treatment fluid.
  • 12. The method of claim 1 wherein the aliphatic polyester is an orthoether or a poly(orthoether).
  • 13. The method of claim 1 wherein the degradable material further comprises a crosslinked degradable polymer.
  • 14. The method of claim 1 wherein the degradable material further comprises a plasticizer or a stereoisomer of a poly(lactide).
  • 15. A method comprising: placing a treatment fluid in a subterranean formation, the treatment fluid comprising a base fluid,a viscosifier,a fluid loss control additive, anda bridging agent comprising a degradable material that comprises an aliphatic polyester;permitting the bridging agent to form a self-degrading filter cake upon a surface in the formation, whereby fluid loss to the formation through the self-degrading filter cake is reduced.
  • 16. The method of claim 15 wherein the aliphatic polyester is an orthoether or a poly(orthoether).
  • 17. The method of claim 15 wherein the degradable material further comprises a crosslinked degradable polymer.
  • 18. A method comprising: providing a filter cake in a subterranean formation that comprises a bridging agent that comprises a degradable material that comprises an aliphatic polyester;permitting the degradable material to degrade.
  • 19. The method of claim 18 wherein the aliphatic polyester is an orthoether or a poly(orthoether).
  • 20. The method of claim 18 wherein the degradable material further comprises a crosslinked degradable polymer.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of the following U.S. patent applications, which are hereby incorporated by reference for all purposes, and from which priority is claimed pursuant to 35 U.S.C. §120: U.S. patent application Ser. No. 10/832,163, entitled “Improved Treatment Fluids and Methods of Use in Subterranean Formations,” filed Apr. 26, 2004, now abandoned; and U.S. patent application Ser. No. 10/664,126 entitled “Improved Subterranean Treatment Fluids and Methods of Treating Subterranean Formations,” filed Sep. 17, 2003.

US Referenced Citations (361)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Palmer Mar 1955 A
3173484 Huitt et al. Mar 1965 A
3195635 Fast Jul 1965 A
3272650 MacVittie Sep 1966 A
3302719 Fischer Feb 1967 A
3364995 Atkins et al. Jan 1968 A
3366178 Malone et al. Jan 1968 A
3455390 Gallus Jul 1969 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3836465 Rhudy et al. Sep 1974 A
3868998 Lybarger et al. Mar 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
3968840 Tate Jul 1976 A
3986355 Klaeger Oct 1976 A
3998272 Maly Dec 1976 A
3998744 Arnold et al. Dec 1976 A
4010071 Colegrove Mar 1977 A
4068718 Cooke, Jr. et al. Jan 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4261421 Watanabe Apr 1981 A
4265673 Pace et al. May 1981 A
4299825 Lee Nov 1981 A
4387769 Erbstoesser et al. Jun 1983 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4498995 Gockel Feb 1985 A
4502540 Byham Mar 1985 A
4506734 Nolte Mar 1985 A
4521316 Sikorski Jun 1985 A
4526695 Erbstoesser et al. Jul 1985 A
4632876 Laird et al. Dec 1986 A
4694905 Armbruster Sep 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4767706 Levesque Aug 1988 A
4772346 Anderson et al. Sep 1988 A
4785884 Armbruster Nov 1988 A
4793416 Mitchell Dec 1988 A
4797262 Dewitz Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4822500 Dobson, Jr. et al. Apr 1989 A
4829100 Murphey et al. May 1989 A
4836940 Alexander Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4863980 Cowan et al. Sep 1989 A
4886354 Welch et al. Dec 1989 A
4894231 Moreau et al. Jan 1990 A
4957165 Cantu et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5034139 Reid et al. Jul 1991 A
5082056 Tackett, Jr. Jan 1992 A
5142023 Gruber et al. Aug 1992 A
5152781 Tang et al. Oct 1992 A
5161615 Hutchins et al. Nov 1992 A
5203834 Hutchins et al. Apr 1993 A
5213446 Dovan May 1993 A
5216050 Sinclair Jun 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadja Oct 1993 A
5251697 Shuler Oct 1993 A
5295542 Cole et al. Mar 1994 A
5304620 Holtmyer et al. Apr 1994 A
5314031 Hale et al. May 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5386874 Laramay et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5487897 Polson et al. Jan 1996 A
5492177 Yeh et al. Feb 1996 A
5496557 Feijen et al. Mar 1996 A
5497830 Boles et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501276 Weaver et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5536807 Gruber et al. Jul 1996 A
5555936 Pirri et al. Sep 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5602083 Gabrysch et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5607905 Dobson, Jr. et al. Mar 1997 A
5613558 Dillenbeck Mar 1997 A
5670473 Scepanski Sep 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5723416 Liao Mar 1998 A
5765642 Surjaatmadja Jun 1998 A
5783527 Dobson, Jr. et al. Jul 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5833000 Weaver et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5888944 Patel Mar 1999 A
5893416 Read Apr 1999 A
5908073 Nguyen et al. Jun 1999 A
5916849 House Jun 1999 A
5924488 Nguyen et al. Jul 1999 A
5964291 Bourne et al. Oct 1999 A
5977030 House Nov 1999 A
5979557 Card et al. Nov 1999 A
5981447 Chang et al. Nov 1999 A
5996693 Heathman Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6047772 Weaver et al. Apr 2000 A
6110875 Tjon-Joe-Pin et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123159 Brookey et al. Sep 2000 A
6123965 Jacob et al. Sep 2000 A
6131661 Conner et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6143698 Murphey et al. Nov 2000 A
6148917 Brookey et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6189615 Sydansk Feb 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6258755 House et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6291013 Gibson et al. Sep 2001 B1
6300286 Dobson, Jr. et al. Oct 2001 B1
6302209 Thompson et al. Oct 2001 B1
6308788 Patel et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6357527 Norman et al. Mar 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6380138 Ischy et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6394185 Constien May 2002 B1
6422314 Todd et al. Jul 2002 B1
6422326 Brookey et al. Jul 2002 B1
6432155 Swazey et al. Aug 2002 B1
6454003 Chang et al. Sep 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6508305 Brannon et al. Jan 2003 B1
6509301 Vollmer et al. Jan 2003 B1
6527051 Reddy et al. Mar 2003 B1
6554071 Reddy et al. Apr 2003 B1
6566310 Chan May 2003 B2
6569814 Brady et al. May 2003 B1
6578630 Simpson et al. Jun 2003 B2
6586372 Bradbury et al. Jul 2003 B1
6599863 Palmer et al. Jul 2003 B1
6667279 Hessert et al. Dec 2003 B1
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6691780 Nguyen et al. Feb 2004 B2
6702023 Harris et al. Mar 2004 B1
6702044 Reddy et al. Mar 2004 B2
6710019 Sawdon et al. Mar 2004 B1
6716797 Brookey Apr 2004 B2
6737385 Todd et al. May 2004 B2
6761218 Nguyen et al. Jul 2004 B2
6763888 Harris et al. Jul 2004 B1
6764981 Eoff et al. Jul 2004 B1
6793018 Dawson et al. Sep 2004 B2
6793730 Reddy et al. Sep 2004 B2
6806235 Mueller et al. Oct 2004 B1
6817414 Lee Nov 2004 B2
6818594 Freeman et al. Nov 2004 B1
6837309 Boney et al. Jan 2005 B2
6883608 Parlar et al. Apr 2005 B2
6896058 Munoz, Jr. et al. May 2005 B2
6904971 Brothers et al. Jun 2005 B2
6949491 Cooke, Jr. Sep 2005 B2
6959767 Horton et al. Nov 2005 B2
6978838 Parlar et al. Dec 2005 B2
6981552 Reddy et al. Jan 2006 B2
6983801 Dawson et al. Jan 2006 B2
6987083 Phillippi et al. Jan 2006 B2
6997259 Nguyen Feb 2006 B2
7007752 Reddy et al. Mar 2006 B2
7021377 Todd et al. Apr 2006 B2
7032663 Nguyen Apr 2006 B2
7033976 Guzman Apr 2006 B2
7036586 Roddy et al. May 2006 B2
7036587 Munoz, Jr. et al. May 2006 B2
7044220 Nguyen et al. May 2006 B2
7044224 Nguyen May 2006 B2
7063151 Nguyen et al. Jun 2006 B2
7066258 Justus et al. Jun 2006 B2
7069994 Cooke, Jr. Jul 2006 B2
7080688 Todd et al. Jul 2006 B2
7093664 Todd et al. Aug 2006 B2
7096947 Todd et al. Aug 2006 B2
7101829 Guichard et al. Sep 2006 B2
7131491 Blauch et al. Nov 2006 B2
7140438 Frost et al. Nov 2006 B2
7147067 Getzalf et al. Dec 2006 B2
7151077 Prud'homme et al. Dec 2006 B2
7156174 Roddy et al. Jan 2007 B2
7165617 Lord et al. Jan 2007 B2
7168489 Frost et al. Jan 2007 B2
7172022 Reddy et al. Feb 2007 B2
7178596 Blauch et al. Feb 2007 B2
7195068 Todd Mar 2007 B2
7204312 Roddy et al. Apr 2007 B2
7219731 Sullivan et al. May 2007 B2
7228904 Todd et al. Jun 2007 B2
7256159 Guichard et al. Aug 2007 B2
7261156 Nguyen et al. Aug 2007 B2
7264051 Nguyen et al. Sep 2007 B2
7267170 Mang et al. Sep 2007 B2
7299876 Lord et al. Nov 2007 B2
7303014 Reddy et al. Dec 2007 B2
7306037 Nguyen et al. Dec 2007 B2
7322412 Badalamenti et al. Jan 2008 B2
7353876 Savery et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7413017 Nguyen et al. Aug 2008 B2
7448450 Luke et al. Nov 2008 B2
7455112 Moorehead et al. Nov 2008 B2
7461697 Todd et al. Dec 2008 B2
7475728 Pauls et al. Jan 2009 B2
7484564 Welton et al. Feb 2009 B2
7497258 Savery et al. Mar 2009 B2
7497278 Schriener et al. Mar 2009 B2
7506689 Surjaatmadja et al. Mar 2009 B2
7595280 Welton et al. Sep 2009 B2
7598208 Todd Oct 2009 B2
7608566 Saini et al. Oct 2009 B2
7608567 Saini Oct 2009 B2
20010016562 Muir et al. Aug 2001 A1
20020036088 Todd Mar 2002 A1
20020119169 Angel et al. Aug 2002 A1
20020125012 Dawson et al. Sep 2002 A1
20030054962 England et al. Mar 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030147965 Bassett et al. Aug 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030230407 Vijn et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040014606 Parlar et al. Jan 2004 A1
20040014607 Sinclair et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040070093 Mathiowitz et al. Apr 2004 A1
20040094300 Sullivan et al. May 2004 A1
20040099416 Vijn et al. May 2004 A1
20040106525 Willbert et al. Jun 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040152601 Still et al. Aug 2004 A1
20040152602 Boles Aug 2004 A1
20040162386 Altes et al. Aug 2004 A1
20040170836 Bond et al. Sep 2004 A1
20040214724 Todd et al. Oct 2004 A1
20040216876 Lee Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040261993 Nguyen Dec 2004 A1
20040261995 Nguyen et al. Dec 2004 A1
20040261996 Munoz, Jr. et al. Dec 2004 A1
20040261999 Nguyen Dec 2004 A1
20050006095 Justus et al. Jan 2005 A1
20050028976 Nguyen Feb 2005 A1
20050034861 Saini et al. Feb 2005 A1
20050034865 Todd et al. Feb 2005 A1
20050034868 Frost et al. Feb 2005 A1
20050045328 Frost et al. Mar 2005 A1
20050051330 Nguyen Mar 2005 A1
20050056423 Todd et al. Mar 2005 A1
20050059556 Munoz, Jr. et al. Mar 2005 A1
20050059557 Todd et al. Mar 2005 A1
20050059558 Blauch et al. Mar 2005 A1
20050103496 Todd et al. May 2005 A1
20050126780 Todd et al. Jun 2005 A1
20050126785 Todd Jun 2005 A1
20050130848 Todd et al. Jun 2005 A1
20050161220 Todd et al. Jul 2005 A1
20050167104 Roddy et al. Aug 2005 A1
20050167105 Roddy et al. Aug 2005 A1
20050167107 Roddy et al. Aug 2005 A1
20050183741 Surjaatmadja et al. Aug 2005 A1
20050205258 Reddy et al. Sep 2005 A1
20050205265 Todd et al. Sep 2005 A1
20050205266 Todd et al. Sep 2005 A1
20050252659 Sullivan et al. Nov 2005 A1
20050272613 Cooke, Jr. Dec 2005 A1
20050277554 Blauch et al. Dec 2005 A1
20060016596 Pauls et al. Jan 2006 A1
20060032633 Nguyen Feb 2006 A1
20060046938 Harris et al. Mar 2006 A1
20060048938 Kalman Mar 2006 A1
20060065397 Nguyen et al. Mar 2006 A1
20060105917 Munoz, Jr. May 2006 A1
20060105918 Munoz, Jr. et al. May 2006 A1
20060108150 Luke et al. May 2006 A1
20060169182 Todd et al. Aug 2006 A1
20060169448 Savery et al. Aug 2006 A1
20060169450 Mang et al. Aug 2006 A1
20060169452 Savery et al. Aug 2006 A1
20060169453 Savery et al. Aug 2006 A1
20060172893 Todd et al. Aug 2006 A1
20060172894 Mang et al. Aug 2006 A1
20060172895 Mang et al. Aug 2006 A1
20060185847 Saini et al. Aug 2006 A1
20060185848 Surjaatmadja et al. Aug 2006 A1
20060205608 Todd Sep 2006 A1
20060234873 Ballard Oct 2006 A1
20060243449 Welton et al. Nov 2006 A1
20060247135 Welton et al. Nov 2006 A1
20060254774 Saini et al. Nov 2006 A1
20060258543 Saini Nov 2006 A1
20060258544 Saini Nov 2006 A1
20060276345 Todd et al. Dec 2006 A1
20060283597 Schriener et al. Dec 2006 A1
20070042912 Welton et al. Feb 2007 A1
20070049501 Saini et al. Mar 2007 A1
20070066492 Funkhouser et al. Mar 2007 A1
20070066493 Funkhouser et al. Mar 2007 A1
20070078063 Munoz, Jr. Apr 2007 A1
20070238623 Saini et al. Oct 2007 A1
20070281868 Pauls et al. Dec 2007 A1
20080026955 Munoz et al. Jan 2008 A1
20080026959 Munoz et al. Jan 2008 A1
20080026960 Munoz et al. Jan 2008 A1
20080027157 Munoz et al. Jan 2008 A1
20080070810 Mang Mar 2008 A1
20080139415 Todd et al. Jun 2008 A1
20080169102 Carbajal et al. Jul 2008 A1
20090062157 Munoz et al. Mar 2009 A1
20090258798 Munoz Oct 2009 A1
Foreign Referenced Citations (25)
Number Date Country
0 510 762 Oct 1992 EP
0 879 935 Nov 1998 EP
0 879 935 Feb 1999 EP
1 413 710 Apr 2004 EP
2 412 389 Mar 2004 GB
2004181820 Jul 2004 JP
WO 9315127 Aug 1993 WO
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0057022 Sep 2000 WO
WO 0102698 Jan 2001 WO
WO 0187797 Nov 2001 WO
WO 0194744 Dec 2001 WO
WO 0255843 Jan 2002 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 03027431 Apr 2003 WO
WO 2004007905 Jan 2004 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
WO 2006053936 May 2006 WO
Related Publications (1)
Number Date Country
20070078064 A1 Apr 2007 US
Continuation in Parts (2)
Number Date Country
Parent 10832163 Apr 2004 US
Child 11634320 US
Parent 10664126 Sep 2003 US
Child 10832163 US