TREATMENT OF A CANCER BY MICROBIOME MODULATION

Abstract
Methods are provided for identifying donors of fecal matter that can improve a subject's response to a checkpoint inhibitor in the treatment of cancer. Methods and compositions are also provided for using donated fecal matter in the treatment of cancer.
Description
INTRODUCTION

Mammals are colonized by microbes in the gastrointestinal (GI) tract, on the skin, and in other epithelial and tissue niches such as the oral cavity, eye surface and vagina. The gastrointestinal tract harbors an abundant and diverse microbial community. Hundreds of different species may form a commensal community in the GI tract of a healthy person. Interactions between microbial strains in these populations and between microbes and the host, e.g., the host immune system, shape the community structure, with availability of and competition for resources affecting the distribution of microbes. Such resources may be food, location and the availability of space to grow or a physical structure to which the microbe may attach. For example, host diet is involved in shaping the GI tract flora.


Harnessing the host immune system by microbiome modulation constitutes a promising approach for the treatment of cancer because of its potential to specifically target tumor cells while limiting harm to normal tissue, with durability of benefit associated with immunologic memory. Enthusiasm for this approach has been fueled by recent clinical success, particularly with antibodies that block immune inhibitory pathways, for example the CTLA-4 and the PD-1/PD-L1 pathways (Hodi et al. New Engl J Med 363:711-723 (2010); Hamid et al. New Engl J Med 369:134-144 (2013); herein incorporated by reference in their entireties). Early data have indicated that clinical responses to these immunotherapies are more frequent in patients who show evidence of an endogenous T cell response ongoing in the tumor microenvironment at baseline (Tumeh et al. Nature 51:568-571 (2014); Spranger et al. Sci Transl Med 5:200ra116 (2013); Ji et al. Cancer Immunol Immunother: CII 61, 1019-1031 (2012); Gajewski et al. Cancer J 16:399-403 (2010); herein incorporated by reference in their entireties). However, many cancer therapeutics have limited efficacy and there is a need to extend the range of patients who can benefit from these treatments. A number of factors can influence the efficacy of a cancer treatment, for example, smoking history, diabetes, obesity, and tumor size. It has been suggested that the microbiome of an individual can be a factor influencing efficacy.


Fecal transplantation and some individual species have been proposed as treatments for patients suffering from certain cancers either as sole treatments or as adjunctive therapy with other cancer treatments. Fecal transplantation, however, is generally a procedure of last resort because of, for example, the difficulty in producing a consistent product, the potential to transmit infectious or allergenic agents between hosts, and variability between fecal donors. There is a need for improved methods of selecting fecal donors and/or defined microbiome compositions that can be used to effect anti-tumor activity, alone or in combination with other cancer treatment methods, e.g., checkpoint inhibitors.


SUMMARY

In one aspect, methods are provided for identifying donors of fecal matter that can improve a subject's response to an immune checkpoint inhibitor comprising determining whether the microbiome of the potential donor comprises bacteria belonging to one or more species that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii, i.e., they belong to the family Ruminococcaceae as defined herein.


In another aspect, methods are provided for identifying donors of fecal matter that can improve a subject's response to a checkpoint inhibitor comprising determining whether the microbiome of the potential donor comprises bacteria belonging to one or more species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the one or more species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.


In another aspect, methods are provided for identifying donors of fecal matter that can improve a subject's response to a checkpoint inhibitor comprising determining whether the microbiome of the potential donor comprises bacteria belonging to one or more species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In another aspect, methods are provided for identifying donors of fecal matter that can improve a subject's response to a checkpoint inhibitor comprising determining whether the microbiome of the potential donor comprises one or more strain of bacteria belonging to one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135 as defined herein.


In some aspects, fecal material from identified donors can be used, e.g., in fecal microbiome transplantation or in a processed form derived from such material, for example a preparation enriched in Firmicutes (e.g., Clostridia, Clostridiales, or spore formers), that are in vegetative and/or spore form.


In another aspect, therapeutic compositions are provided that are derived from fecal matter obtained from a donor identified using a method described herein.


In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition derived from fecal matter obtained from a donor identified using a method described herein.


In another aspect, methods are provided for identifying donated fecal matter that can improve a subject's response to a checkpoint inhibitor comprising determining whether the donated fecal matter comprises bacteria belonging to one or more species that are phylogenetic descendants of the MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii.


In another aspect, methods are provided for identifying donated fecal matter that can improve a subject's response to a checkpoint inhibitor comprising determining whether the microbiome of the potential donor comprises bacteria belonging to one or more species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the one or more species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.


In another aspect, methods are provided for identifying donated fecal matter that can improve a subject's response to a checkpoint inhibitor comprising determining whether the donated fecal matter comprises bacteria belonging to one or more species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In another aspect, methods are provided for identifying donated fecal matter that can improve a subject's response to a checkpoint inhibitor comprising determining whether the donated fecal matter comprises one or more strain of bacteria belonging to one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135 as defined herein.


In some aspects, fecal material from identified donated fecal matter can be used, e.g., in fecal microbiome transplantation or in a processed form derived from such material, for example a preparation enriched in Firmicutes (e.g., Clostridia, Clostridiales, or spore formers), that are in vegetative and/or spore form.


In another aspect, therapeutic compositions are provided that are derived from donated fecal matter identified using a method described herein.


In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition derived from donated fecal matter identified using a method described herein.


In one aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria belonging to one or more of the family Ruminococcaceae, e.g., the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least two, three or four of the genera listed.


In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii. In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the therapeutic compositions may comprise one or more bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In some embodiments, the therapeutic composition may comprise at least two, three, four, five or more of the species listed. In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least two, three, four, five or more of the genera listed.


In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of an isolated population of bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof. In some embodiments, the therapeutic composition may comprise at least two, three, four, five or more of the species listed.


In one aspect, provided are therapeutic compositions comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least two, three or four the genera listed.


In another aspect, provided are therapeutic compositions comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Bamesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Bamesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least two, three, four, five or more of the genera listed.


In another aspect, provided are therapeutic compositions comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, provided are therapeutic compositions comprising an effective amount of a purified population of bacteria species selected from Bamesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof. In some embodiments, the therapeutic composition may comprise at least two, three, four, five or more of the species listed.


In some embodiments, the therapeutic compositions further comprise an anticancer agent. In some embodiments, the anticancer agent is a checkpoint inhibitor. In some embodiments, the checkpoint inhibitor is selected from an anti-PD-1 antibody, an anti-CTLA-4 antibody, an anti-PD-L1 antibody or combinations thereof. In some embodiments, the checkpoint inhibitor is selected from pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, ipilimumab, pidilizumab, AMP-224, AMP-514, STI-A1110, TSR-042, RG-7446, BMS-936559, BMS-936558, MK-3475, CT 011, MPDL3280A, MEDI-4736, MSB-0020718C, AUR-012, LAG-3, OX40 inhibitors, OX40L inhibitors, TIGIT inhibitors, STI-A1010 or combinations thereof. In some embodiments, the anticancer agent is cyclophosphamide.


In some embodiments, each isolated population of bacteria in the therapeutic composition is present in the composition at a concentration of at least about 1×102 viable colony forming units. In some embodiments, each isolated population of bacteria in the therapeutic composition is present in the composition at a concentration of about 1×102 to 1×109 viable colony forming units.


In some embodiments, a fraction of the isolated population of bacteria in the therapeutic composition comprises a spore-forming bacteria. In some embodiments, a fraction of the isolated population of bacteria in the therapeutic composition is in spore form.


In some embodiments, the therapeutic compositions further comprise a pharmaceutically acceptable excipient. In some embodiments, the therapeutic compositions are formulated for delivery to the intestine. In some embodiments, the therapeutic compositions are enterically coated. In some embodiments, the therapeutic compositions are formulated for oral administration. In some embodiments, the therapeutic compositions are formulated into a food or beverage.


In some embodiments the therapeutic compositions can reduce the rate of tumor growth in an animal model.


In one aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In some embodiments of the methods, the therapeutic composition may comprise bacteria belonging to at least two, three or four the genera listed.


In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria that are phylogenetic descendants of the MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the therapeutic compositions may comprise one or more bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In some embodiments, the therapeutic composition may comprise at least two, three, four, five or more of the species listed.


In some embodiments, the composition is formulated for multiple administrations. In some embodiments, the composition is formulated for at least 1, 2, 3, 4, 5, 6, 7, or 8 administrations.


In some embodiments, the purified population of bacteria comprises bacteria from at least two genera or species, and wherein the ratio of the two bacteria is 1:1. In some embodiments, the purified population of bacteria comprises bacteria from at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 20, 30, 40, or 50 (or any derivable range therein) different families, genera, or species of bacteria. In some embodiments, the ratio of one family, genera, or species of bacteria to another family, genera, or species of bacteria present in the composition is at least, at most, or exactly 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9, 1:10, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, 1:50, 1:55, 1:60, 1:65, 1:70, 1:75, 1:80, 1:85, 1:90, 1:95, 1:100, 1:150, 1:200, 1:250, 1:300, 1:350, 1:400, 1:450, 1:500, 1:600, 1:700, 1:800, 1:900, 1:1000, 1:1500, 1:2000, 1:2500, 1:3000, 1:3500, 1:4000, 1:4500, 1:5000, 1:1550, 1:6000, 1:6500, 1:7000, 1:7500, 1:8000, 1:8500, 1:9000, 1:9500, 1:10000, 1:1200, 1:14000, 1:16000, 1:18000, 1:20000, 1:30000, 1:40000, 1:50000, 1:60000, 1:70000, 1:80000, 1:90000, or 1:100000 (or any derivable range therein).


The compositions of the disclosure may exclude one or more bacteria genera or species described herein or may include less than 1×106, 1×105, 1×104, 1×103, or 1×102 cells or viable CFU (or any derivable range therein) of one or more of the bacteria described herein.


In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Bamesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In some embodiments of the methods, the therapeutic composition may comprise bacteria belonging to at least two, three, four, five or more of the genera listed.


In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Bamesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof. In some embodiments of the methods, the therapeutic composition may comprise at least two, three, four, five or more of the species listed.


In one aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In some embodiments of the methods, the therapeutic composition may comprise bacteria belonging to at least two, three or four the genera listed.


In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Bamesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Bamesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In some embodiments of the methods, the therapeutic composition may comprise bacteria belonging to at least two, three, four, five or more of the genera listed.


In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, methods of treating a cancer in a mammalian subject are provided comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Bamesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof. In some embodiments of the methods, the therapeutic composition may comprise at least two, three, four, five or more of the species listed.


In some embodiments, the therapeutic compositions used in the methods of treating cancer further comprise an anticancer agent. In some embodiments, the anticancer agent is a checkpoint inhibitor. In some embodiments, the checkpoint inhibitor is selected from an anti-PD-1 antibody, an anti-CTLA-4 antibody, an anti-PD-L1 antibody or combinations thereof. In some embodiments, the checkpoint inhibitor is selected from pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, ipilimumab, pidilizumab, AMP-224, AMP-514, STI-A1110, TSR-042, RG-7446, BMS-936559, BMS-936558, MK-3475, CT 011, MPDL3280A, MEDI-4736, MSB-0020718C, AUR-012, LAG-3, OX40 inhibitors, OX40L inhibitors, TIGIT inhibitors, STI-A1010 or combinations thereof. In some embodiments, the anticancer agent is cyclophosphamide.


In some embodiments of the methods, each isolated population of bacteria in the therapeutic composition is present in the composition at a concentration of at least about 1×102 viable colony forming units. In some embodiments of the methods, each isolated population of bacteria in the therapeutic composition is present in the composition at a concentration of about 1×102 to 1×109 viable colony forming units.


In some embodiments of the methods, a fraction of the isolated population of bacteria in the therapeutic composition comprises a spore-forming bacteria. In some embodiments of the methods, a fraction of the isolated population of bacteria in the therapeutic composition is in spore form.


In some embodiments of the methods, the therapeutic compositions further comprise a pharmaceutically acceptable excipient. In some embodiments of the methods, the therapeutic compositions are formulated for delivery to the intestine. In some embodiments of the methods, the therapeutic compositions are enterically coated. In some embodiments, the therapeutic compositions are formulated for oral administration. In some embodiments of the methods, the therapeutic compositions are formulated into a food or beverage.


In some embodiments of the methods, the mammalian subject is a human.


In some embodiments of the methods, the cancer is selected from metastatic melanoma, melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, Merkel cell skin cancer (Merkel cell carcinoma), or Hodgkin lymphoma.


In some embodiments of the methods, prior to administration of the isolated population of bacteria, the subject is subjected to antibiotic treatment and/or a bowel cleanse.


In one aspect, methods of identifying if a mammalian subject is a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence of the genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof.


In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria belonging to one or more species that are phylogenetic descendants of the MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii. In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria belonging to one or more species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the one or more species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.


In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria belonging to one or more species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In methods in which a microbiome sample is obtained, in some cases the microbiome sample is obtained from a fecal sample. In some cases the microbiome sample is obtained by mucosal biopsy.


In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises one or more of the genera Bamesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Bamesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, methods of identifying a mammalian subject as a candidate for anticancer treatment are provided, the method comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria species selected from Bamesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof. In methods in which a microbiome sample is obtained, in some cases the microbiome sample is obtained from a fecal sample. In some cases, the microbiome sample is obtained by mucosal biopsy.


In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising one or more of the genera Bamesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In another aspect, provided herein are methods of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.


In another aspect, provided herein are methods comprising evaluating a microbiome profile for bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii in a sample from a subject. In another aspect, provided herein are methods comprising evaluating a microbiome profile for bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae in a sample from a subject. In some embodiments, the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In another aspect, provided herein are methods comprising evaluating a microbiome profile for bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof in a sample from the subject. In another aspect, provided herein are methods comprising evaluating a microbiome profile for bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof in a sample from a subject. In another aspect, provided herein are methods comprising evaluating a microbiome profile for bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof in a sample from a subject. In another aspect, provided herein are methods comprising evaluating a microbiome profile for one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof in a sample from a subject. In another aspect, provided herein are methods comprising evaluating a microbiome profile for bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof in a sample from a subject. In another aspect is a method comprising evaluating a microbiome profile for bacteria species selected from Alistipes senegalensis, Bamesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof in a sample from a subject. In another aspect is a method comprising evaluating a microbiome profile for bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof in a sample from a subject. In another aspect, provided herein are methods comprising evaluating a microbiome profile for bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof in a sample from a subject.


In some embodiments, the method further comprises comparing the microbiome profile to a control microbiome. In some embodiments, the control microbiome comprises a microbiome sample from a subject determined to be a responder to an anticancer treatment. In some embodiments, the control microbiome comprises a microbiome sample from a subject determined to be a non-responder to an anticancer treatment.


In some embodiments of the methods of identifying a mammalian subject as a candidate for anticancer treatment, the subject is determined to be a candidate for checkpoint inhibitor anticancer treatment. In some embodiments of the methods of identifying a mammalian subject as a candidate for anticancer treatment, the subject is determined to be a candidate for cyclophosphamide anticancer treatment.


In some embodiments of the methods of identifying a mammalian subject as a candidate for anticancer treatment, the mammalian subject is a human.


In some embodiments of the methods of identifying a mammalian subject as a candidate for anticancer treatment, the cancer is selected from metastatic melanoma, melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, Merkel cell skin cancer (Merkel cell carcinoma), or Hodgkin lymphoma.


In some embodiments, the subject has previously been treated for the cancer. In some embodiments, the subject has been determined to be a non-responder to the previous treatment. In some embodiments, the subject has been determined to have a have a toxic response to the previous treatment. In some embodiments, the previous treatment comprises immune checkpoint blockade monotherapy or combination therapy. In some embodiments, the cancer is recurrent cancer. In some embodiments, the subject has not received a prior anticancer therapy.


In one aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium and Subdoligranulum.


In another aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria belonging to one or more species that are phylogenetic descendants of the MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii. In another aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria belonging to one or more species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the one or more species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In another aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria belonging to one or more species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In another aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Bamesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter and Parabacteroides. In another aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria belonging one or more of to the genera Bamesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter and Parabacteroides.


In another aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria species Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme and Parabacteroides distasonis. In another aspect, therapeutic compositions are provided comprising an effective amount of an isolated population of bacteria species Bamesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus and Parabacteroides distasonis.


In one aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to three or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to four or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11.


In one aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 1A. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 1B. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 10. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 11.


In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 1A. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 1B. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 10. In another aspect, therapeutic compositions are provided comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 11.


It is specifically contemplated that any limitation discussed with respect to one embodiment of the invention may apply to any other embodiment of the invention. Furthermore, any composition of the invention may be used in any method of the invention, and any method of the invention may be used to produce or to utilize any composition of the invention. Aspects of an embodiment set forth in the Examples are also embodiments that may be implemented in the context of embodiments discussed elsewhere in a different Example or elsewhere in the application, such as in the Summary of Invention, Detailed Description of the Embodiments, Claims, and description of Figure Legends.


Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.



FIG. 1. 16S Alpha Diversity. The figure is a plot showing Observed, Shannon, and Inverse Simpson 16S alpha diversity scores of the microbiome in responder and non-responder patients. Error bars represent the distribution of scores. Responders (left bar within each panel); non-responders (1 bar within each panel). Where outliers are present, they are shown as individual points—otherwise, boxes extend from the first to third quartiles of the data, with whiskers extending the length of the data. Outliers are defined as points which lie outside of the first quartile minus 1.5*IQR (“interquartile range”, e.g. the distance between the first to third quartiles), or the third quartile plus 1.5*IQR.



FIG. 2. Prevalence Analysis. The figure is a volcano plot of differential 16S rDNA prevalence results. Significantly differentially prevalent OTUs/genera are marked with a rectangular label (p-value <=0.10, Fisher's exact test).



FIG. 3 is a plot showing Bray-Curtis Beta Diversity. Approximately 200 samples from healthy donors collected by the Human Microbiome Project (HMP) were used to generate a set of background samples to compare to the collected WMS data. Bray-Curtis dissimilarity across the WMS and HMP data was represented in a multidimensional scaling (MDS) format, and Linear Discriminant Analysis (LDA) was used to generate a classification line to separate responder and non-responder samples.



FIG. 4 is a plot showing the Species Data overlaid on Bray-Curtis Beta Diversity. Individual species data from the samples were mapped onto the MDS plot of FIG. 3. Circled species are all members of the family Ruminococcaceae and these data demonstrate that Ruminococcaceae are associated with responders.



FIG. 5 is a graph showing how the relative abundance of Bacteroidia are associated with response to checkpoint therapy. Samples are ordered by decreasing relative abundance. Data from responder samples are shown in gray while non-responders are shown in black. The cut-off (dashed line) maximizes sensitivity while maintaining 100% specificity.



FIG. 6 is a phylogenetic tree of Ruminococcaceae derived from 16S rDNA sequences demonstrating that a clade-based definition of Ruminococcaceae more accurately represents phylogenetic relationships. Taxa classified as Ruminococcaceae in NCBI are in black; taxa in other families are underlined. NCBI-based classification is clearly not consistent with phylogeny. Here, a definition of Ruminococcaceae based on an internal clade system (clades 14, 61, 101, 125, and 131) is consistent with phylogeny. Clade 13 was excluded as it is highly divergent from the remaining Ruminococcaceae.



FIG. 7 is a graph showing that clade-based relative abundance of Ruminococcaceae is associated with response to checkpoint therapy. Samples are ordered by decreasing relative abundance. Responders are shown in gray while non-responders are shown in black. The threshold was increased from 9.5% with the NCBI-based definition of Ruminococcaceae to 12% with the clade-based definition, as a greater number of Ruminococcaceae species were detected by the latter, resulting in higher per sample abundances. The threshold was chosen to maximize sensitivity while maintaining 100% specificity.



FIG. 8 is a plot showing the distribution of Ruminococcaceae clade-based abundance with Bacteroidia clade-based abundance. Eighty percent of responders fall outside of lower left quadrant.



FIG. 9 is a plot of a receiver operating characteristic (ROC) curve for Ruminococcaceae clade-based relative abundance in combined dataset (n=112) as a predictor of response to checkpoint therapy.



FIG. 10 is a plot of a distribution of Ruminococcaceae clade-based abundance in the combined dataset (n=112). Seventy-two percent of total non-responders lie to the left of the dotted line (<12% Ruminococcaceae), while 68% of total responders lie to right of the line (>=12% Ruminococcaceae). Bacteroidia relative abundance is plotted to allow visual separation of samples.



FIG. 11 is a plot of a ROC curve for Ruminococcaceae clade-based relative abundance in combined dataset excluding stable disease patients (n=85) as a predictor of response to checkpoint therapy.





DETAILED DESCRIPTION
I. Definitions

As used herein, the terms “or” and “and/or” are utilized to describe multiple components in combination or exclusive of one another. For example, “x, y, and/or z” can refer to “x” alone, “y” alone, “z” alone, “x, y, and z,” “(x and y) or z,” “x or (y and z),” or “x or y or z.” Is is specifically contemplated that x, y, or z may be specifically excluded from an embodiment.


Throughout this application, the term “about” is used according to its plain and ordinary meaning in the area of cell biology to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value.


The term “comprising,” which is synonymous with “including,” “containing,” or “characterized by,” is inclusive or open-ended and does not exclude additional, unrecited elements or method steps. The phrase “consisting of” excludes any element, step, or ingredient not specified. The phrase “consisting essentially of” limits the scope of described subject matter to the specified materials or steps and those that do not materially affect its basic and novel characteristics. It is contemplated that embodiments described in the context of the term “comprising” may also be implemented in to context of the term “consisting of” or “consisting essentially of.” “Microbiome” refers to the communities of microbes that live in or on an individual's body, both sustainably and transiently, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses (i.e., phage)).


“Dysbiosis” refers to a state of the microbiota or microbiome of the GI tract or other body area, including mucosal or skin surfaces in which the normal diversity and/or function of the ecological network is disrupted. Any disruption from the preferred (e.g., ideal) state of the microbiota can be considered a dysbiosis, even if such dysbiosis does not result in a detectable decrease in health. This state of dysbiosis may be unhealthy, it may be unhealthy under only certain conditions, or it may prevent a subject from becoming healthier. Dysbiosis may be due to a decrease in diversity, the overgrowth of one or more pathogens or pathobionts, symbiotic organisms able to cause disease only when certain genetic and/or environmental conditions are present in a patient, or the shift to an ecological network that no longer provides a beneficial function to the host and therefore no longer promotes health.


A “spore” or a population of “spores” includes bacteria (or other single-celled organisms) that are generally viable, more resistant to environmental influences such as heat and bacteriocidal agents than vegetative forms of the same bacteria, and typically are capable of germination and out-growth. “Spore-formers” or bacteria “capable of forming spores” are those bacteria containing the genes and other necessary features to produce spores under suitable environmental conditions.


The terms “pathogen”, “pathobiont” and “pathogenic” in reference to a bacterium or any other organism or entity includes any such organism or entity that is capable of causing or affecting a disease, disorder or condition of a host organism containing the organism or entity.


The term “isolated” encompasses a bacterium or other entity or substance that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature or in an experimental setting), and/or (2) produced, prepared, purified, and/or manufactured by the hand of man. Isolated bacteria may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated. In some embodiments, isolated bacteria are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is “pure” if it is substantially free of other components. The terms “purify,” “purifying” and “purified” refer to a bacterium or other material that has been separated from at least some of the components with which it was associated either when initially produced or generated (e.g., whether in nature or in an experimental setting), or during any time after its initial production. A bacterium or a bacterial population may be considered purified if it is isolated at or after production, such as from a material or environment containing the bacterium or bacterial population, and a purified bacterium or bacterial population may contain other materials up to about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or above about 90% and still be considered “isolated.” In some embodiments, purified bacteria and bacterial populations are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. In the instance of bacterial compositions provided herein, the one or more bacterial types present in the composition can be independently purified from one or more other bacteria produced and/or present in the material or environment containing the bacterial type. Bacterial compositions and the bacterial components thereof are generally purified from residual habitat products.


“Inhibition” of a pathogen encompasses the inhibition of any desired function or activity of the bacterial compositions of the present invention. Demonstrations of pathogen inhibition, such as decrease in the growth of a pathogenic bacterium or reduction in the level of colonization of a pathogenic bacterium are provided herein and otherwise recognized by one of ordinary skill in the art. Inhibition of a pathogenic bacterium's “growth” may include inhibiting the increase in size of the pathogenic bacterium and/or inhibiting the proliferation (or multiplication) of the pathogenic bacterium. Inhibition of colonization of a pathogenic bacterium may be demonstrated by measuring the amount or burden of a pathogen before and after a treatment. An “inhibition” or the act of “inhibiting” includes the total cessation and partial reduction of one or more activities of a pathogen, such as growth, proliferation, colonization, and function.


The “colonization” of a host organism includes the transitory (e.g., for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 1 week) or non-transitory (e.g., greater than one week, at least two weeks, at least three weeks, at least 4 weeks, at least 6 weeks, at least 8 weeks, at least 3 month, at least 4 months, at least 6 months) residence of a bacterium or other microscopic organism. As used herein, “reducing colonization” of a host subject's gastrointestinal tract (or any other microbiotal niche) by a pathogenic bacterium includes a reduction in the residence time of the pathogen in the gastrointestinal tract as well as a reduction in the number (or concentration) of the pathogen in the lumen of the gastrointestinal tract or adhered to the mucosal surface of the gastrointestinal tract. Measuring reductions of adherent pathogens may be demonstrated, e.g., by a biopsy sample, or luminal reductions may be measured indirectly, e.g., indirectly by measuring the pathogenic burden in the stool of a mammalian host.


A “combination” of two or more bacteria includes the physical co-existence of the two bacteria, either in the same material or product or in physically connected products, as well as the temporal co-administration or co-localization of the two bacteria.


A “cytotoxic” activity or bacterium includes the ability to kill another bacterial cell, such as a pathogenic bacterial cell or a closely related species of strain. A “cytostatic” activity or bacterium includes the ability to inhibit, partially or fully, growth, metabolism, and/or proliferation of a bacterial cell, such as a pathogenic bacterial cell.


To be free of “non-comestible products” means that a bacterial composition or other material provided herein does not have a substantial amount of a non-comestible product, e.g., a product or material that is inedible, harmful or otherwise undesired in a product suitable for administration, e.g., oral administration, to a human subject.


“Microbiome” refers to the genetic content of the communities of microbes that live in and on the human body, both sustainably and transiently, including eukaryotes, archaea, bacteria, and viruses (including bacterial viruses (i.e., phage)), wherein “genetic content” includes genomic DNA, RNA such as micro RNA and ribosomal RNA, the epigenome, plasmids, and all other types of genetic information.


“Augmentation” of a type of bacterium, e.g., a species, is an effect of treatment with a composition of the invention that is characterized by post-treatment detection of an increased abundance of a species not present in the composition by a nonparametric test of abundance.


“Engraftment” of a type of bacterium, e.g., a species, is an effect of treatment with a composition of the invention that is characterized by post-treatment detection of a species from the administered composition, which is not detected in the treated subject pretreatment. Methods of detection are known in the art. In one example, the method is PCR detection of a 16S rDNA sequence using standard parameters for PCR.


“Residual habitat products” refers to material derived from the habitat for microbiota within or on a human or animal. For example, microbiota live in feces in the gastrointestinal tract, on the skin itself, in saliva, mucus of the respiratory tract, or secretions of the genitourinary tract (i.e., biological matter associated with the microbial community). Substantially free of residual habitat products means that the bacterial composition no longer contains the biological matter associated with the microbial environment on or in the human or animal subject and is 100% free, 99% free, 98% free, 97% free, 96% free, or 95% free of any contaminating biological matter associated with the microbial community. Residual habitat products can include abiotic materials (including undigested food) or it can include unwanted microorganisms and/or fragments of microorganisms. Substantially free of residual habitat products may also mean that the bacterial composition contains no detectable cells from a human or animal and that only microbial cells are detectable. In one embodiment, substantially free of residual habitat products may also mean that the bacterial composition contains no detectable viral (including bacterial viruses (i.e., phage) or human viruses), fungal, or mycoplasmal contaminants. In another embodiment, it means that fewer than 1×10−2%, 1×10−3%, 1×10−4%, 1×10−6%, 1×10−6%, 1×10−7%, 1×10−8% of the viable cells in the bacterial composition are human or animal, as compared to microbial cells. There are multiple ways to accomplish this degree of purity, none of which are limiting. Thus, contamination may be reduced by isolating desired constituents through multiple steps of streaking to single colonies on solid media until replicate (such as, but not limited to, two) streaks from serial single colonies have shown only a single colony morphology. Alternatively, reduction of contamination can be accomplished by multiple rounds of serial dilutions to single desired cells (e.g., a dilution of 10−8 or 10−9), such as through multiple 10-fold serial dilutions. This can further be confirmed by showing that multiple isolated colonies have similar cell shapes and Gram staining behavior. Other methods for confirming adequate purity include genetic analysis (e.g. PCR, DNA sequencing), serology and antigen analysis, enzymatic and metabolic analysis, and methods using instrumentation such as flow cytometry with reagents that distinguish desired constituents from contaminants.


“Phylogenetic tree” refers to a graphical representation of the evolutionary relationships of one genetic sequence to another that is generated using a defined set of phylogenetic reconstruction algorithms (e.g. parsimony, maximum likelihood, or Bayesian). Nodes in the tree represent distinct ancestral sequences and the confidence of any node is provided by a bootstrap or Bayesian posterior probability, which measures branch uncertainty.


“Operational taxonomic unit (OTU, plural OTUs)”, in some embodiments, refers to a terminal leaf in a phylogenetic tree and is defined by a specific genetic sequence and all sequences that share sequence identity to this sequence at the level of species. A “type” or a plurality of “types” of bacteria includes an OTU or a plurality of different OTUs, and also encompasses a strain, species, genus, family or order of bacteria. The specific genetic sequence may be the 16S rDNA sequence or a portion of the 16S rDNA sequence or it may be a functionally conserved housekeeping gene found broadly across the eubacterial kingdom. OTUs share at least 95%, 96%, 97%, 98%, or 99% sequence identity. OTUs generally defined by comparing sequences between organisms. Sequences with less than 95% sequence identity are not considered to form part of the same OTU. In some embodiments, metagenomics methods, known in the art, are used to identify species and/or OTUs.


“Clade” refers to the set of OTUs or members of a phylogenetic tree downstream of a statistically valid node in a phylogenetic tree. A clade is a group of related organisms representing all of the phylogenetic descendants of a common ancestor. The clade comprises a set of terminal leaves in the phylogenetic tree that is a distinct monophyletic evolutionary unit.


The terms “subject” or “patient” refers to any animal subject including humans, laboratory animals (e.g., primates, rats, mice), livestock (e.g., cows, sheep, goats, pigs, turkeys, chickens), and household pets (e.g., dogs, cats, rodents, etc.). The subject or patient may be healthy, or may be suffering from an infection due to a gastrointestinal pathogen or may be at risk of developing or transmitting to others an infection due to a gastrointestinal pathogen.


The term “pathobiont” refer to specific bacterial species found in healthy hosts that may trigger immune-mediated pathology and/or disease in response to certain genetic or environmental factors. Chow et al., (2011) Curr Op Immunol. Pathobionts of the intestinal microbiota and inflammatory disease. 23: 473-80. Thus, a pathobiont is a pathogen that is mechanistically distinct from an acquired infectious organism. Thus, the term “pathogen” includes both acquired infectious organisms and pathobionts.


As used herein, the term “immunoregulator” refers to an agent or a signaling pathway (or a component thereof) that regulates an immune response. “Regulating,” “modifying” or “modulating” an immune response refers to any alteration of the immune system or in the activity of such cell. Such regulation includes stimulation or suppression of the immune system which may be manifested by an increase or decrease in the number of various cell types, an increase or decrease in the activity of these cells, or any other changes which can occur within the immune system. Both inhibitory and stimulatory immunoregulators have been identified, some of which may have enhanced function or utility as a therapeutic target in a cancer microenvironment.


As used herein, the term “immune evasion” refers to inhibition of a subject's immune system or a component thereof (e.g., endogenous T cell response) by a cancer or tumor cell in order to maximize or allow continued growth or spread of the cancer/tumor.


As used herein, the term “immunotherapy” refers to the treatment or prevention of a disease or condition (e.g., cancer) by a method comprising inducing, enhancing, suppressing or otherwise modifying an immune response.


As used herein, “potentiating an endogenous immune response” means increasing the effectiveness or potency of an existing immune response in a subject. This increase in effectiveness and potency may be achieved, for example, by overcoming mechanisms that suppress the endogenous host immune response or by stimulating mechanisms that enhance the endogenous host immune response.


As used herein, the term “antibody” refers to a whole antibody molecule or a fragment thereof (e.g., fragments such as Fab, Fab′, and F(ab′)2), it may be a polyclonal or monoclonal antibody, a chimeric antibody, a humanized antibody, a human antibody, etc.


As used herein, “cancer” means all types of cancers. In particular, the cancers can be solid or non-solid cancers. Non-limiting examples of cancers are carcinomas or adenocarcinomas such as breast, prostate, ovary, lung, pancreas or colon cancer, sarcomas, lymphomas, melanomas, leukemias, germ cell cancers and blastomas.


II. Methods of the Disclosure

Provided herein are compositions and methods for treatment and/or prevention of a cancer by microbiome manipulation. In particular, the amount, identity, presence, and/or ratio of bacteria in the microbiome (e.g., GI microbiome) in a subject is manipulated to facilitate treatment of a cancer. Furthermore, applicants have discovered that the abundance and/or prevalence of certain commensal bacteria in feces, e.g., commensal Ruminococcaceae, can be used to identify fecal donors and/or donations that can improve patient response to a checkpoint inhibitor. Fecal material from such individuals can be used, e.g., in fecal microbiome transplantation or in a processed form derived from such material, for example a preparation enriched in Firmicutes (e.g., Clostridia, Clostridiales, or spore formers), that are in vegetative and/or spore form.


Applicants have identified bacterial species that are useful for increasing the efficacy of cancer treatment, e.g., treatments using checkpoint inhibitors. In some embodiments, the effectiveness of an endogenous immune response, immunotherapy, chemotherapeutic, or other treatment (e.g., surgery, radiation, etc.) in the treatment or prevention of reoccurrence of cancer and/or tumor is dependent upon conditions within the subject (e.g., the tumor microenvironment). In particular, the identity or characteristics (e.g., concentration or level) of the microbiome within a subject can affect the effectiveness of cancer treatments (e.g., generally or specific treatments) and/or the effectiveness of the subject's own response to cancer, e.g., immune response.


In some embodiments, the presence or increased level of one or more species of bacteria in a subject facilitates treatment (e.g., immunotherapy, chemotherapy, etc.) and/or the subject's endogenous immune response to cancer and/or tumor cells. In some embodiments, the absence and/or decreased level of one or more species of bacteria in a subject discourages cancer/tumor growth, spread, and/or evasion of treatment/immune response. In some embodiments, the absence or decreased level of one or more species of bacteria in a subject facilitates treatment (e.g., immunotherapy, chemotherapy, etc.) and/or the subject's endogenous immune response to cancer and/or tumor cells.


In some embodiments, the presence of certain microbes (e.g., microbes that facilitate cancer treatment) in a subject creates an environment or microenvironment (e.g., microbiome) that is conducive to the treatment of cancer and/or inhibits cancer/tumor growth. In some embodiments, the presence of detrimental microbes (e.g., microbes that facilitate cancer/tumor growth and/or prevent treatment) in a subject creates an environment or microenvironment (e.g., microbiome) that is conducive to the treatment of cancer and/or inhibits cancer/tumor growth. Microbes or their products may act locally at the level of the gut epithelium and the lamina propria to alter immunological tone or immune cell trafficking, or they may act distally by the translocation of microbes or their products into circulation to alter peripheral immune responses, e.g. in blood, liver, spleen, lymph nodes or tumor.


Modulation of microflora levels and/or identity may comprise encouraging or facilitating growth of one or more species of beneficial microbes (e.g., microbes that facilitate cancer treatment), discouraging or inhibiting growth of one or more types of detrimental microbes (e.g., species of bacteria that facilitate cancer/tumor growth and/or prevent treatment), administering one or more types of beneficial microbes (e.g., species of bacteria that facilitate cancer treatment) to the subject, and/or combinations thereof. Embodiments within the scope herein are not limited by the mechanisms for introducing one or more microbes (e.g., probiotic administration, fecal transplant, etc.), encouraging growth of beneficial microbes (e.g., administering agents that skew the environment within the subject toward growth conditions for the beneficial microbes), discouraging or inhibiting growth of detrimental microbes (e.g., administering agents that skew the environment within the subject away from growth conditions for the detrimental microbes, administration of antimicrobial(s), etc.), and combinations thereof.


In some embodiments, methods are provided for the treatment or prevention of cancer by the manipulation of the presence, amount, or relative ratio of one or more families, genera, or species of bacteria (e.g., in the gastrointestinal microbiome). In some embodiments, the presence, amount, or relative ratio of particular bacteria, fungi, and/or archaea within a subject is altered. For example, in some embodiments, the presence, amount, or relative ratio of one or more bacteria from the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum is manipulated. For example, in some embodiments, the presence, amount, or relative ratio of one or more bacteria from the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, or Parabacteroides is manipulated. In some embodiments, the presence, amount, or relative ratio of one or more bacteria from the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, or Parabacteroides are manipulated. In some embodiments the presence, amount, or relative ratio of one or more bacteria from the genera Bifidobacterium, Blautia, Parabacteroides, or Subdoligranulum are manipulated. In some embodiments the presence, amount, or relative ratio of one or more bacteria from the genera Blautia, Clostridium, Coprococcus, Faecalibacterium, Fusicatenbacter, Gemmiger, Lachnospiraceae or Subdoligranulum are manipulated.


In some embodiments, the presence, amount or relative ratio of one or more bacterial species that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii are manipulated or adjusted. In some embodiments, the presence, amount or relative ratio of one or more bacterial species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae are manipulated or adjusted. In some embodiments, the one or more species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the presence, amount or relative ratio of one or more bacterial species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof, are manipulated or adjusted.


In some embodiments, the methods exclude the administration of, the evaluation of, the detection of, or the determination of the amount or relative ratio of one or more bacterial species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In some embodiments, the presence, amount, or relative ratio of one or more bacterial species Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme or Parabacteroides distasonis are manipulated. In some embodiments, the presence, amount, or relative ratio of one or more bacterial species Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus or Parabacteroides distasonis are manipulated. In some embodiments, the presence, amount, or relative ratio of one or more bacterial species Bifidobacterium bifidum, Blautia_SC109, Parabacteroides distasonis Gemmiger formicilis or Subdoligranulum variabile are manipulated. In some embodiments, the presence, amount, or relative ratio of one or more bacterial species Blautia_SC109, Gemmiger formicilis or Subdoligranulum variabile, Coprococcus catus, Faecalibacterium prausnitzii, Fusicatenbacter saccharivorans, Gemmiger formicilis, Subdoligranulum variabile, Anaerostipes hadrus, Gemmiger formicilis or Subdoligranulum variabile are manipulated.


III. Therapeutic Compositions

In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least one, two, three or four of the genera listed.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of one or more bacterial species that are phylogenetic descendants of the MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii. In some embodiments, the therapeutic composition may comprise at least one, two, three, four, five, six, seven, eight, nine, ten or more than ten species that are phylogenetic descendants of the MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of one or more bacterial species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the therapeutic composition may comprise at least one, two, three, four, five, six, seven, eight, nine, ten or more than ten species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the one or more species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of one or more bacterial species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof. In some embodiments, the therapeutic composition may comprise at least one, two, three, four, five, six, seven, eight, nine, ten or more than ten species of the species listed.


In some embodiments, the therapeutic compositions may exclude an isolated and/or purified population comprising one or more bacterial species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least one, two, three, four, five, six, seven, eight, nine or ten of the genera listed.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least one, two, three, four, five or six of the genera listed.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of bacteria belonging to one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In some embodiments, the therapeutic composition may comprise bacteria belonging to at least one, two, three, four, five or six of the genera listed.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In some embodiments, the therapeutic composition may comprise at least one, two, three, four, five, six, seven, eight, nine, ten, eleven or twelve of the species listed.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In some embodiments, the therapeutic composition may comprise at least one, two, three, four, five or six of the species listed.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof. In some embodiments, the therapeutic composition may comprise at least two, three, four, five or more of the species listed. In some embodiments, the therapeutic composition may comprise at least one, two, three, four, five, six, seven or eight of the species listed.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of one or more of the bacteria species in one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135 as shown in the phylogenetic tree in FIG. 6. In some embodiments, clade 101 comprises the bacterial species Flavonifractor plautii, Clostridium orbiscindens, Clostridium sp NML_04A032, Pseudoflavonifractor capillosus, Ruminococcaceae bacterium D16, Clostridium viride, Oscillospira guilliermondii, Oscillibacter sp_G2, Oscillibacter valericigenes, Sporobacter termitidis and Paplillibacter cinnamivorans. In some embodiments, clade 14 comprises the bacterial species Ruminococcus sp_18P13, Ruminococcus sp_9SE51, Ruminococcus champanellensis, Ruminococcus callidus, Ruminococcus flavefaciens and Ruminococcus albus. In some embodiments, clade 126 comprises the bacterial species Ethanoligenens harbinense, Clostridium cellulosi, Acetanaerobacterium elongatum, Clostridium sp_YIT_12070, Clostridium methylpentosum, Hydrogenoanaerobacterium saccharovorans, and Anaerotruncus colihominis. In some embodiments, clade 61 comprises the bacterial species Eubacterium siraeum, Subdoligranulum variabile, Gemmiger formicilis and Faecalibacterium prausnitzii. In some embodiments, clade 125 comprises the bacterial species Eubacterium coprostanoligenes, Clostridium sp_YIT_12069, Clostridium sporosphaeroides, Clostridium leptum and Ruminococcus bromii. In some embodiments, clade 135 comprises the bacterial species Eubacterium desmolans, Butyricicoccus pullicaecorum or combinations thereof.


In some embodiments, the therapeutic compositions comprise an effective amount of one, two, three, four, five, six, seven, eight, nine, ten or eleven species of clade 101. In some embodiments, the therapeutic compositions comprise an effective amount of one, two, three, four, five or six, species of clade 14. In some embodiments, the therapeutic compositions comprise an effective amount of one, two, three, four, five, six or seven species of clade 126. In some embodiments, the therapeutic compositions comprise an effective amount of one, two, three or four species of clade 61. In some embodiments, the therapeutic compositions comprise an effective amount of one, two, three, four or five species of clade 125. In some embodiments, the therapeutic compositions comprise an effective amount of one or two species of clade 135.


In some embodiments, the therapeutic compositions may comprise additional species that are determined to be part of any one of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135. A person of ordinary skill in the art would be able to use methods known in the art to determine whether a species is part of a clade, including methods described herein.


In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of one or more of the bacteria species listed in Tables 1A and 1B. In some embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of one or more of the bacteria species listed in Table 11. In other embodiments, the therapeutic compositions comprise an effective amount of an isolated and/or purified population of one or more of the bacteria species listed in any of Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 and 11.


In some embodiments, a therapeutic composition can reduce the rate of tumor growth in an animal model. In some embodiments, a therapeutic composition can reduce the rate of tumor growth in a human subject. In some embodiments, a therapeutic composition can reduce the rate of tumor growth in an in vitro cell culture model. In some embodiments, a therapeutic composition can reduce the rate of tumor growth in an in situ model.


In some embodiments, the method of treating a cancer may use any of the therapeutic compositions listed herein, including combinations of genera from therapeutic compositions and/or combinations of species from therapeutic compositions. These methods of treatment, including combination treatment with other anti-cancer agents, are described in further detail below.


In some embodiments, the bacteria in the therapeutic compositions may be identified by species, operational taxonomic unit (OTU), whole genome sequence or other methods known in the art for defining different types of bacteria.


Bacterial compositions may comprise two types of bacteria (termed “binary combinations” or “binary pairs”) or greater than two types of bacteria. Bacterial compositions that comprise three types of bacteria are termed “ternary combinations”. For instance, a bacterial composition may comprise at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, or at least 21, 22, 23, 24, 25, 26, 27, 28, 29 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or at least 40, at least 50 or greater than 50 types of bacteria, as defined by species or operational taxonomic unit (OTU), or otherwise as provided herein.


In another embodiment, the number of types of bacteria present in a bacterial composition is at or below a known value. For example, in such embodiments the bacterial composition comprises 50 or fewer types of bacteria, such as 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, or 10 or fewer, or 9 or fewer types of bacteria, 8 or fewer types of bacteria, 7 or fewer types of bacteria, 6 or fewer types of bacteria, 5 or fewer types of bacteria, 4 or fewer types of bacteria, or 3 or fewer types of bacteria. In another embodiment, a bacterial composition comprises from 2 to no more than 40, from 2 to no more than 30, from 2 to no more than 20, from 2 to no more than 15, from 2 to no more than 10, or from 2 to no more than 5 types of bacteria.


A bacterial composition useful in a method described herein may be prepared comprising at least one type of isolated bacteria, wherein a first type and a second type are independently chosen from the genera or species listed herein. In another embodiment, the first and/or second OTUs may be characterized by one or more of the variable regions of the 16S sequence (V1-V9). These regions in bacteria are defined by nucleotides 69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 respectively using numbering based on the E. coli system of nomenclature. (e.g., Brosius et al., Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli, Proc Nat Acad Sci 75(10):4801-4805 (1978)). In some embodiments, at least one of the V1, V2, V3, V4, V5, V6, V7, V8, and V9 regions are used to characterize an OTU. In one embodiment, the V1, V2, and V3 regions are used to characterize an OTU. In another embodiment, the V3, V4, and V5 regions are used to characterize an OTU. In another embodiment, the V4 region is used to characterize an OTU.


Methods of the disclosure include administration of a combination of therapeutic agents and compositions. The therapy may be administered in any suitable manner known in the art. For example, the therapies may be administered sequentially (at different times) or concurrently (at the same time). In some embodiments, the therapies are in a separate composition. In some embodiments, the therapies are in the same composition.


Various combinations of the therapies may be employed, for example, one therapy or composition designated “A” and another therapy or composition designated “B”:

















A/B/A B/A/B B/B/A A/A/B A/B/B B/A/A A/B/B/B B/A/B/B



B/B/B/A B/B/A/B A/A/B/B A/B/A/B A/B/B/A B/B/A/A



B/A/B/A B/A/A/B A/A/A/B B/A/A/A A/B/A/A A/A/B/A










The therapies and compositions of the disclosure may be administered by the same route of administration or by different routes of administration. In some embodiments, the therapy is administered intracolonically, intravenously, intramuscularly, subcutaneously, topically, orally, transdermally, intraperitoneally, intraorbitally, by implantation, intrathecally, intraventricularly, or intranasally. In some embodiments, the microbial modulator is administered intravenously, intramuscularly, subcutaneously, topically, orally, transdermally, intraperitoneally, intraorbitally, by implantation, intrathecally, intraventricularly, or intranasally.


In some embodiments, the compositions of the disclosure are administered in a therapeutically effective or sufficient amount of each of the at least one isolated or purified population of bacteria or each of the at least two, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, or 15 isolated or purified populations of bacteria of the microbial modulator compositions of the embodiments that is administered to a human will be at least about 1×103 viable colony forming units (CFU) of bacteria or at least about 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015 viable CFU (or any derivable range therein). In some embodiments, a single dose will contain an amount of bacteria (such as a specific bacteria or species, genus, or family described herein) of at least, at most, or exactly 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015 or greater than 1×1015 viable CFU (or any derivable range therein) of a specified bacteria. In some embodiments, a single dose will contain at least, at most, or exactly 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015 or greater than 1×1015 viable CFU (or any derivable range therein) of total bacteria. In specific embodiments, the bacteria are provided in spore form or as sporulated bacteria. In particular embodiments, the concentration of spores of each isolated or purified population of bacteria, for example of each species, subspecies or strain, is at least, at most, or exactly 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015 or greater than 1×1015 (or any derivable range therein) viable bacterial spores per gram of composition or per administered dose. In some embodiments, the composition comprises or the method comprises administration of at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, or 50 (or any derivable range therein) of different bacterial species, different bacterial genus, or different bacterial family.


In some embodiments, the therapeutically effective or sufficient amount of each of the at least one isolated or purified population of bacteria or each of the at least two, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, or 15 isolated or purified populations of bacteria of the microbial modulator compositions of the embodiments that is administered to a human will be at least about 1×103 cells of bacteria or at least about 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015 cells (or any derivable range therein). In some embodiments, a single dose will contain an amount of bacteria (such as a specific bacteria or species, genus, or family described herein) of at least, at most, or exactly 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015 cells (or any derivable range therein) of a specified bacteria. In some embodiments, a single dose will contain at least, at most, or exactly 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1χ1011, 1×1012, 1χ1013, 1×1014, 1×1015 cells (or any derivable range therein) of total bacteria. In specific embodiments, the bacteria are provided in spore form or as sporulated bacteria. In particular embodiments, the concentration of spores of each isolated or purified population of bacteria, for example of each species, subspecies or strain, is at least, at most, or exactly 1×104, 1×105, 1×106, 1×107, 1×108, 1×109, 1×1010, 1×1011, 1×1012, 1×1013, 1×1014, 1×1015 or greater than 1×1015 (or any derivable range therein) viable bacterial spores per gram of composition or per administered dose. In some embodiments, the composition comprises or the method comprises administration of at least, at most, or exactly 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, or 50 (or any derivable range therein) of different bacterial species, different bacterial genus, or different bacterial family.


The treatments may include various “unit doses.” Unit dose is defined as containing a predetermined-quantity of the therapeutic composition. The quantity to be administered, and the particular route and formulation, is within the skill of determination of those in the clinical arts. A unit dose need not be administered as a single injection but may comprise continuous infusion over a set period of time. In some embodiments, a unit dose comprises a single administerable dose.


The quantity to be administered, both according to number of treatments and unit dose, depends on the treatment effect desired. An effective dose is understood to refer to an amount necessary to achieve a particular effect. In some embodiments, it is contemplated that doses in the range from 10 mg/kg to 200 mg/kg can affect the protective capability of these agents. Thus, it is contemplated that doses include doses of about 0.1, 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, and 200, 300, 400, 500, 1000 μg/kg, mg/kg, μg/day, or mg/day or any range derivable therein. Furthermore, such doses can be administered at multiple times during a day, and/or on multiple days, weeks, or months.


In some embodiments, the therapeutically effective or sufficient amount of a therapeutic composition that is administered to a human will be in the range of about 0.01 to about 50 mg/kg of patient body weight whether by one or more administrations. In some embodiments, the therapeutic agent used is about 0.01 to about 45 mg/kg, about 0.01 to about 40 mg/kg, about 0.01 to about 35 mg/kg, about 0.01 to about 30 mg/kg, about 0.01 to about 25 mg/kg, about 0.01 to about 20 mg/kg, about 0.01 to about 15 mg/kg, about 0.01 to about 10 mg/kg, about 0.01 to about 5 mg/kg, or about 0.01 to about 1 mg/kg administered daily, for example. In some embodiments, the therapeutic agent is administered at 15 mg/kg. However, other dosage regimens may be useful. In one embodiment, a therapeutic agent described herein is administered to a subject at a dose of about 100 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 600 mg, about 700 mg, about 800 mg, about 900 mg, about 1000 mg, about 1100 mg, about 1200 mg, about 1300 mg or about 1400 mg on day 1 of 21-day cycles. The dose may be administered as a single dose or as multiple doses (e.g., 2 or 3 doses), such as infusions. The progress of this therapy is easily monitored by conventional techniques.


In some embodiments, the effective dose of the pharmaceutical composition is one which can provide a blood level of about 1 μM to 150 μM. In another embodiment, the effective dose provides a blood level of about 4 μM to 100 μM; or about 1 μM to 100 μM; or about 1 μM to 50 μM; or about 1 μM to 40 μM; or about 1 μM to 30 μM; or about 1 μM to 20 μM; or about 1 μM to 10 μM; or about 10 μM to 150 μM; or about 10 μM to 100 μM; or about 10 μM to 50 μM; or about 25 μM to 150 μM; or about 25 μM to 100 μM; or about 25 μM to 50 μM; or about 50 μM to 150 μM; or about 50 μM to 100 μM (or any range derivable therein). In other embodiments, the dose can provide the following blood level of the agent that results from a therapeutic agent being administered to a subject: about, at least about, or at most about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100 μM or any range derivable therein. In some embodiments, the therapeutic agent that is administered to a subject is metabolized in the body to a metabolized therapeutic agent, in which case the blood levels may refer to the amount of that agent. Alternatively, to the extent the therapeutic agent is not metabolized by a subject, the blood levels discussed herein may refer to the unmetabolized therapeutic agent.


Precise amounts of the therapeutic composition also depend on the judgment of the practitioner and are peculiar to each individual. Factors affecting dose include physical and clinical state of the patient, the route of administration, the intended goal of treatment (alleviation of symptoms versus cure) and the potency, stability and toxicity of the particular therapeutic substance or other therapies a subject may be undergoing.


It will be understood by those skilled in the art and made aware that dosage units of μg/kg or mg/kg of body weight can be converted and expressed in comparable concentration units of μg/ml or mM (blood levels), such as 4 μM to 100 μM. It is also understood that uptake is species and organ/tissue dependent. The applicable conversion factors and physiological assumptions to be made concerning uptake and concentration measurement are well-known and would permit those of skill in the art to convert one concentration measurement to another and make reasonable comparisons and conclusions regarding the doses, efficacies and results described herein.


IV. Methods for Evaluating Bacteria

A. Determining Bacterial Genera and Species


In some embodiments, the bacterial genera or species for use in a therapeutic composition is as described in the Examples below.


In some embodiments, the bacterial genera or species for use in a therapeutic composition are those genera or species that are found to be prevalent in the microbiome of subjects that respond to an anti-cancer therapy, e.g., subjects who are responders. In some embodiments, the genera or species are more prevalent in the microbiome of a responder compared to the microbiome of a subject who does not respond to an anti-cancer therapy, e.g., a non-responder. In other embodiments, the genera or species are more prevalent in the microbiome of a responder compared to the microbiome of a healthy subject that does not have a cancer and thus has not been treated with an anti-cancer therapy.


In some embodiments, the bacterial genera or species for use in a therapeutic composition are those genera or species that are found to be more abundant in the microbiome of subjects that respond to an anti-cancer therapy, e.g., subjects who are responders. In some embodiments, the genera or species are more abundant in the microbiome of a responder compared to the microbiome of a subject who does not respond to an anti-cancer therapy, e.g., a non-responder. In other embodiments, the genera or species are more abundant in the microbiome of a responder compared to the microbiome of a healthy subject that does not have a cancer and thus has not been treated with an anti-cancer therapy.


In some embodiments, whether a subject is a responder to an anti-cancer therapy is determined as described in the art, for example, by Routy et al. (Science 2018 359(6371):91-97) or Gopalakrishnan et al. (Science 2018; 359(6371):97-103). In some embodiments, the subject is considered a responder if, following treatment with an anti-cancer therapy, the subject shows a complete response to the therapy, e.g., a complete remission of the cancer. In other embodiments, the subject is considered a responder if, following treatment with an anti-cancer therapy, the subject shows a complete response to the therapy or a partial response to the therapy, e.g., a reduction in tumor size or tumor load. In other embodiments, the subject is considered a responder if, following treatment with an anti-cancer therapy, the subject shows a complete response to the therapy, a partial response to the therapy, or a stable response to the therapy, e.g. the subject's tumor size or tumor load does not increase.


B. Methods for Determining Species that are Members of the Family Ruminococcaceae


1. Most Recent Common Ancestor (MRCA)


In some embodiments, a bacterial species is a member of the family Ruminococcaceae if the species is a phylogenetic descendant of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii. In certain aspects, such a group of MRCA phylogenetic descendants is referred to as a “monophyletic” group.


In some embodiments, determining if a bacterial species is a descendant of a MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii may be performed using phylogenetic grouping procedures known in the art. In one embodiment, one may use a rooted phylogenetic tree with F. prausnitzii, F. plautii and a third taxon of interest (e.g. a taxon to be classified), and apply the analysis packages Analyses of Phylogenetics and Evolution (“ape;” https://cran.r-project.org/web/packages/ape/index.html) and Phylogenetic Tools for Comparative Biology (and Other Things) (“phytools;” https://cran.r-project.org/web/packages/phytools/index.html) in order to determine whether the taxon of interest is in the family Ruminococcaceae. Both ape and phytools are packages written in the R language for use in studying molecular evolution and phylogenetics. The ape and phytools packages provide methods for phylogenetic and evolutionary analysis and their use is known to one of skill in the art.


In some embodiments, the following script may be used:

















library(“ape”)



library(“phytools”)



input.tree = read.tree(file=″tree_file″)



rumino.node = getMRCA(input.tree,



c(′Faecalibacterium_prausnitzii′,′Flavonifractor_plautii′))



rumino.tree = extract.clade(input.tree, rumino.node)



print(rumino.tree$tip.label)










In some embodiments, after the script is run, if the taxon of interest is in the printed list, it is a descendant of a MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii and, in certain aspects, a member of the family Ruminococcaceae.


In other embodiments, different phylogenetic grouping methods known in the art may be used to determine if a bacterial strain is a descendant of a MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii, including methods that use different analysis packages and are based on different programming languages.


2. 16S rDNA Sequence Identity


In other embodiments, a bacterial species is a member of the family Ruminococcaceae if the species has a 16S rDNA sequence with sequence identity to 16S rDNA sequences from species already idenfied as a member of the family Ruminococcaceae. In an embodiment, identification of whether a bacterial species is a member of the family Ruminococcaceae is performed using the methods described in Yarza et al., 2014, Nature Reviews Microbiology 12:635-645, and Stackebrandt, E. & Ebers, J., 2006, Microbiol. Today 8:6-9, which are hereby incorporated by reference herein.


In some embodiments, the 16S rDNA sequence is obtained or determined for a bacterial species to be classified. This query 16S rDNA sequence is compared to 16S rDNA sequences from bacterial species already classified as members of the family Ruminococcaceae. In some embodiments, the query 16S rDNA sequence is compared to the 16S rDNA sequences listed in Table 11. In some embodiments, the query 16S rDNA sequence is compared to all known 16S rDNA sequences for bacterial species already classified as members of the family Ruminococcaceae. In other embodiments, the query 16S rDNA sequence is compared to a subset of all known 16S rDNA sequences for bacterial species already classified as members of the family Ruminococcaceae. A percent identity between the query sequence and the compared sequences is determined. If the percent identify of the query sequence is determined to be above a defined threshold, then the bacterial species to be classified is classified as member of the family Ruminococcaceae.


In some embodiments, the threshold sequence identity is 94.5%. In some embodiments, the threshold sequence identity is 98.7%. In some embodiments, the threshold sequence identity is 94.8%. In some embodiments, the threshold sequence identity is 94.5%, 94.6%, 94.7%, 94.8%, 94.9%, 95.0%, 95.1%, 95.2%, 95.3%, 95.4%, 95.5%, 95.6%, 95.7%, 95.8%, 95.9%, 96.0%, 96.1%, 96.2%, 96.3%, 96.4%, 96.5%, 96.6%, 96.7%, 96.8%, 96.9%, 97.0%, 97.1%, 97.2%, 97.3%, 97.4%, 97.5%, 97.6%, 97.7%, 97.8%, 97.9%, 98.0%, 98.1%, 98.2%, 98.3%, 98.4%, 98.5%, 98.6%, 98.7%, 98.8%, 98.9% 99.0%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%. 99.6%, 99.7%, 99.8%, 99.9% or 100%.


3. Clades that are Part of the Family Ruminococcaceae


In some embodiments, bacteria species may be classified in one of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135 as shown in the phylogenetic tree in FIG. 6. In some embodiments, clade 101 comprises the bacterial species Flavonifractor plautii, Clostridium orbiscindens, Clostridium sp NML_04A032, Pseudoflavonifractor capillosus, Ruminococcaceae bacterium D16, Clostridium viride, Oscillospira guilliermondii, Oscillibacter sp_G2, Oscillibacter valericigenes, Sporobacter termitidis and Paplillibacter cinnamivorans. In some embodiments, clade 14 comprises the bacterial species Ruminococcus sp_18P13, Ruminococcus sp_9SE51, Ruminococcus champanellensis, Ruminococcus callidus, Ruminococcus flavefaciens and Ruminococcus albus. In some embodiments, clade 126 comprises the bacterial species Ethanoligenens harbinense, Clostridium cellulosi, Acetanaerobacterium elongatum, Clostridium sp_YIT_12070, Clostridium methylpentosum, Hydrogenoanaerobacterium saccharovorans, and Anaerotruncus colihominis. In some embodiments, clade 61 comprises the bacterial species Eubacterium siraeum, Subdoligranulum variabile, Gemmiger formicilis and Faecalibacterium prausnitzii. In some embodiments, clade 125 comprises the bacterial species Eubacterium coprostanoligenes, Clostridium sp_YIT_12069, Clostridium sporosphaeroides, Clostridium leptum and Ruminococcus bromii. In some embodiments, clade 135 comprises the bacterial species Eubacterium desmolans, Butyricicoccus pullicaecorum or combinations thereof.


In some embodiments, the clades herein can include additional species that are determined to be part of any one of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135. In some embodiments, the phylogenetic grouping methods described herein, including the MRCA and 16S rDNA sequence identity methods described above, may be used to determine in an additional species belongs in a clade. In some embodiments, an additional species is classified as part of a clade if the 16S rDNA of the additional species is at least 97% identical to the 16S rDNA of the other species in the clade. A person of ordinary skill in the art would also be able to use methods known in the art to determine whether a species is part of a clade, including methods described herein.


C. Methods for Determining 16S rDNA Sequences


Operational taxonomic units (OTUs) can be identified, for example, by sequencing of the 16S rRNA gene, by sequencing of a specific hypervariable region of this gene (i.e. V1, V2, V3, V4, V5, V6, V7, V8, or V9), or by sequencing of any combination of hypervariable regions from this gene (e.g. V1-3 or V3-5). The bacterial 16S rDNA is approximately 1500 nucleotides in length and is used in reconstructing the evolutionary relationships and sequence similarity of one bacterial isolate to another using phylogenetic approaches. 16S rDNA sequences are used for phylogenetic reconstruction as they are in general highly conserved, but contain specific hypervariable regions that harbor sufficient nucleotide diversity to differentiate genera and species of most microbes. Using well known techniques to determine a full 16S rDNA sequence or the sequence of any hypervariable region of the 16S rDNA sequence, genomic DNA is extracted from a bacterial sample, the 16S rDNA (full region or specific hypervariable regions) amplified using polymerase chain reaction (PCR), the PCR products cleaned, and nucleotide sequences delineated to determine the genetic composition of 16S rDNA gene or subdomain of the gene. If full 16S rDNA sequencing is performed, the sequencing method used may be, but is not limited to, Sanger sequencing. If one or more hypervariable regions are used, such as the V4 region, the sequencing may be, but is not limited to being, performed using the Sanger method or using a next-generation sequencing method, such as an Illumina (sequencing by synthesis) method using barcoded primers allowing for multiplex reactions. In some cases, the 16S rDNA sequence associated with an OTU, species, or strain of bacteria is a composite of multiple 16S rDNA sequences harbored by the OTU, species, or strain.


In some embodiments, bacterial species identified as described herein are identified by sequence identity to 16S rDNA sequences as known in the art and described herein. In some embodiments, the selected species are identified by sequence identity to full length 16S rDNA sequences as shown in Table 10.


In some embodiments, Clostridium_SC64 is identified by at least 97% identity to the full length 16S rDNA sequence provided as SEQ ID NO:1 or at least 97% identity to a variable region such as V4. In some embodiments, Blautia_SC102 is identified by at least 97% to the full length 16S rDNA sequence provided as SEQ ID NO:2 or at least 97% identity to a variable region such as V4. In some embodiments, Blautia_SC109 is identified by its full length 16S rDNA sequence provided as SEQ ID NO:3 or at least 97% identity to a variable region such as V4. In some embodiments, Blautia_SC109 is identified by its full length 16S rDNA sequence provided as SEQ ID NO:4 or at least 97% identity to a variable region such as V4.


V. Methods for Preparing a Bacterial Composition for Administration to a Subject

Methods for producing bacterial compositions are known in the art. For example, a composition can be produced generally via three main processes, combined with one or more methods of mixing. The steps are: organism banking, organism production, and preservation.


For banking, the strains included in the bacterial composition can be, for example isolated directly from a specimen, obtained from a banked stock, optionally cultured on a nutrient agar or in broth that supports growth to generate viable biomass, and the biomass optionally preserved in multiple aliquots in long-term storage.


Stocks of organisms may prepared for storage, e.g., by adding cryoprotectants, lyoprotectants, and/or osmoprotectants. In general, such methods are known in the art.


VI. Immuno-Oncology (Immunotherapy) Drugs that can be Used in Conjunction with the Therapeutic Compositions

In some embodiments of the invention, the therapeutic composition is an adjunct treatment administered in combination with an immunotherapy drug, generally an immune checkpoint inhibitor (e.g., an antibody, such as a monoclonal antibody). The terms “immune checkpoint inhibitor,” “immune checkpoint blockade,” and “immune checkpoint therapy” are used interchangeably. Examples of such immunotherapy drugs include PD-1 inhibitors (e.g., nivolumab, and pembrolizumab), PD-L1 inhibitors (e.g., atezolizumab, avelumab, and durvalumab), and CTLA-4 inhibitors (e.g., ipilimumab and tremelimumab). In some embodiments, more than one checkpoint inhibitor is administered. As is known in the art, dosing of checkpoint inhibitors can be repeated at, for example, 2-3 week intervals, for as long as the patient continues to have a response or stable disease, or as otherwise determined to be appropriate by those of skill in the art.


Examples of cancers that can benefit from treatment with the therapeutic compositions in conjunction with a checkpoint inhibitor, e.g., an inhibitor of PD-1, PD-L1, or CTLA-4, include but are not limited to metastatic melanoma, melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, Merkel cell skin cancer (Merkel cell carcinoma), and Hodgkin lymphoma.


VII. Methods of Treatment

In general, the therapeutic compositions are administered to a patient diagnosed with a cancer, e.g., melanoma, for example, metastasized melanoma in conjunction with an immunotherapy drug such as checkpoint inhibitor, e.g., an inhibitor of PD-1, PD-L1, or CTLA-4. A therapeutic composition can be administered prior to checkpoint inhibitor (e.g., PD-1/PD-L1 inhibitor or CTLA-4 inhibitor) treatment, for example, at least one week, two weeks, or three weeks in advance of the treatment. In some cases, administration of the therapeutic composition is continued after the initiation of checkpoint inhibitor (e.g., PD-1/PD-L1 or CTLA-4 inhibitor) treatment. The therapeutic compositions may be administered daily, weekly, or monthly to induce and/or maintain an appropriate microbiome in the patient's GI tract.


Prior to initiating administration of a therapeutic composition, the patient may be subject to antibiotic treatment (e.g., with vancomycin, neomycin, rifaximin, or other antibiotic) and/or a bowel cleanse. In some cases, the antibiotic is a non-absorbable or minimally absorbable antibiotic. In some cases, no bowel preparation is performed. Such preparation may increase the speed and or efficacy of engraftment of one or more species in the therapeutic compositions that are associated with an improvement in checkpoint inhibitor (e.g., PD-1/PD-L1 inhibitor) efficacy.


VIII. Models for Testing

Animal models suitable for testing the efficacy of a microbiome composition for use in immunotherapy are known in the art, for example, as described in Cooper et al. (2014, Cancer Immunol Res 2:643-654) and Gopalakrishnan et al (2018, Science 359(6371):97-103) using the BP cell line, and reviewed in Li et al. (2017, Pharmacol & Therapeutics, dx.doi.org/10.1016/j.pharmthera.20170.02.002). Other useful models include germ-free mouse models (e.g., Matson et al. Science 359:104-108 (2018), Routy et al Science 59(6371):91-97 (2018)).


IX. Formulations

A microbiome immune-oncology therapeutic composition for use as described herein can be prepared and administered using methods known in the art. In general, compositions are formulated for oral, colonoscopic, or nasogastric delivery although any appropriate method can be used.


A formulation containing a therapeutic composition can contain one or more pharmaceutical excipients suitable for the preparation of such formulations. In some embodiments, the formulation is a liquid formulation. In some embodiments, a formulation comprising the therapeutic compositions can comprise one or more of surfactants, adjuvants, buffers, antioxidants, tonicity adjusters, thickeners or viscosity modifiers and the like.


In some embodiments, treatment includes administering the therapeutic compositions in a formulation that includes a pharmaceutically acceptable carrier. In some embodiments, the excipient includes a capsule or other format suitable for providing the therapeutic compositions as an oral dosage form. When an excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the formulations can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, soft or hard capsules, suppositories, or packaged powders.


Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, polyethylene glycol, glycerol, and methyl cellulose. The compositions can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.


In some embodiments, the therapeutic composition can be incorporated into a food product. In some embodiments the food product is a drink for oral administration. Non-limiting examples of a suitable drink include fruit juice, a fruit drink, an artificially flavored drink, an artificially sweetened drink, a carbonated beverage, a sports drink, a liquid diary product, a shake, an alcoholic beverage, a caffeinated beverage, infant formula and so forth. Other suitable means for oral administration include aqueous and nonaqueous solutions, emulsions, suspensions and solutions and/or suspensions reconstituted from non-effervescent granules, containing at least one of suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, coloring agents, and flavoring agents.


In some embodiments, the food product is a solid foodstuff. Suitable examples of a solid foodstuff include without limitation a food bar, a snack bar, a cookie, a brownie, a muffin, a cracker, an ice cream bar, a frozen yogurt bar, and the like.


In some embodiments, the therapeutic compositions are incorporated into a therapeutic food. In some embodiments, the therapeutic food is a ready-to-use food that optionally contains some or all essential macronutrients and micronutrients. In some embodiments, the compositions disclosed herein are incorporated into a supplementary food that is designed to be blended into an existing meal. In some embodiments, the supplemental food contains some or all essential macronutrients and micronutrients. In some embodiments, the bacterial compositions disclosed herein are blended with or added to an existing food to fortify the food's protein nutrition. Examples include food staples (grain, salt, sugar, cooking oil, margarine), beverages (juice, coffee, tea, soda, beer, liquor, sports drinks), snacks, sweets and other foods.


The therapeutic compositions can be formulated in a unit dosage form. In general, a dosage comprises about 1×102 to 1×109 viable colony forming units (CFU). The term “unit dosage forms” refers to physically discrete units suitable as unitary dosages for human subjects and/or other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient. A dosage may be administered in multiple delivery vehicles, e.g., multiple pills, capsules, foodstuffs or beverages.


The amount and frequency of administering the therapeutic compositions to a patient can vary depending upon the specific composition being administered, the purpose of the administration (such as prophylaxis or therapy), the state of the patient, the manner of administration, and the like. In therapeutic applications, compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest or mitigate the symptoms of the disease and its complications. An effective dose can depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient, and the like.


In some embodiments, at least one dose of the therapeutic composition is administered by the attending clinician or a person acting on behalf of the attending clinician. In some embodiments, the subject may self-administer some or all of the subsequent doses. In other embodiments, all doses of the therapeutic composition are administered by the attending clinician or a person acting on behalf of the attending clinician. In these embodiments, prior to the administration of a first dose of the therapeutic composition the attending clinician or a person acting on behalf of the attending clinician may administer an antibiotic treatment and/or a bowel cleanse.


The dosage can refer, for example, to the total number of viable colony forming units (CFUs) of each individual species or strain; or can refer to the total number of microorganisms in the dose. It is understood in the art that determining the number of organisms in a dosage is not exact and can depend on the method used to determine the number of organisms present. If the composition includes spores, for example, the number of spores in a composition may be determined using a dipicolinic acid assay (Fichtel et al, 2007, FEMS Microbiol Ecol, 61:522-32). In some cases, the number of organisms is determined using a culture assay.


Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.


X. Methods of Identifying a Candidate for Immune Checkpoint Therapy in Combination with Adjuvant Microbiome Therapy

In some embodiments, methods are provided of identifying a subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence or abundance of the genera or selected genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In some embodiments, methods are provided of identifying a subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence or abundance of the genera or selected genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy if the microbiome sample comprises bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In other embodiments, methods are provided of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy if the microbiome sample comprises one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In other embodiments, methods are provided of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the genera of bacteria in the microbiome sample, and c) determining that the subject is a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy if the microbiome sample comprises one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.


In other embodiments, methods are provided of identifying a mammalian subject as a candidate for anticancer treatment, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacterial species that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.


In other embodiments, methods are provided of identifying a mammalian subject as a candidate for anticancer treatment, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacterial species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the bacterial species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.


In other embodiments, methods are provided of identifying a mammalian subject as a candidate for anticancer treatment, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises one or more bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof. In some embodiments, the subject may be determined to be a candidate for anticancer treatment if at least two, three, four, five or more of the species listed are present in the microbiome sample.


In other embodiments, methods are provided of identifying a mammalian subject as a candidate for anticancer treatment, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises one or more of the bacteria species in one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135.


In other embodiments, methods are provided of identifying a mammalian subject as a candidate for anticancer treatment, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In other embodiments, methods are provided of identifying a mammalian subject as a candidate for anticancer treatment, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In some embodiments, methods are provided of identifying a mammalian subject as a candidate for anticancer treatment, the methods comprising: a) obtaining a microbiome sample from the subject, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the subject is a candidate for anticancer treatment if the microbiome sample comprises bacteria species selected from Bamesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.


In some embodiments, subjects that are identified as candidates for anticancer treatment are identified as candidates for treatment with a checkpoint inhibitor. In some embodiments, the checkpoint inhibitor can be an anti-PD-1 antibody, an anti-CTLA-4 antibody an anti-PD-L1 antibody or combinations thereof. In some embodiments, the checkpoint inhibitor can be, e.g., pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab or ipilimumab, or other checkpoint inhibitors known in the art. In other embodiments, the checkpoint inhibitors can be e.g., pidilizumab, AMP-224, AMP-514, STI-A1110, TSR-042, RG-7446, BMS-936559, BMS-936558, MK-3475, CT 011, MPDL3280A, MEDI-4736, MSB-0020718C, AUR-012, LAG-3, OX40 inhibitors, OX40L inhibitors, TIGIT inhibitors STI-A1010, or combinations thereof. In other embodiments, the subject can be candidates for treatment with cyclophosphamide. In some embodiments, the immune checkpoint therapy comprises immune checkpoint blockade monotherapy. In some embodiments, the immune checkpoint therapy comprises immune checkpoint blockade combination therapy.


XI. Methods of Identifying FMT Donors

Applicants have discovered that certain microbiome profiles, e.g., families, genera, and/or species are associated with improved outcomes in therapy with a checkpoint inhibitor. Accordingly, in some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof. In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof. In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.


In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.


In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the bacterial species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.


In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof. In some embodiments, the potential donor may be determined to be a donor for fecal matter transfer if at least two, three, four, five or more of the species listed are present in the microbiome sample.


In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more of the bacteria species in one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four, five, six, seven, eight, nine, ten or eleven species of clade 101. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four, five or six, species of clade 14. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four, five, six or seven species of clade 126. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three or four species of clade 61. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four or five species of clade 125. In some embodiments, the therapeutic compositions comprise an effective amount of one or two species of clade 135.


In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.


In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae. In some embodiments, the bacterial species may have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.


In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof. In some embodiments, the potential donor may be determined to be a donor for fecal matter transfer if at least two, three, four, five or more of the species listed are present in the microbiome sample.


In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more of the bacteria species in one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four, five, six, seven, eight, nine, ten or eleven species of clade 101. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four, five or six, species of clade 14. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four, five, six or seven species of clade 126. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three or four species of clade 61. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one, two, three, four or five species of clade 125. In some embodiments, the therapeutic compositions comprise an effective amount of one or two species of clade 135.


In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In other embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof. In some embodiments, methods are provided of selecting donors whose feces are useful for fecal matter transfer, the methods comprising: a) obtaining a microbiome sample from the potential donor, b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, and c) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.


Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used, but some experimental error and deviation should, of course, be allowed for.


XII. Examples
Example 1: Taxonomic Profiling

Whole metagenomics sequencing (WMS) raw data from Gopalakrishnan et al. (Science 2018; 359: 97-103) were obtained and analyzed as described herein. As described in Gopalakrishnan et al., supra, the WMS sequences were generated using fecal microbiome samples from metastatic melanoma patients who were classified as responders or non-responders to a checkpoint inhibitor. Responder and non-responder classes of subjects were determined as described in Gopalakrishnan et al. The raw data sets were pre-processed following the guidelines set by the Human Microbiome Project. The pre-processing analysis was used to perform error analysis and removal of low-quality sequences and other undesirable data, such as sequences present from PCR amplification steps. Species-level taxonomic profiles of each WMS sample were obtained using a MetaPhlAn2 software package (e.g., Truong et al., Nature Meth 12:902-903, 2015). In brief, MetaPhlAn2 is a software tool that aligns each sample to a curated reference database of marker genes, each of which is unique to a bacterial species. The reference database contains more than one million marker genes, representing more than seven thousand bacterial species. Alpha diversity, i.e., a measure of species richness, of 16S rDNA for responders (R) and non-responders (NR) is shown in FIG. 1.


Example 2: Summary of Data Types and Data Analysis Methods

Abundance data were obtained after profiling WMS data. For a given sample, the sum of the abundances of all species sums to 100. Prevalence data are discretized so that species are analyzed only as being either present or absent. This is a population-wide data type, meaning that it can only be assessed for a set of samples and not individually for any given sample. For example, the prevalence of a species that appears in 4 out of 10 responders is 40%. Quantile normalized abundance is a procedure that was used to standardize microarray data. Across data sets, estimated abundance values of a given species may lead to a different interpretation due to a variety of reasons including technical artifacts arising from differences in sample processing. The quantile normalization approach re-assigns abundance values of a species given the distribution of abundances of that species in a set of background samples (in this case, non-responders). The normalized value is the percentage of background samples that have an abundance less than or equal to the abundance of the given species in the given sample. A volcano plot of results from a differential prevalence analysis is shown in FIG. 2.


Using these three data types, four analytic methods were used to generate independent data sets: Fisher's exact test, Lasso regression, Random forest analysis, and Linear discriminant analysis. These analytic approaches are briefly described below. A table summarizing key features of the methods is provided in Table 9.


The Fisher's exact test is a test for a difference in distribution of categorical variables. Applicants applied this analysis to test for differences in species prevalence between responders and non-responders, given the number of samples found in each group. For example, a species that occurs in 8/12 responder samples would have a prevalence of 67%. Statistical significance is calculated between the prevalence of responders and non-responders based on the same size of each group.


The Lasso Regression is different from simple regression, where an effect is assigned to every feature in the data set (such as species abundance and/or prevalence). Instead, Lasso regression attempts to minimize small effects in order to retain the smallest collection of features that have the largest impact on outcome, using an L1 regularization approach. This approach attempts to avoid overfitting the data to all possible variables in the data set, and instead leads to more interpretable results.


The random forest classifier is an algorithm based on the results of many decision trees. In a single decision tree, features are selected iteratively that best separate samples into responder and non-responder categories, until all features are utilized. In the case of prevalence data, these features could be presence or absence of a given species, where presence of a single species might be preferentially associated with responder samples, or vice versa. Since a single decision tree typically overfits data and does not produce robust results, random forests are often used instead. A random forest classifier is based on many different decision trees, where each tree only uses a subset of the available data, for example randomly leaving out 20% of the observed species for each tree. In some cases, a subset of the samples is used for training the random forest. The random forest classifier thus learns which signals are strongest across all possible features and samples.


Linear discriminant analysis (LDA) is a method that attempts to find a linear combination of features that separates samples into two or more outcomes. For example, in a multidimensional scaling (MDS) representation of the Bray-Curtis dissimilarity among samples, the method can be applied to identify the species that distinguish responder from non-responder samples. Due to the limited sample size of the available data, and to provide additional information that might be present in a larger set of healthy background samples, this approach was applied to the data as embedded into approximately 200 samples from healthy donors as collected in the Human Microbiome Project (HMP). This was done by calculating the Bray-Curtis dissimilarity among all WMS and HMP samples. LDA was then used to generate a classification line to separate responder and non-responder samples in the data as embedded in the combined MDS plot (FIG. 3). Further, species data mapped onto a beta diversity plot demonstrates that Ruminococcaceae are generally associated with patients classified as responders (FIG. 4).


A ranking of the significance of association of taxa to responder and non-responder status can then be evaluated based on their distance from the classification line, where taxa that are further from the line (e.g. driving the signal of separation between R and NR) are given a higher score. In order to mitigate the significance of rare species which are found in very few samples, the score was modified by multiplying it by the log of the prevalence of the species in the pooled data. The effect of this final modification is that species with very low prevalence are assigned a lower significance score. Due to the fact that this list sets no cutoff threshold for statistical significance, we examined scores in a quantile-quantile style plot and selected the inflection point of scores as the cutoff.


Example 3: Development of Aggregate Results and Rankings Based on Penalized Geometric Mean Analysis

After obtaining a ranked list of species according to the various methods and data types above, a method of aggregating the rankings was developed that fulfill the following properties: species that are significantly associated with response were assigned higher ranks, species that were found significantly associated with response across multiple methods were assigned higher ranks compared to species that were found significantly associated in only one or two methods, and final species rankings were robust to potential outliers in individual method rankings. The first two properties are intuitive, since species that are identified as significant using multiple algorithms and data types are more likely to represent a real and robust signal. Because different algorithms may return a different number of significantly associated species, the third property was included to minimize the penalty for rankings based solely on significantly associated species. The aggregate results of the ranked lists generated by the alternate analysis methods are in Tables 1-2.


A penalized geometric mean approach was developed to generate the aggregate results. For each species, the geometric mean was calculated from its ranks across all methods in which it was identified. The geometric mean is defined as the product of all n values, followed by taking the nth root. For example, for “Species Example 1” that was identified in three out of the four methods, the geometric mean of (1, 2, 10) would be (1×2×10)(1/3)=2.71. This geometric mean is robust to outliers, but it is susceptible to bias for certain data sets, such as “Species Example 2” instead appearing in all four analysis methods with rankings 1, 2, 2, 20 across the four analysis methods (1, 2, 2, 20), since (1×2×2×20){circumflex over ( )}(¼)=2.99. Using this approach, Species Example 1, with a value of 2.71 would be ranked higher than Species Example 2 due to its lower geometric mean score, yet this approach does not account for the prevalence aspect of the analysis and the fact that Species Example 1 was not identified in one of the four analysis methods.


To account for this discrepancy, scores were penalized by the square of the number of methods in which a given species is not found. These aggregate scores are then ranked from lowest to highest, with lowest scores attributed to species for which we have the most confidence. Thus, better scores were preferentially assigned to those species which are identified as significant by a variety of different methods. Final aggregate rankings can be found in Tables 1-2.


These analyses demonstrate the in silico analysis of human microbiome data can be used to identify bacteria genera and species associated with a response to a checkpoint inhibitor. Accordingly, species identified as provided herein are useful in compositions for improving the efficacy of a checkpoint inhibitor treatment.


Example 4: Further Validation Studies

Several studies have reported various disparate GI microbiome signatures for individuals having an improved response to a checkpoint inhibitor. Applicants undertook a further analysis of data reported in Gopalakrishnan et al., 2018 to determine whether a signature could be detected that would be useful for identifying donor fecal material likely to be effective for the preparation of a microbiome composition useful as an adjunct therapy for treating patients receiving checkpoint inhibitor therapy.


It is desirable that detection of the signature has a rapid turnaround time and can be implemented, e.g., as a qPCR diagnostic. Validation of the signature using an additional cohort of patients selected by the laboratory of Dr. Jennifer Wargo using the same criteria for patient selection and identification of disease state as in Gopalakrishnan et al (2018) was then performed.


Terms & Abbreviations

The following terms and abbreviations are used in Example 4:

    • Clade system: An internal numbered classification system based on the concept of clades, i.e. a group of related organisms representing all of the phylogenetic descendants of a common ancestor.
    • RECIST: Response evaluation criteria in solid tumors. A set of guidelines to determine the response of tumors to therapy.
    • refOTU: An internal classification system of 16S rDNA sequences assigned to specific taxonomies that is derived from NCBI and internal sources.
    • Responders and non-responders: non-responders include patients within the RECIST category progressive disease, while responders include patients in the RECIST categories stable disease, partial response, and complete response.
    • ROC curve: Receiver operating characteristic curve. A plot that shows the true positive and false positive rate of a binary classifier as the definition of the classifier is varied.
    • OTU (Operational Taxonomic Unit): An operational definition of a group of closely related organisms outside of traditional Linnaean taxonomy.
    • Silva: A widely used database of rDNA sequences and their classifications (https://www.arb-silva.de/).
    • USEARCH: A suite of sequence searching and clustering algorithms developed by R. Edgar.
    • Wargo Types: Gopalakrishnan et al (2018) divided patients into two microbiome types: Type 1 (enriched in Clostridiales) included only responders while Type 2 (enriched in Bacteroidales) included a mix of responders and non-responders.


A. Materials & Methods


1. Acquisition of Sequence Data


Human fecal 16S NGS sequencing (Illumina MiSeq) data from 43 patients (30 responders and 13 non-responders) from the Gopalakrishnan et al (2018) study were downloaded from the European Nucleotide Archive (ENA) of the European Bioinformatics Institute (EBI) (https://www.ebi.ac.uk/ena/data/view/ERX2218758, Experiment: ERX2218758, Project: PRJEB22894). Additional human fecal 16S NGS sequencing (Illumina MiSeq) data were obtained from the second cohort of 69 patients (39 responders and 30 non-responders).


2. Taxonomic Profiling of 16S Sequence Data Through USEARCH


Both published data and validation data were processed through the Seres USEARCH-based pipeline. Reads were merged using USEARCH v7.0.1090 (Edgar 2010, 2013) allowing four mismatches per ≥50 bases. Taxonomic annotations were assigned to 16S V4 sequence reads using the USEARCH v7.0.1090 (Edgar, 2010, 2013) algorithm. The USEARCH algorithm was parameterized to maximize sequence read data retention and to return the optimal taxonomy. Operational Taxonomic Unit (OTU) assignment based on 16S V4 sequence data is limited by the amount of information in the approximately 254 base pairs comprising this rDNA domain. To gain maximal information content from 16S V4 sequences, applicants developed a proprietary clade mapping system based on the ability of the 16S V4 region to reliably distinguish groups (clades) of related organisms. This system was used to define the phylogenetic clade that can be definitively assigned to any given OTU. As discussed herein, clades provide a resolution that is greater than genus assignment but typically less than species. These clades define the group of bacterial species that are not reliably distinguished from one another using the 16S V4 sequencing assay but can be distinguished from other bacterial species in other clades. Importantly, while the precise assignment of species is often not possible with 16S V4 data, the consistent determination of the number of distinct OTUs within a given clade is robust using the algorithms reported here.


3. Statistical Analysis


Mann-Whitney U tests were conducted on continuous or integer-based data (e.g., relative abundance, species diversity), while Fisher's exact tests were conducted on categorical data (e.g., Wargo Types). All p-values were corrected for multiple comparisons using the Benjamini-Hochberg method.


B. Results & Analysis


1. Type 1 Microbiomes are Enriched in Clostridia while Type 2 Microbiomes are Enriched in Bacteroidia


Gopalakrishnan et al (2018) subdivided patients into two microbiome types: Type 1 (enriched in Clostridiales), which included only patients defined by the authors as responders, and Type 2 (enriched in Bacteroidales), which included a mix of responders and non-responders. A USEARCH-based pipeline and NCBI-based genus-level classification were used to verify these compositional differences in the published 16S sequencing data. Differentially prevalent higher taxa at the levels of class and family were identified between Type 1 and Type 2 patients using a Mann-Whitney U test adjusted for multiple comparisons at each taxonomic level using the Benjamini-Hochberg method. Type 1 patients were enriched for Clostridia, particularly the families Ruminococcaceae, Lachnospiraceae, Clostridiaceae, and Catabacteriaceae, while Type 2 patients were enriched in Bacteroidia (Table 12). This enrichment is similar to that identified in Gopalakrishnan et al (2018) Table S5.









TABLE 12







Type 1 microbiomes are enriched in Clostridia while Type


2 microbiomes are enriched in Bacteroidia. All class- and


family-level taxa significantly enriched in either type


are shown below. Mann-Whitney U tests were conducted for


each taxon, and adjusted for multiple comparisons at each


taxonomic level using the Beniamini-Hochberg method.















Adj


Level
Taxon
Enrichment
P-value
P-value





Class
Bacterioidia
Type 2
1.4 × 10−9
2.6 × 10−8


Class
Clostridia
Type 1
2.3 × 10−7
2.2 × 10−6


Family
Ruminococcaceae
Type 1
0.0019 
0.0068


Family
Lachnospiraceae
Type 1
0.00098
0.0046


Family
Clostridiaceae
Type 1
5.5 × 10−5
0.00076


Family
Catabacteriaceae
Type 1
0.00045
0.0032









2. Relative Abundance of Ruminococcaceae, Clostridia, and Bacteroidia are the Strongest Predictors of Response


Potential correlates of checkpoint efficacy were then evaluated by comparing directly with response rather than type. Both Wargo type and Clostridia species diversity were evaluated based on findings in Gopalakrishnan et al (2018), and the relative abundance of Clostridia, Bacteroidia, and Ruminococcaceae based on the analysis above. The relative abundance of Clostridiaceae and Lachnospiraceae was not evaluated further as their signal appeared to be driven by high abundances in a small number of samples. For each potential correlate, a statistical test was conducted to determine if there was a significant difference between responders and non-responders (Table 13). The specific test was determined by whether the correlate was categorical (Fisher's exact test) or numerical (Mann-Whitney U test). Ruminococcaceae, Clostridia, and Bacteroidia relative abundance, and Wargo type all differed significantly (p<0.05) between responders and non-responders, while Clostridia diversity (in OTUs) did not.


Next, for each potential correlate, a binary classification system was developed where the optimal cut-off was chosen to separate responders from non-responders based on first maximizing specificity (to 100% if possible) and then maximizing sensitivity using bar plots (FIG. 5, Table 13). Relative abundances of Ruminococcaceae, Clostridia, and Bacteroidia were all more sensitive predictors of response than Wargo type (54-57% vs 37%, respectively), showing that classification systems based on relative abundance could capture more responders than those based on Wargo type. Accordingly, the use of relative abundance can be used as an improved metric for identifying samples that are most associated with responders.









TABLE 13







Relative abundance of Ruminococcaceae, Clostridia, and Bacteroidia


were found to be the strongest predictors of response to checkpoint


therapy. Association of each microbiome characteristic analyzed with


response is shown below along with the statistical test used. Sensitivity


and specificity of each as a binary classifier is also shown; the


cut-off for binary classification is shown in parentheses after the


microbiome characteristic. OTUs were based on USEARCH and assigned


taxonomy as described. M-W U: Mann-Whitney U test.












Test for
Associ-





associ-
ation
Sensi-
Speci-


Microbiome
ation
with
tivity as
ficity as


Characteristic
with
response
binary
binary


(classifier cut-off)
response
(p-value)
classifier
classifier**














Wargo Types (I and II)
Fisher's
0.019*
37%
100%


Clostridia diversity
M-W U
0.024*
47%
 92%


(≥and <90 16S OTUs)


Clostridia relative
M-W U
0.0032*
50%
100%


abundance


(≥and <32%)


Ruminococcaceae
M-W U
0.00026*
60%
100%


relative


abundance


(≥and <9.5%)


Bacteroidia
M-W U
0.0020*
50%
100%


relative


abundance


(≤and >57%)





*significant at p < 0.05 level


**the classifier threshold was set by first maximizing specificity (to 100% if possible) and then maximizing sensitivity






3. Phylogenetic Definition of Ruminococcaceae Improves Sensitivity to Detect Responders


Specific examination of taxa assigned to Ruminococcaceae by NCBI in the context of a phylogenetic tree derived from 16S rDNA sequences indicates that some taxa are misclassified with respect to Ruminococcaceae. FIG. 6 shows a phylogenetic tree of Ruminococcaceae derived from 16S rDNA sequences from NCBI RefSeq and sequenced strains from Seres' strain collection. Taxa in underlined were listed in the NCBI taxonomy as not belonging to Ruminococcaceae; accordingly, NCBI-based classification is clearly not consistent with phylogeny. Applicants therefore undertook the development of a definition of Ruminococcaceae that is more indicative of true evolutionary relationships using an internal phylogenetic-based classification system (specifically, clades 14, 61, 101, 125, 135). Clade 13, traditionally classified as Ruminococcaceae, was left out of the definition of Ruminococcaceae for purposes of analyzing responder and non-responder microbiomes because the clade was highly divergent from the rest of the Ruminococcaceae (FIG. 6). Clade-based relative abundance of Ruminococcaceae was significantly associated with response (p=0.00078, Mann-Whitney U test) and was more sensitive than the NCBI-based definition (67%) while maintaining 100% specificity (Table 14, FIG. 7). Further, the threshold was increased from 9.5% to 12% using the clade-based definition because a greater number of Ruminococcaceae species were detected by the clade-based definition, resulting in higher per sample abundances. Further studies therefore used the phylogenetic, clade-based definition of Ruminococcaceae.









TABLE 14







A clade-based definition of Ruminococcaceae is more sensitive in


classifying responders than an NCBI-based definition. Association


of each microbiome characteristic analyzed with response is shown


below along with the statistical test used. Sensitivity and specificity


of each a binary classifier is also shown; the cut-off for binary


classification is shown in parentheses after the microbiome characteristic.


OTUs were based on USEARCH and assigned taxonomy as described.


M-W U: Mann-Whitney U test.












Test for
Associ-





associ-
ation
Sensi-
Speci-


Microbiome
ation
with
tivity
ficity


Characteristic
with
response
as binary
as binary


(classifier cut-off)
response
(p-value)
classifier
classifier














Ruminococcaceae
M-W U
0.00026*
60%
100%


relative


abundance


(≥and <9.5%)


Ruminococcaceae clade-
M-W U
0.00078*
67%
100%


based relative abundance


(≥and <12%)





*significant at p < 0.05 level






4. Combination of Ruminococcaceae and Bacteroidia Provides Increased Sensitivity while Maintaining Specificity


An analysis was performed to determine if a combination of classification systems would provide superior sensitivity and specificity over a single classification system. The union of a number of relative abundance metrics listed above was examined for sensitivity and specificity in detecting responders from the total patient pool (Table 15). While most combinatorial metrics showed 100% specificity, combining a minimum Ruminococcaceae clade-based abundance with a maximum Bacteroidia clade-based abundance showed the highest sensitivity (80%). Details of where each sample fell within this distribution are shown in FIG. 8.









TABLE 15







Combination of Ruminococcaceae and Bacteroidia provides increased


sensitivity while maintaining specificity. Sensitivity and specificity


of combining classification systems is shown below.










Sensi-
Speci-


Classification System
tivity
ficity





Clostridia Relative Abundance (above 32%) OR
67%
100%


Ruminococcaceae Relative Abundance (above 9.5%)


Ruminococcaceae Relative Abundance (above 9.5%)
73%
 92%


OR Bacteroidia Relative Abundance (below 57%)


Ruminococcaceae clade-based Relative Abundance
80%
100%


(above 12%) OR Bacteroidia Relative Abundance


(below 57%)


Clostridia Relative Abundance (above 32%) OR
60%
100%


Bacteroidia Relative Abundance (below 57%)


Clostridia Relative Abundance (above 32%) OR
73%
100%


Ruminococcaceae Relative Abundance (above 9.5%)


OR Bacteroidia Relative Abundance (below 57%)









5. Validation of Ruminococcaceae Metric in Second Cohort


Following development of the combined metric above, a new dataset was generated (n=69), using the same selection criteria for patients as Gopalakrishnan et al (2018) and it was desired to validate the metric using this new dataset. Relative abundance of clade-based Ruminococcaceae was significantly associated with response in the validation dataset (p=0.031, Table 16), while relative abundance of Bacteroidia was not (p=0.5, Table 15). De novo analysis to identify taxa at the (NCBI taxonomy-based) class and family level significantly associated with response identified only Ruminococcaceae and Clostridia (unadjusted p=0.047 and 0.049, respectively), indicating that no strong, conflicting signal existed in the validation dataset that was absent from the original, published dataset.









TABLE 16







Validation test of Ruminococcaceae and Bacteroidia relative abundances.


P-values listed include the original, published data from Gopalakrishnan


et al (2018) (n = 43), the validation cohort (n = 69),


and the combination of the two datasets (n = 112). All p-


values were generated with the Mann-Whitney U test.











Original
Validation
Combined


Measure
P-value
P-value
P-value













Ruminococcaceae clade-
0.00078*
0.031*
0.00012*


based relative


abundance


Bacteroidia relative
0.0020*
0.50
0.035*


abundance





*significant at p < 0.05 level






The 12% cutoff for clade-based Ruminococcaceae and the 57% cutoff for Bacteroidia discussed above were both further evaluated with respect to sensitivity and specificity. While specificity of 12% Ruminococcaceae decreased for both the validation and combined datasets, sensitivity remained in the 67-69% range (Table 17). Evaluation of the ROC curve for Ruminococcaceae did not suggest a significantly better cutoff than 12% existed in the combined dataset (FIG. 9). Patients with <12% Ruminococcaceae made up 47% (53/112) of total patients, but 72% of total non-responders. Patients with >=12% Ruminococcaceae, on the other hand, made up 53% of total patients and 68% of total responders (FIG. 10). For Bacteroidia, specificity dropped while sensitivity remained stable; however, sensitivity of Bacteroidia was near 50% in all datasets (Table 16), giving it little power to distinguish responders from non-responders when specificity was low. Based on these analyses, using a minimum 12% Ruminococcaceae clade-based abundance alone has the greatest combined specificity and sensitivity for distinguishing responders from non-responders in the combined dataset.









TABLE 17







Sensitivity and specificity of Ruminococcaceae and Bacteroidia thresholds in all datasets.


Datasets include the original, published data from Gopalakrishnan et al (2018) (n =


43), the validation cohort (n = 69), and the combination of the two datasets (n = 112).














Original
Original
Validation
Validation
Combined
Combined


Threshold
Sensitivity
Specificity
Sensitivity
Specificity
Sensitivity
Specificity





12% Ruminococcaceae
67%
100%
69%
60%
68%
73%


(clade-based)


57% Bacteroidia relative
50%
100%
54%
57%
52%
70%


abundance





* significant at p < 0.05 level






6. Ruminococcaceae Significantly Different Despite Classification of Stable Disease


It was also determined whether the signature held if patients with stable disease were excluded from the analysis. Ruminococcaceae clade-based relative abundance maintained an equivalently significant difference between responders and non-responders whether stable disease patients (and the two patients classified as responders but without a specific RECIST classification) were included as responders (p=0.0012, Mann-Whitney U test) or excluded from the analysis altogether (p=0.0010, Mann-Whitney U test). Further, exclusion of stable disease slightly increased sensitivity to detect responders in the combined dataset (68% with all patients to 74% excluding stable disease), while maintaining specificity (73% with all patients to 74% excluding stable disease). Examination of the ROC curve for the combined dataset excluding stable disease patients affirmed choice of the 12% cutoff for Ruminococcaceae (FIG. 11).


C. Summary & Conclusion


A number of recent studies have established a correlation between microbiome composition and response to checkpoint therapy for treatment of cancer. In particular, Gopalakrishnan et al (2018) found that responder microbiomes were enriched for Clostridiales and Ruminococcaceae, while non-responder microbiomes were enriched in Bacteroidales. They further subdivided patients into microbiome “types,” where the Type 1 cluster consisted solely of responders while Type 2 included a mix of responders and non-responders. The study herein sought to verify the findings of Gopalakrishnan et al (2018) and define a signature for the design of a microbiome therapeutic. The signature was validated with a new cohort of patients.


In conclusion, analysis of the validation dataset shows that responders were enriched in Ruminococcaceae, as defined herein, but non-responders were not enriched in Bacteroidia. Using a clade-based relative abundance (12%) of Ruminococcaceae alone achieved the greatest sensitivity and specificity in the validation and combined datasets. Exclusion of stable disease patients from the definition of responder did not reduce the significance of association between Ruminococcaceae and response or alter the 12% threshold. While the association between Ruminococcaceae and responders found in Gopalakrishnan et al (2018) was validated in this analysis, these results contrast with Gopalakrishnan et al (2018) in that non-responders were not found to be enriched in Bacteroidia.


The discoveries disclosed herein therefore demonstrate a method that can be used to identify mircobiomes associated with response to checkpoint inhibitor therapy. Accordingly, this analysis can be used in methods of identifying suitable donors for microbiome compositions to be used, e.g., as adjunct therapies for checkpoint inhibitor therapy or other cancer therapies. In addition to this discovery of a metric for identifying donors with useful GI microbiomes for therapeutic use, the discovery provides early identification of such donors, e.g., so that time and expense wasted on processing donations from unsuitable donors is greatly reduced.


All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.


XIII. Tables

Tables 1A-1B: Aggregate Rankings. Aggregate rankings after combining data from all analysis methods are shown. The species rankings are identified in both responder and non-responder patient groups.









TABLE 1A







Aggregate Ranked List - Responders








Species
Rank












Blautia_SC109

1



Parabacteroides distasonis

2



Bilophila_unclassified

3



Ruminococcus

bicirculans_SC30

4



Subdoligranulum_unclassified

5



Blautia_SC102

6



Gemmiger

formicilis_SC193

7



Ruminococcus

albus

8



Bacteroides

dorei

9



Bifidobacterium

bifidum

10



Bifidobacterium

longum

11



Fusicatenibacter

saccharivorans_SC160

12



Eubacterium

biforme

13



Roseburia

faecis_SC53

14


Lachnospiraceae_bacterium_5_1_63FAA (Anaerostipes hadrus)
15



Gemmiger

formicilis_SC141

16



Ruminococcus

bromii

17



Alistipes

senegalensis

18



Clostridium_SC178

19



Odoribacter

splanchnicus

20



Faecalibacterium

prausnitzii

21



Clostridium_SC64

22



Blautia

wexlerae_SC15

23



Coprococcus

catus

24



Clostridium_SC188

25



Streptococcus

parasanguinis

26


Erysipelotrichaceae_bacterium_21_3
27



Barnesiella

intestinihominis

28



Clostridium_SC26

29



Clostridium

lavalense_SC43

30



Blautia

faecis_SC4

31



Streptococcus

australis

32



Collinsella

aerofaciens

33



Clostridium_SC92

34
















TABLE 1B







Aggregate Ranked List - Non-Responders










Species
Rank















Bacteroides

thetaiotaomicron

1




Collinsella_unclassified

2




Ruminococcus

torques

3




Bacteroides

vulgatus

4




Anaerotruncus

colihominis

5




Escherichia

coli

6




Prevotella

copri

7




Bacteroides

massiliensis

8




Paraprevotella

clara

9




Paraprevotella

xylaniphila

10




Bacteroides

xylanisolvens

11




Bacteroides

coprocola

12




Ruminococcus

gnavus

13




Bilophila

wadsworthia

14




Parabacteroides

merdae

15




Collinsella

aerofaciens

16



Lachnospiraceae_bacterium_2_1_58FAA
17




Paraprevotella_unclassified

18




Klebsiella

pneumoniae

19




Adlercreutzia

equolifaciens

20




Escherichia_unclassified

21




Flavonifractor_SC129

22




Clostridium

aldenense_SC114

23



Lachnospiraceae_bacterium_3_1_46FAA
24




Holdemania

filiformis

25



Ruminococcaceae_bacterium_D16
26




Blautia

faecis_SC4

27




Clostridium

bolteae

28



Lachnospiraceae_bacterium_1_1_57FAA
29




Veillonella

parvula

30



Lachnospiraceae_bacterium_7_1_58FAA
31




Veillonella_unclassified

32




Parabacteroides

distasonis

33




Roseburia

intestinalis

34




Bacteroides

faecis

35




Dialister

invisus

36




Eubacterium

eligens

37










Tables 2A-2B. Differential Prevalence Rankings. Differential prevalence rankings are shown. The species are ranked among responder and non-responder patient groups.









TABLE 2A







Differential Prevalence - Responders










Species
Rank








Parabacteroides distasonis

1




Blautia_SC109

2




Blautia_SC102

3




Bacteroides

dorei

4

















TABLE 2B







Differential Prevalence - Non-Responders










Species
Rank








Anaerotruncus

colihominis

1




Parabacteroides

merdae

2










Tables 3A-3B. LDA Abundance Rankings. Linear Discriminant Analysis (LDA) abundance rankings are shown. The species are ranked among responder and non-responder patient groups.









TABLE 3A







LDA Abundance - Responders










Species
Rank















Ruminococcus

bicirculans_SC30

1




Ruminococcus

albus

2




Blautia_SC102

3




Gemmiger

formicilis_SC141

4




Gemmiger

formicilis_SC193

5




Clostridium_SC188

6




Subdoligranulum_unclassified

7




Clostridium

lavalense_SC43

8




Blautia

faecis_SC4

9




Streptococcus

australis

10




Clostridium_SC92

11




Clostridium_sp_L2_50

12




Faecalibacterium

prausnitzii

13




Eubacterium

siraeum

14




Clostridium_SC125

15




Blautia_SC109

16




Ruminococcus

bromii

17



Lachnospiraceae_bacterium_3_1_46FAA
18




Coprococcus

comes

19



Erysipelotrichaceae_bacterium_21_3
20




Odoribacter

laneus

21




Dorea

longicatena

22




Pseudoflavonifractor

capillosus_SC163

23




Eubacterium

rectale

24



Lachnospiraceae_bacterium_3_1_57FAA_CT1
25

















TABLE 3B







LDA Abundance - Non-Responders










Species
Rank








Bacteroides

vulgatus

1




Bacteroides

xylanisolvens

2



Lachnospiraceae_bacterium_2_1_58FAA
3




Ruminococcus

gnavus

4




Prevotella

copri

5










Tables 4A-4B. LASSO Prevalence Rankings. LASSO prevalence rankings are shown. The species are ranked among responder and non-responder patient groups.









TABLE 4A







Lasso Prevalence - Responders










Species
Rank








Parabacteroides distasonis

1




Blautia_SC109

2




Bacteroides

dorei

3




Eubacterium

biforme

4




Alistipes

senegalensis

5




Clostridium_SC64

6

















TABLE 4B







Lasso Prevalence - Non-Responders










Species
Rank








Collinsella_unclassified

1




Bacteroides

coprocola

2




Anaerotruncus

colihominis

3




Bacteroides

massiliensis

4




Adlercreutzia

equolifaciens

5










Tables 5A-5B. LASSO Abundance Rankings. LASSO abundance rankings are shown. The species are ranked among responder and non-responder patient groups.









TABLE 5A







Lasso Abundance - Responders










Species
Rank








Blautia_SC109

1




Parabacteroides distasonis

2




Bifidobacterium

bifidum

3




Subdoligranulum_unclassified

4

















TABLE 5B







Lasso Abundance - Non-Responders










Species
Rank








Bacteroides

thetaiotaomicron

1




Paraprevotella

clara

2




Bacteroides

massiliensis

3










Tables 6A-6B. Random Forest Prevalence Rankings. Random Forest prevalence rankings are shown. The species are ranked among responder and non-responder patient groups.









TABLE 6A







Random Forest Prevalence - Responders










Species
Rank








Blautia_SC109

1




Parabacteroides distasonis

2




Bifidobacterium

longum

3




Blautia_SC102

4



Erysipelotrichaceae_bacterium_21_3
5




Bifidobacterium

bifidum

6




Odoribacter

splanchnicus

7




Barnesiella

intestinihominis

8

















TABLE 6B







Random Forest Prevalence - Non-Responders










Species
Rank















Escherichia

coli

1




Bacteroides

thetaiotaomicron

2




Collinsella

aerofaciens

3




Bacteroides

coprocola

4




Klebsiella

pneumoniae

5




Parabacteroides

merdae

6




Clostridium

aldenense_SC114

7




Bacteroides

massiliensis

8



Ruminococcaceae_bacterium_D16
9










Tables 7A-7B. Random Forest Abundance Rankings. Random Forest abundance rankings are shown. The species are ranked among responder and non-responder patient groups.









TABLE 7A







Random Forest Abundance - Responders










Species
Rank















Bilophila_unclassified

1




Ruminococcus

bromii

2




Gemmiger

formicilis_SC193

3




Roseburia

faecis_SC53

4




Clostridium_SC178

5




Blautia

wexlerae_SC15

6




Streptococcus

parasanguinis

7




Bifidobacterium

longum

8




Odoribacter

splanchnicus

9




Blautia_SC109

10




Collinsella

aerofaciens

11




Fusicatenibacter

saccharivorans_SC160

12




Eubacterium

eligens

13

















TABLE 7B







Random Forest Abundance - Non-Responders










Species
Rank















Ruminococcus

torques

1




Paraprevotella

xylaniphila

2




Bacteroides

thetaiotaomicron

3




Paraprevotella_unclassified

4




Bilophila

wadsworthia

5




Ruminococcus

gnavus

6




Flavonifractor_SC129

7



Lachnospiraceae_bacterium_3_1_46FAA
8




Bacteroides

massiliensis

9




Clostridium

bolteae

10



Lachnospiraceae_bacterium_1_1_57FAA
11










Tables 8A-8B. Random Forest abunQ Rankings. Random Forest abunQ rankings are shown. The species are ranked among responder and non-responder patient groups.









TABLE 8A







Random Forest abunQ - Responders










Species
Rank















Subdoligranulum_unclassified

1




Fusicatenibacter

saccharivorans_SC160

2




Gemmiger

formicilis_SC193

3



Lachnospiraceae_bacterium_5_1_63FAA
4




Faecalibacterium

prausnitzii

5




Coprococcus

catus

6




Blautia_SC109

7




Clostridium_SC26

8

















TABLE 8B







Random Forest abunQ - Non-Responders










Species
Rank















Prevotella

copri

1




Bilophila

wadsworthia

2




Ruminococcus

gnavus

3




Escherichia

coli

4




Escherichia_unclassified

5




Anaerotruncus

colihominis

6




Bacteroides

thetaiotaomicron

7




Holdemania

filiformis

8




Klebsiella

pneumoniae

9




Blautia

faecis_SC4

10




Veillonella

parvula

11



Lachnospiraceae_bacterium_7_1_58FAA
12




Veillonella_unclassified

13




Parabacteroides

distasonis

14




Roseburia

intestinalis

15




Bacteroides

faecis

16




Dialister

invisus

17




Eubacterium

eligens

18




Clostridium

bolteae

19










Table 9. Data Types and Analysis Methods. The three data types and four analysis methods applied to each type of data is shown. Analysis methods applied to a specific data type is marked with an “X”.












TABLE 9









Data type














Quantile





normalized


Method
Prevalence
Abundance
abundance





Fisher's exact test
X




Lasso regression
X
X
X


Random forest
X
X
X


Linear discriminant

X



analysis









Table 10. Species Call Information. Species calls for bacteria identified in the examples are provided. Bacteria were identified by percent identity to known full length 16S rDNA sequences.


“PCT ID” refers to the percent identity of a 16S rDNA sequence of the species identified to the 16S rDNA sequence of the associated NCBI call (NR Lookup). “Scientific Name” refers to the NCBI name associated with the sequence.












TABLE 10





Species
PCT ID
NR Lookup
Scientific Name



















Parabacteroides_unclassified

98.9
NR_074376

Parabacteroides distasonis




Parabacteroides_unclassified

98.7
NR_041342

Parabacteroides distasonis




Bifidobacterium

bifidum

99.9
NR_118793

Bifidobacterium bifidum




Bifidobacterium

bifidum

99.9
NR_044771

Bifidobacterium bifidum




Bifidobacterium

bifidum

99.9
NR_117505

Bifidobacterium bifidum




Bifidobacterium

bifidum

99.9
NR_113873

Bifidobacterium bifidum




Subdoligranulum_unclassified

99.3
NR_104846

Gemmiger formicilis




Subdoligranulum_unclassified

99.3
NR_028997

Subdoligranulum variabile




Bacteroides

dorei

99.9
NR_041351

Bacteroides dorei




Bacteroides

dorei

97.2
NR_074515

Bacteroides vulgatus




Bacteroides

dorei

97.4
NR_112946

Bacteroides vulgatus




Eubacterium

biforme

99.1
NR_044731

Holdemanella biformis




Alistipes

senegalensis

100
NR_118219

Alistipes senegalensis JC50




Fusicatenibacter

saccharivorans_SC160

99.6
NR_114326

Fusicatenibacter saccharivorans



Lachnospiraceae_bacterium_5_1_63FAA
99.9
NR_117138

Anaerostipes hadrus



Lachnospiraceae_bacterium_5_1_63FAA
99.8
NR_117139

Anaerostipes hadrus



Lachnospiraceae_bacterium_5_1_63FAA
99
NR_104799

Anaerostipes hadrus




Faecalibacterium

prausnitzii

98
NR_028961

Faecalibacterium prausnitzii




Coprococcus

catus

98.1
NR_024750

Coprococcus catus




Clostridium_SC26

98.4
NR_151982

Agathobaculum butyriciproducens




Clostridium_SC26

98.3
NR_152060

Butyricicoccus faecihominis




Bifidobacterium

longum

100
NR_043437

Bifidobacterium longum subsp.







infantis




Bifidobacterium

longum

99.5
NR_145535

Bifidobacterium longum subsp.







suillum




Bifidobacterium

longum

99.1
NR_117506

Bifidobacterium longum




Bifidobacterium

longum

97.6
NR_040783

Bifidobacterium breve




Bifidobacterium

longum

98
NR_044691

Bifidobacterium longum




Bifidobacterium

longum

97.5
NR_044693

Bifidobacterium longum subsp. suis



Erysipelotrichaceae_bacterium_21_3
98.3
NR_029164

Clostridium innocuum




Odoribacter

splanchnicus

100
NR_074535

Odoribacter splanchnicus




Odoribacter

splanchnicus

99.9
NR_113075

Odoribacter splanchnicus




Odoribacter

splanchnicus

99
NR_044636

Odoribacter splanchnicus




Barnesiella

intestinihominis

100
NR_041668

Barnesiella intestinihominis YIT 11860




Barnesiella

intestinihominis

100
NR_113073

Barnesiella intestinihominis










Table 11: Species Call Information. Species calls are provided for bacteria belonging to one or more species that are phylogenetic descendants of the MRCA of Faecalibacterium prausnitzii and Flavonifractor plautii. “Assigned Name” refers to the NCBI name associated with the sequence. Full length 16S rDNA sequences are listed for each species identified.











TABLE 11





Identifier
Assigned Name
16S Sequence







GCF_000154325

Eubacteriumsiraeum

CAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAAG




TCGAACGGTGAAGAGGAGCTTGCTCCTCGGATCAGTGGCGGACGGGTGAGTAACACG




TGAGCAACCTGGCTCTAAGAGGGGGACAACAGTTGGAAACGACTGCTAATACCGCAT




AACGTATCGGGATGGCATCTTCCTGATACCAAAGATTTTATCGCTTAGAGATGGGCTC




GCGTCTGATTAGATAGTTGGCGGGGTAACGGCCCACCAAGTCGACGATCAGTAGCCG




GACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGA




GGCAGCAGTGGGGGATATTGGACAATGGGGGCAACCCTGATCCAGCGACGCCGCGTG




AGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTTGACGGAGNNNNNNNTGATGGTAT




CCGTTTAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGC




AAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGTAGGCGGGATATCAAGTCAGA




AGTGAAAATTACGGGCTCAACTCGTAACCTGCTTTTGAAACTGACATTCTTGAGTGAA




GTAGAGGCAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAAC




ACCAGTGGCGAAGGCGGCTTGCTGGGCTTTTACTGACGCTGAGGCTCGAAAGCGTGG




GGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTACTAGGT




GTGGGGGGATTGACCCCTTCCGTGCCGGAGTAAACACAATAAGTAATCCACCTGGGG




AGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTG




GAGTATGTGGTTTAATTCGACGCAACGCGAAGAACCTTACCAGGTCTTGACATCGAGT




GACCGCCTAAGAGATTAGGCTTTCCCTTCGGGGACACAAAGACAGGTGGTGCATGGT




TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTA




TCATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGTTGACAAAACGGAGGAA




GGTGGGGATGACGTCAAATCATCATGCCCTTTATGACCTGGGCTACACACGTACTACA




ATGGCGTTTAACAAAGAGAAGCAAAGCCGCGAGGCAGAGCAAATCTCCAAAAAACG




TCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATTGCTAGTAATC




GTAGGTCAGCATACTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCAAA




CCATGAGAGTTGGCAACACCCGAAGTCGGTAGTCTAACCGCAAGGAGGACGCCGCCG




AAGGTGGGGTTGATGATTAGGGTTAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGC




GGCTGGATCACCTCCTTT (SEQ ID NO: 108)





GCF_000154345

Clostridiumleptum

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




AGTCGAACGGAGTTAAATTCGACACCCGAGTATCCGGCCGGGAGGCGGGGTGCTGGG




GGTTGGATTTAACTTAGTGGCGGACGGGTGAGTAACGCGTGAGTAACCTGCCTTTCAG




AGGGGGATAACGTTCTGAAAAGAACGCTAATACCGCATAACATCAATTTATCGCATG




ATAGGTTGATCAAAGGAGCAATCCGCTGGAAGATGGACTCGCGTCCGATTAGCCAGT




TGGCGGGGTAACGGCCCACCAAAGCGACGATCGGTAGCCGGACTGAGAGGTTGAAC




GGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGAT




ATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAGGGAAGAAGGTTTTC




GGATTGTAAACCTCTGTTCTTAGTGACGATAATGACGGTAGCTAAGGAGAAAGCTCC




GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGATT




TACTGGGTGTAAAGGGTGCGTAGGCGGCGAGGCAAGTCAGGCGTGAAATCTATGGGC




TTAACCCATAAACTGCGCTTGAAACTGTCTTGCTTGAGTGAAGTAGAGGTAGGCGGA




ATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGC




GGCCTACTGGGCTTTAACTGACGCTGAAGCACGAAAGCATGGGTAGCAAACAGGATT




AGATACCCTGGTAGTCCATGCCGTAAACGATGATTACTAGGTGTGGGGGGTCTGACC




CCCTCCGTGCCGCAGTTAACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGG




TTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAAT




TCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCGTCTAACGAAGCAGAGAT




GCATTAGGTGCCCTTCGGGGAAAGGCGAGACAGGTGGTGCATGGTTGTCGTCAGCTC




GTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTTCTAGTTGCT




ACGCAAGAGCACTCTAGAGAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGA




CGTCAAATCATCATGCCCCTTATGACCTGGGCCACACACGTACTACAATGGCTGTAAA




CAGAGGGAAGCAAAGCCGCGAGGTGGAGCAAAACCCTAAAAGCAGTCCCAGTTCGG




ATCGCAGGCTGCAACCCGCCTGCGTGAAGTCGGAATTGCTAGTAATCGCGGATCAGC




ATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAG




CCGGTAATACCCGAAGCCAGTAGTTCAACCGCAAGGAGAGCGCTGTCGAAGGTAGGA




TTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATC




ACCTCCTTT (SEQ ID NO: 109)





GCF_000154565

Anaerotruncus

CAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAAG




colihominis

TCGAACGGAGCTTACGTTTTGAAGTTTTCGGATGGATGAATGTAAGCTTAGTGGCGGA




CGGGTGAGTAACACGTGAGCAACCTGCCTTTCAGAGGGGGATAACAGCCGGAAACGG




CTGCTAATACCGCATGATGTTGCGGGGGCACATGCCCCTGCAACCAAAGGAGCAATC




CGCTGAAAGATGGGCTCGCGTCCGATTAGCCAGTTGGCGGGGTAACGGCCCACCAAA




GCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGCGAAAGCCTGA




TGCAGCGACGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCTTTGGG




GAAGAAAATGACGGTACCCAAAGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCG




CGGTAATACGTAGGGAGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAG




GCGGGATGGCAAGTAGAATGTTAAATCCATCGGCTCAACCGGTGGCTGCGTTCTAAA




CTGCCGTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGC




GTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGC




TGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGT




AAACGATGATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAA




TAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGG




GGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTAC




CAGGTCTTGACATCGGATGCATAGCCTAGAGATAGGTGAAGCCCTTCGGGGCATCCA




GACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGC




AACGAGCGCAACCCTTATTATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGT




TGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGG




GCTACACACGTACTACAATGGCACTAAAACAGAGGGCGGCGACACCGCGAGGTGAA




GCGAATCCCGAAAAAGTGTCTCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGAA




GTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCACACCATGGGAGTCGGTAACACCCGAAGCCAGTAGCCTAAC




CGCAAGGGGGGCGCTGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAG




GTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 110)





GCF_000157955

Subdoligranulum

NAAGAAGGTTTTCGGATTGTAAACTCCTGTCGTTAGGGACGAATCTTGACGGTACCTA




variabile

ACAAGAAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAAAACGTAGGGTGCAA




GCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGACCGGCAAGTTGGAAG




TGAAATCTATGGGCTCAACCCATAAATTGCTTTCAAAACTGCTGGCCTTGAGTAGTGC




AGAGGTAGGTGGAATTCCCGGTGTAGCGGTGGAATGCGTAGATATCGGGAGGAACAC




CAGTGGCGAAGGCGACCTACTGGGCACCAACTGACGCTGAGGCTCGAAAGCATGGGT




AGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGATTACTAGGTGT




TGGAGGATTGACCCCTTCAGTGCCGCAGTTAACACAATAAGTAATCCACCTGGGGAG




TACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGA




GTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCGATGC




ATAGTGCAGAGATGCATGAAGTCCTTCGGGACATCGAGACAGGTGGTGCATGGTTGT




CGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATTG




CCAGTTACTACGCAAGAGGACTCTGGCGAGACTGCCGTTGACAAAACGGAGGAAGGT




GGGGATGACGTCAAATCATCATGCCCTTTATGACCTGGGCTACACACGTACTACAATG




GCGTTTAACAAAGAGATGCAAGACCGCGAGGTGGAGCAAAACTCAAAAACAACGTC




TCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTAGTAATCGC




GGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACC




ATGAGAGCCGGGGGGACCCGAAGTCGGTAGTCTAACCGCAAGGAGGACGCCGCCGA




AGGTAAAACTGGTGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCG




GCTGGATCACCTCCTTT (SEQ ID NO: 111)





GCF_000158655

Clostridium

ATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




methylpentosum

GTCGAACGGAGTTGTTTTGGAGAAGCCCTTCGGGGTGGAACTGATTCAACTTAGTGGC




GGACGGGTGAGTAACACGTGAGCAACCTGCCTTACAGAGGGGAATAACGTTTGGAAA




CGAACGCTAATACCGCATAACATAACGGAATCGCATGGTTTTGTTATCAAAGATTATA




TCGCTGTAAGATGGGCTCGCGTCTGATTAGATAGTTGGTGAGGTAATGGCTCACCAAG




TCGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGA




TGCAGCGACGCCGCGTGAAGGAAGAAGGCCTTCGGGTTGTAAACTTCTGTCTTCAGG




GACGATAATGACGGTACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGC




GGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGG




CGGGATTGCAAGTTGAATGTGAAATCTATGGGCTTAACCCATAAACTGCGTTCAAAA




CTGCAGTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGC




GTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGC




TGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGT




AAACGATGATTACTAGGTGTAGGGGGGTCAACCTTCTGTGCCGGAGTTAACACAATA




AGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGG




CCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCA




GGTCTTGACATCCAACTAACGAAGTAGAGATACATTAGGTGCCCTTCGGGGAAAGTT




GAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTACATTTAGTTGCTACGCAAGAGCACTCTAGATGGACTGC




CGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTACTACAATGGCTATTAACAGAGGGAAGCAAAACAGTGATGTGG




AGCAAACCCCTAAAAATAGTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATGA




AGCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCC




TTGTACACACCGCCCGTCACACCATGAGAGTTGGCAACACCCGAAGTCAGTAGTCTA




ACCGCAAGGAGGACGCTGCCGAAGGTGGGGTTGATGATTAGGGTGAAGTCGTAACAA




GGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 5)





GCF_000169255

Pseudoflavonifractor

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA




capillosus

GTCGAACGGAGAGCTCATGACAGAGGATTCGTCCAATGGATTGGGTTTCTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTCGGAGTGGGGAATAACAGTCCGAA




AGGACTGCTAATACCGCATAATGCAGCTGAGTCGCATGACACTGGCTGCCAAAGATT




TATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTAGTTGGCGGGGTAACGGCCCACCA




AGGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCT




GACCCAGCAACGCCGCGTGAAGGATGAAGGCTTTCGGGTTGTAAACTTCTTTTATCAG




GGACGAAATAAATGACGGTACCTGATGAATAAGCCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTG




TAGGCGGGACTGCAAGTCAGGTGTGAAAACCACGGGCTCAACCTGTGGCCTGCATTT




GAAACTGTAGTTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAA




ATGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACTG




ACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CCGTAAACGATGGATACTAGGTGTGGGGGGACTGACCCCCTCCGTGCCGCAGTTAAC




ACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGGCTTGACATCCGACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGG




AAAGTCGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTA




AGTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGA




GACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTT




ATGTCCTGGGCCACACACGTACTACAATGGTGGTTAACAGAGGGAAGCAATGCCGCG




AGGTGGAGCAAATCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGAAACCCGCCT




GTATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGT




AGCCTAACCGCAAGGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 6)





GCF_000178115

Ethanoligenens

TTGGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




harbinense

GTCGAGCGGAGTCCTTCGGGACTTAGCGGCGGACGGGTGAGTAACGCGTGAGCAACC




TGGCCTTCAGAGGGGGATAACGTCTGGAAACGGACGCTAATACCGCATGACATGGCG




GAGTCGCATGGCTCTGCCATCAAAGGAGTAATCCGCTGAGGGATGGGCTCGCGTCCG




ATTAGGTAGTTGGTGAGGTAACGGCTCACCAAGCCCGCGATCGGTAGCCGGACTGAG




AGGTTGGCCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCGACGCCGCGTGAGGGAA




GAAGGTCTTCGGATTGTAAACCTCTGTCTTTGGGGACGAATCAATGACGGTACCCAAG




GAGGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCG




TTGTCCGGAATTACTGGGTGTAAAGGGTGCGCAGGCGGGGCGGCAAGTTGGATGTGA




AAACTCCGGGCTCAACCCGGAGCCTGCATTCAAAACTGTCGCTCTTGAGTGAAGTAG




AGGCAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATCGGGAGGAACACCA




GTGGCGAAGGCGGCCTGCTGGGCTTTTACTGACGCTGAGGCACGAAAGCATGGGTAG




CAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGATTGCTAGGTGTGG




GGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGCAATCCACCTGGGGAGTA




CGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGAGT




ATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCACCGAAT




CCCCCAGAGATGGGGGAGTGCCCTTCGGGGAGCGGTGAGACAGGTGGTGCATGGTTG




TCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTG




AATAGTTGCTACGAAAGAGCACTCTATTCAGACCGCCGTTGACAAAACGGAGGAAGG




TGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAAT




GGCCATCAACAGAGGGAAGCAAGGCCGCGAGGTGGAGCGAACCCCTAAAAATGGTC




TCAGTTCAGATTGCAGGCTGAAACCCGCCTGCATGAAGATGGAATTGCTAGTAATCG




CGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACAC




CATGAGAGCCGGGGACACCCGAAGTCGGTTGGGTAACCGTAAGGAGCCCGCCGCCGA




AGGTGGAATCGGTAATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCG




GCTGGATCACCTCCTTT (SEQ ID NO: 7)





GCF_000179635

Ruminococcusalbus

TATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCA




AGTCGAACGAGCGAAAGAGTGCTTGCACTCTCTAGCTAGTGGCGGACGGGTGAGTAA




CACGTGAGCAATCTGCCTTTCGGAGAGGGATACCAATTGGAAACGATTGTTAATACCT




CATAACATAACGAAGCCGCATGACTTTGTTATCAAATGAATTTCGCCGAAAGATGAG




CTCGCGTCTGATTAGGTAGTTGGTGAGGTAACGGCCCACCAAGCCGACGATCAGTAG




CCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGATGCCG




CGTGAGGGAAGAAGGTTTTAGGATTGTAAACCTCTGTCTTTGGGGACGATAATGACG




GTACCCAAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG




GAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATTGCAAGT




CAGGTGTGAAATTTAGGGGCTTAACCCCTGAACTGCACTTGAAACTGTAGTTCTTGAG




TGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAG




GAACATCAGTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCTCGAAAGC




GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTACT




AGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGC




AGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CGTACGCATAGCATAGAGATATGTGAAATCCCTTCGGGGACGTATAGACAGGTGGTG




CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGGTTAAGTCCCGCAACGAGCGCA




ACCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGCAGGACTGCCGTTGACAAAACG




GAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACG




TACTACAATGGCTGTTAACAGAGGGAAGCAAAACAGTGATGTGGAGCAAAACCCTAA




AAGCAGTCTTAGTTCGGATTGTAGGCTGCAACCCGCCTACATGAAGTCGGAATTGCTA




GTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACGCCATGGGAGTCGGTAACACCCGAAGCCTGTGTTCTAACCGCAAGGAGGAAG




CAGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 8)





GCF_000210095

Ruminococcus

TATGAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCCTAACACATGCA




champanellensis

AGTCGAACGGAGATAAAGACTTCGGTTTTTATCTTAGTGGCGGACGGGTGAGTAACA




CGTGAGCAACCTGCCTCTGAGAGAGGGATAGCTTCTGGAAACGGATGGTAATACCTC




ATAACATAGCGGTACCGCATGATACTGCTATCAAAGATTTATCGCTCAGAGATGGGCT




CGCGTCTGATTAGCTAGATGGTGAGGTAACGGCTCACCATGGCGACGATCAGTAGCC




GGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGATGCCGCGT




GGAGGAAGAAGGTTTTCGGATTGTAAACTCCTGTCTTAAGGGACGATAATGACGGTA




CCTTAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAG




CGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATTGCAAGTCAG




ATGTGAAAACTATGGGCTTAACCCATAGACTGCATTTGAAACTGTAGTTCTTGAGTGA




AGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAA




CATCGGTGGCGAAGGCGGCTTACTGGGCTTTTACTGACGCTGAGGCTCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTACTAGG




TGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCTGGG




GAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGT




GGAGTATGTGGTTTAATTCGAAGCAACGCGAAAAACCTTACCAGGTCTTGACATCGA




GTGAATGATCTAGAGATAGATCAGTCCTTCGGGACACAAAGACAGGTGGTGCATGGT




TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTA




CCTTTAGTTGCTACGCAAGAGCACTCTAGAGGGACTGCCGTTGACAAAACGGAGGAA




GGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACA




ATGGCAATGAACAGAGGGAAGCAATACAGTGATGTGGAGCAAATCCCCAAAAATTGT




CCCAGTTCAGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATTGCTAGTAATCG




CAGATCAGCATGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACAC




CATGGGAGTCGGTAACACCCGAAGCCAGTAGCCTAACCGCAAGGAGGGCGCTGTCGA




AGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCG




GCTGGATCACCTCCTTT (SEQ ID NO: 9)





GCF_000239295

Flavonifractorplautii

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA




GTCGAACGGGGTGCTCATGACGGAGGATTCGTCCAATGGATTGAGTTACCTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTTGGAGAGGGGAATAACACTCCGAA




AGGAGTGCTAATACCGCATGAAGCAGTTGGGTCGCATGGCTCTGACTGCCAAAGATT




TATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTAGTAGGCGGGGTAACGGCCCACCT




AGGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCT




GACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTGTCG




GGGACGAAACAAATGACGGTACCCGACGAATAAGCCACGGCTAACTACGTGCCAGC




AGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCG




TGTAGGCGGGATTGCAAGTCAGATGTGAAAACTGGGGGCTCAACCTCCAGCCTGCAT




TTGAAACTGTAGTTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGA




AATGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACT




GACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCCGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAA




CACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTG




ACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAAC




CTTACCAGGGCTTGACATCCCACTAACGAGGCAGAGATGCGTTAGGTGCCCTTCGGG




GAAAGTGGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTT




AAGTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCG




AGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCT




TATGTCCTGGGCCACACACGTACTACAATGGTGGTTAACAGAGGGAGGCAATACCGC




GAGGTGGAGCAAATCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGAAACCCGCC




TGTATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGT




AGCCTAACCGCAAGGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 10)





GCF_000283575

Oscillibacter

TATAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCA




valericigenes

AGTCGAACGGAGCACCCTTGATTGAGGTTTCGGCCAAATGAGAGGAATGCTTAGTGG




CGGACTGGTGAGTAACGCGTGAGGAACCTGCCTTTCAGAGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATGATACATTTGGGCGACATCGCTTGAATGTCAAAGATTTA




TCGCTGAAAGATGGCCTCGCGTCTGATTAGATAGTTGGTGAGGTAACGGCCCACCAA




GTCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGATACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGACGCAAGTCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTAAGGG




GGAAGAGTAGAAGACGGTACCCCTTGAATAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGT




AGCCGGGAAGGTAAGTCAGATGTGAAATCTGGGGGCTCAACCTCCAAACTGCATTTG




AAACTACTTTTCTTGAGTATCGGAGAGGTAATCGGAATTCCTTGTGTAGCGGTGAAAT




GCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATTACTGGACGACAACTGA




CGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




TGTAAACGATCAATACTAGGTGTGCGGGGACTGACCCCCTGCGTGCCGCAGTTAACA




CAATAAGTATTGCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAACCT




TACCAGGACTTGACATCCTACTAACGAGGTAGAGATACGTCAGGTGCCCTTCGGGGA




AAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA




GTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAG




ACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTA




TGTCCTGGGCTACACACGTAATACAATGGCGGTCAACAGAGGGATGCAAAGCCGTGA




GGTGGAGCGAACCCCTAAAAGCCGTCTCAGTTCGGATCGCAGGCTGCAACTCGCCTG




CGTGAAGTCGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTA




GCCTAACAGCAATGAGGGCGCGGCCGAAGGTGGGTTTGATAATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 11)





GCF_000307265

Oscillibacter

TATAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCA




ruminantium

AGTCGAACGGAACACCCTTGACAGAGGTTTCGGCCAATGAAGAGGAATGTTTAGTGG




CGGACTGGTGAGTAACGCGTGAGGAACCTGCCTTTCAGAGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATGAAGCAGCGAGGGGACATCCCCTTGCTGTCAAAGATTT




ATCGCTGAAAGATGGCCTCGCGTCTGATTAGCTAGTTGGTGGGGTAACGGCCCACCA




AGGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGATAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGACGCAAGTCT




GACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTAACA




GGGAAGAGAAGAAGACGGTACCTGTTGAATAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGT




GTAGCCGGGAAGGCAAGTCAGATGTGAAATCTGGAGGCTCAACCTCCAAACTGCATT




TGAAACTGCTTTTCTTGAGTATCGGAGAGGTAATCGGAATTCCTTGTGTAGCGGTGAA




ATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATTACTGGACGACAACT




GACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCA




CGCTGTAAACGATCAATACTAGGTGTGCGGGGACTGACCCCCTGCGTGCCGCAGTTA




ACACAATAAGTATTGCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATT




GACGGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAA




CCTTACCAGGACTTGACATCCTACTAACGAGGTAGAGATACGTCAGGTGCCCTTCGGG




GAAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTT




AAGTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCG




AGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCT




TATGTCCTGGGCTACACACGTAATACAATGGCGGTCAACAGAGGGATGCAAAGCCGT




GAGGCAGAGCGAACCCCTAAAAGCCGTCTCAGTTCGGATCGTAGGCTGCAACTCGCC




TACGTGAAGTCGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTC




CCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGCCCG




TAGCCTAACTGCAAAGAGGGCGCGGTCGAAGGTGGGTTCGATAATTGGGGTGAAGTC




GTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 12)





GCF_000383295

Clostridium

CAAAGGAGCAATCCGCTGAAAGATGGACTCGCGTCCGATTAGCCAGTTGGCGGGGTA




sporosphaeroides

AAGGCCCACCAAAGCGACGATCGGTAGCCGGGTTGAGAGACTGAACGGCCACATTGG




GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATG




GAGGAAACTCTGATGCAGCAATGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAAC




CTCTGTCCTTGGTGAAGATAATGACGGTAGCCAAGGAGGAAGCTCCGGCTAACTACG




TGCCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTA




AAGGGTGCGTAGGCGGCTCTTTAAGTCGGGCGTGAAAGCTGTGGGCTTAACCCACAA




ATTGCGTTCGAAACTGGAGGGCTTGAGTGAAGTAGAGGTAGGCGGAATTCCCGGTGT




AGCGGTGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGG




GCTTTAACTGACGCTGAGGCACGAAAGCATGGGTAGCAAACAGGATTAGATACCCTG




GTAGTCCATGCCGTAAACGATGATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCC




GGAGTTAACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAA




AGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACG




CGAAGAACCTTACCAGGTCTTGACATCCAACTAACGAGGCAGAGATGCATTAGGTGC




CCTTCGGGGAAAGTTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGAT




GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTGATTAGTTGCTACGCAAGAGCA




CTCTAATCAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATC




ATGCCCCTTATGACCTGGGCTACACACGTACTACAATGGTCGCCAACAGAGGGAAGC




CA (SEQ ID NO: 13)





GCF_000468015

Ruminococcus

TAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCAAG




callidus

TCGAACGGAGAACATTGAGCTTGCTTAATGTTCTTAGTGGCGGACGGGTGAGTAACA




CGTGAGTAACCTGCCTCTGAGAGTGGGATAGCTTCTGGAAACGGATGGTAATACCGC




ATAACATCATGGATTCGCATGTTTCTGTGATCAAAGATTTATCGCTTAGAGATGGACT




CGCGTCTGATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCGACGATCAGTAGCC




GGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGATGCCGCGT




GGAGGAAGAAGGTTTTCGGATTGTAAACTCCTGTTGAAGAGGACGATAATGACGGTA




CTCTTTTAGAAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAG




CGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATGGCAAGTCAG




ATGTGAAAACTATGGGCTCAACCCATAGACTGCATTTGAAACTGTTGTTCTTGAGTGA




GGTAGAGGTAAGCGGAATTCCTGGTGTAGCGGTGAAATGCGTAGAGATCAGGAGGAA




CATCGGTGGCGAAGGCGGCTTACTGGGCCTTTACTGACGCTGAGGCTCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTACTAGG




TGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCTGGG




GAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGT




GGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCGA




GTGACGTACCTAGAGATAGGTATTTTCTTCGGAACACAAAGACAGGTGGTGCATGGTT




GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTAC




CATTAGTTGCTACGCAAGAGCACTCTAATGGGACTGCCGTTGACAAAACGGAGGAAG




GTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAA




TGGCAATATAACAGAGGGAAGCAATACAGCGATGTGGAGCAAATCCCCAAAAATTGT




CCCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTAGTAATCG




CAGATCAGCATGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACAC




CATGGGAGTCGGTAACACCCAAAGCCGGTCGTCTAACCTTCGGGAGGATGCCGTCTA




AGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCG




GCTGGATCACCTCCTT (SEQ ID NO: 14)





GCF_000518765

Ruminococcus

ATAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCAA




flavefaciens

GTCGAACGGAGATAATTTGAGTTTACTTAGGTTATCTTAGTGGCGGACGGGTGAGTAA




CACGTGAGCAACCTACCTTAGAGAGAGGGATAGCTTCTGGAAACGGATGGTAATACC




TCATAACATAACTGAACCGCATGATTTAGTTATCAAAGATTTATCACTCTGAGATGGG




CTCGCGTCTGATTAGATAGTTGGTGAGGTAACGGCTCACCAAGTCGACGATCAGTAG




CCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGATGCCG




CGTGGAGGAAGAAGGTTTTCGGATTGTAAACTCCTGTCTTAAAGGACGATAATGACG




GTACTTTAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG




GAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGAGCGCAAGT




CAGATGTGAAATACATGGGCTCAACCCATGGGCTGCATTTGAAACTGTGTTTCTTGAG




TGAAGTAGAGGTAAGCGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAG




GAACACCGGTGGCGAAGGCGGCTTACTGGGCTTTTACTGACGCTGAGGCTCGAAAGC




GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTACT




AGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CGTATGCATAGTCTAGAGATAGATGAAATTCCTTCGGGGACATATAGACAGGTGGTG




CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAA




CCCTTACCTTTAGTTGCTACGCAAGAGCACTCTAAAGGGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGT




ACTACAATGGCAATTAACAAAGAGAAGCAAGACGGTGACGTGGAGCGAATCTCAAA




AAATTGTCCCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTA




GTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACACCATGGGAGTCGGTAACACCCGAAGTCGGTAGTCTAACAGCAATGAGGACG




CCGCCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 15)





GCF_000577335

Clostridium

CAAAGGAGCAATCCGCTGAAAGATGGACTCGCGTCCGATTAGCCAGTTGGCGGGGTA




jeddahense

AAGGCCCACCAAAGCGACGATCGGTAGCCGGGTTGAGAGACTGAACGGCCACATTGG




GACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATG




GAGGAAACTCTGATGCAGCAATGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAAC




CTCTGTCCTTGGTGAAGATAATGACGGTAGCCAAGGAGGAAGCTCCGGCTAACTACG




TGCCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTA




AAGGGTGCGTAGGCGGCTTTTTAAGTCGGGCGTGAAAGCTGTGGGCTTAACCCACAA




ATTGCGTTCGAAACTGGAAGGCTTGAGTGAAGTAGAGGTAGGCGGAATTCCCGGTGT




AGCGGTGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGG




GCTTTAACTGACGCTGAGGCACGAAAGCATGGGTAGCAAACAGGATTAGATACCCTG




GTAGTCCATGCCGTAAACGATGATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCC




GGAGTTAACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAA




AGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACG




CGAAGAACCTTACCAGGTCTTGACATCCAACTAACGAGGCAGAGATGCATTAGGTGC




CCTTCGGGGAAAGTTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGAT




GTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTGATTAGTTGCTACGCAAGAGCA




CTCTAATCAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATC




ATGCCCCTTATGACCTGGGCTACACACGTACTACAATGGTCGCTAACAGAGGGAAGC




CAAGCCGCGAGGTGGAGCAAACCCCCAAAAGCGATCTCAGTTCGGATTGTAGGCTGC




AACCCGCCTACATGAAGTTGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATACCCG




AAGCCAATAGTCTAACCGCAAGGGGGACGTTGTCGAAGGTAGGATTGGCGACTGGGG




TGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ




ID NO: 16)





GCF_000620945

Clostridiumviride

GCTTAGTGGCGGACGGGTGAGTAACGCGTGAGTAACCTGCCTTGGAGTGGGGAATAA




CACATCGAAAGGTGTGCTAATACCGCATGATGCAACGGGATCGCATGGTTCTGTTGCC




AAAGATTTATCGCTCTGAGATGGACTCGCGTCTGATTAGCTAGTTGGTGAGGTAATGG




CTCACCAAGGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACT




GAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGC




GCAAGCCTGACCCAGCAACGCCGCGTGAAGGAAGAAGGCCCTCGGGTTGTAAACTTC




TTTTATTCGAGACGAAACAAATGACGGTACCGAATGAATAAGCCACGGCTAACTACG




TGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTA




AAGGGCGTGTAGGCGGGACTGCAAGTCAGATGTGAAATTCCAGGGCTCAACTCTGGA




CCTGCATTTGAAACTGTAGTTCTTGAGTGATGGAGAGGCAGGCGGAATTCCGAGTGTA




GCGGTGAAATGCGTAGATATTCGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGAC




ATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGT




AGTCCACGCTGTAAACGATGGATACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCG




CAGTTAACACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAA




GGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGC




GAAGAACCTTACCAGGGCTTGACATCCCTCTGACCGGTCTAGAGATAGGCCCTCCCTT




CGGGGCAGAGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTG




GGTTAAGTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTA




GCGAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCC




CCTTATGTCCTGGGCTACACACGTACTACAATGGCGCTTAACAGAGGGAGGCAATAC




CGCGAGGTGGAGCAAACCCCTAAAAGGCGTCCCAGTTCGGATTGCAGGCTGAAACCC




GCCTGTATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG




TTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGT




CCGTAGCCTAACAGCAATGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAA




GTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID




NO: 17)





GCF_000621285

Ruminococcusalbus

TATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCA




AGTCGAACGAGCGAAAGAGTGCTTGCACTCTCTAGCTAGTGGCGGACGGGTGAGTAA




CACGTGAGCAATCTGCCTTTCGGAGAGGGATACCAATTGGAAACGATTGTTAATACCT




CATAACATAACGAAGCCGCATGACTTTGTTATCAAATGAATTTCGCCGAAAGATGAG




CTCGCGTCTGATTAGGTAGTTGGTGAGGTAACGGCCCACCAAGCCGACGATCAGTAG




CCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGATGCCG




CGTGAGGGAAGAAGGTTTTAGGATTGTAAACCTCTGTCTTTGGGGACGATAATGACG




GTACCCAAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG




GAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATTGCAAGT




CAGGTGTGAAATTTAGGGGCTTAACCCCTGAACTGCACTTGAAACTGTAGTTCTTGAG




TGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAG




GAACATCAGTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCTCGAAAGC




GTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTACT




AGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CGTACGCATAGCATAGAGATATGTGAAATCCCTTCGGGGACGTATAGACAGGTGGTG




CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAA




CCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGCAGGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGT




ACTACAATGGCTGTTAACAGAGGGAAGCAAAACAGTGATGTGGAGCAAAACCCTAA




AAGCAGTCTTAGTTCGGATTGTAGGCTGCAACCCGCCTACATGAAGTCGGAATTGCTA




GTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACGCCATGGGAGTCGGTAACACCCGAAGCCTGTGTTCTAACCGCAAGGAGGAAG




CAGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 18)





GCF_000701665

Agathobaculum

CAAGTTGGGAGTGAAATCCGGGGGCTTAACCCCCGAACTGCTTTCAAAACTGCTGGT




desmolans

CTTGAGTGATGGAGAGGCAGGCGGAATTCCGTGTGTAGCGGTGAAATGCGTAGATAT




ACGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGCGC




GAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATG




GATACTAGGTGTGGGAGGTATTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTATC




CCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCA




CAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTT




GACATCCCGGTGACCGTCCTAGAGATAGGACTTCCCTTCGGGGCAACGGTGACAGGT




GGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGC




GCAACCCTTACGGTTAGTTGATACGCAAGATCACTCTAGCCGGACTGCCGTTGACAAA




ACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACAC




ACGTACTACAATGGCAGTCATACAGAGGGAAGCAAAATCGCGAGGTGGAGCAAATC




CCTAAAAGCTGTCCCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGAAGTCGGAA




TTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACA




CCGCCCGTCACACCATGAGAGCCGTCAATACCCGAAGTCCGTAGCCTAACCGCAAGG




GGGGCGCGGCCGAAGGTAGGGGTGGTAATTAGGGTGAAGTCGTAACAAGGTAGCCG




TATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 19)





GCF_000723465

Ruminococcus

ATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCAA




bicirculans

GTCGAACGAGAGAAGAGGAGCTTGCTTTTCTGATCTAGTGGCGGACGGGTGAGTAAC




ACGTGAGCAATCTGCCTTTCAGAGGGGGATACCGATTGGAAACGATCGTTAATACCG




CATAACATAATTGAACCGCATGATTTGATTATCAAAGATTTATCGCTGAAAGATGAGC




TCGCGTCTGATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCGACGATCAGTAGC




CGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGG




GAGGCAGCAGTGGGGAATATTGCACAATGGAGGAAACTCTGATGCAGCGATGCCGCG




TGAGGGAAGAAGGTTTTAGGATTGTAAACCTCTGTCTTCAGGGACGAAAAAAGACGG




TACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG




AGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATCGCAAGTC




AGATGTGAAAACTATGGGCTTAACCCATAAACTGCATTTGAAACTGTGGTTCTTGAGT




GAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGG




AACATCAGTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCTCGAAAGCG




TGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTACTA




GGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGCAAACGCAATAAGTAATCCACCTG




GGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCA




GTGGAGTATGTGGATTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATC




GTATGCATAGCTCAGAGATGAGTGAAATCTCTTCGGAGACATATAGACAGGTGGTGC




ATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC




CCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGCAGGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCCTCACACGT




ACTACAATGGCTGTCAACAGAGGGAAGCAAAGCCGCGAGGTGGAGCGAACCCCTAA




AAGCAGTCTTAGTTCGGATTGTAGGCTGCAACCCGCCTACATGAAGTCGGAATTGCTA




GTAATCGCAGATCAGCATGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACGCCATGGGAGTCGGTAACACCCGAAGCCTGTAGTCTAACCGCAAGGAGGACG




CAGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 20)





GCF_000949455

Ruthenibacterium

AATGAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCA




lactatiformans

AGTCGAACGGAGCTGTTTTCTCTGAAGTTTTCGGATGGAAGAGAGTTCAGCTTAGTGG




CGAACGGGTGAGTAACACGTGAGCAACCTGCCTTTCAGTGGGGGACAACATTTGGAA




ACGAATGCTAATACCGCATAAGACCACAGTGTCGCATGGCACAGGGGTCAAAGGATT




TATCCGCTGAAAGATGGGCTCGCGTCCGATTAGCTAGATGGTGAGGTAACGGCCCAC




CATGGCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGAC




ACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAAC




CCTGATGCAGCGACGCCGCGTGGAGGAAGAAGGTCTTCGGATTGTAAACTCCTGTCC




CAGGGGACGATAATGACGGTACCCTGGGAGGAAGCACCGGCTAACTACGTGCCAGCA




GCCGCGGTAAAACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGC




GCAGGCGGATTGGCAAGTTGGGAGTGAAATCTATGGGCTCAACCCATAAATTGCTTT




CAAAACTGTCAGTCTTGAGTGGTGTAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGG




AATGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACTAACT




GACGCTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCAT




GCCGTAAACGATGATTACTAGGTGTGGGAGGATTGACCCCTTCCGTGCCGCAGTTAAC




ACAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGTCTTGACATCGGATGCATACCTAAGAGATTAGGGAAGTCCTTCGGGACAT




CCAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCC




CGCAACGAGCGCAACCCTTATCGTTAGTTACTACGCAAGAGGACTCTAGCGAGACTG




CCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTTATGAC




CTGGGCTACACACGTACTACAATGGCTATTAACAGAGAGAAGCGATACCGCGAGGTG




GAGCAAACCTCACAAAAATAGTCTCAGTTCGGATCGCAGGCTGCAACCCGCCTGCGT




GAAGCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGG




CCTTGTACACACCGCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTCGGTAGTC




TAACCGTAAGGAGGACGCCGCCGAAGGTAAAACTGGTGATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 21)





GCF_001244495

Clostridium

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA




phoceensis

GTCGAACGGAGTGCCTTAGAAAGAGGATTCGTCCAATTGATAAGGTTACTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTCGGAGTGGGGAATAACAGACCGAA




AGGCCTGCTAATACCGCATGATGCAGTTGGACCGCATGGTCCTGACTGCCAAAGATTT




ATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTTGTTGGCGGGGTAATGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTCTCAGG




GACGAACAAATGACGGTACCTGAGGAATAAGCCACGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTA




GGCGGGAAGGCAAGTCAGATGTGAAAACTATGGGCTCAACCCATAGCCTGCATTTGA




AACTGTTTTTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAAATG




CGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACTGACG




CTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTG




TAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAACACA




ATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGACGG




GGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTA




CCAGGGCTTGACATCCTACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGGAAA




GTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAGACT




GCCGTTGACAAAACGGAGGAAGGCGGGGACGACGTCAAATCATCATGCCCCTTATGT




CCTGGGCTACACACGTACTACAATGGTGGTAAACAGAGGGAAGCAAGACCGCGAGGT




GGAGCAAATCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGAAACCCGCCTGTAT




GAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGG




CCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTAGTC




TAACCGCAAGGGGGACGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 22)





GCF_001244995

Intestinimonas

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA




massiliensis

GTCGAACGGAACGCCAAGGAAAGAGTTTTCGGACAATGGAATTGGTTGTTTAGTGGC




GGACGGGTGAGTAACGCGTGAGTAACCTGCCTTGGAGTGGGGAATAACACAGTGAAA




ATTGTGCTAATACCGCATGATATATTGGTGTCGCATGGCACTGATATCAAAGATTTAT




CGCTCTGAGATGGACTCGCGTCTGATTAGATAGTTGGCGGGGTAACGGCCCACCAAG




TCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTGA




CCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTAACAGG




GACGAAGCAAGTGACGGTACCTGTTGAATAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGT




AGGCGGGACTGCAAGTCAGATGTGAAAACTATGGGCTCAACCCATAGCCTGCATTTG




AAACTGTAGTTCTTGAGTGTCGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAAA




TGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACGATAACTGA




CGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGCTAACG




CAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCT




TACCAGGGCTTGACATCCTACTAACGAACCAGAGATGGATTAGGTGCCCTTCGGGGA




AAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA




GTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAG




ACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTA




TGTCCTGGGCCACACACGTACTACAATGGCGGTTAACAGAGGGAGGCAAAGCCGCGA




GGCAGAGCAAACCCCTAAAAGCCGTCCCAGTTCGGATTGCAGGCTGAAACCCGCCTG




TATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTA




GCCTAACTGCAAAGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 23)





GCF_001261775

Anaeromassilibacillus

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




senegalensis

AGTCGAACGGAGTTAGAAGAGCTTGCTCTTCTAACTTAGTGGCGGACGGGTGAGTAA




CGCGTGAGTAACCTGCCTTTCAGAGGGGGATAACGTTCTGAAAAGAACGCTAATACC




GCATGACGTCATAGTACCGCATGGTACAGTGATCAAAGGAGCAATCCGCTGAAAGAT




GGACTCGCGTCCGATTAGCTAGTTGGTGGGGTAAAGGCTCACCAAGGCGACGATCGG




TAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCT




ACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGGGAAACCCTGATGCAGCAACG




CCGCGTGAAGGAAGAAGGTCTTCGGATTGTAAACTTCTGTCCTATGGGAAGATAATG




ACGGTACCATAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT




AGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGATCTGCA




AGTCAGTAGTGAAATCCCGGGGCTTAACCCCGGAACTGCTATTGAAACTGTGGGTCTT




GAGTGAGGTAGAGGCAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCG




GGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCCTTAACTGACGCTGAGGCACGA




AAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGAT




TACTAGGTGTGGGTGGTCTGACCCCATCCGTGCCGGAGTTAACACAATAAGTAATCCA




CCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACA




AGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGA




CATCCTACTAACGAAGCAGAGATGCATTAGGTGCCTTTCGGGGAAAGTAGAGACAGG




TGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAG




CGCAACCCTTGCTATTAGTTGCTACGCAAGAGCACTCTAATAGGACTGCCGTTGACAA




AACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACA




CACGTACTACAATGGTCGTTAACAGAGAGAAGCAATACTGCGAAGTGGAGCAAAACT




CTAAAAACGGTCTCAGTTCGGATTGTAGGCTGCAACCCGCCTACATGAAGTTGGAATT




GCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACC




GCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGTCTAACCGCAAGGAG




GACGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAT




CGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 24)





GCF_001312825

Ruminococcus

TATGAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCCTAACACATGCA




champanellensis

AGTCGAACGGAGATAAAGACTTCGGTTTTTATCTTAGTGGCGGACGGGTGAGTAACA




CGTGAGCAACCTGCCTCTGAGAGAGGGATAGCTTCTGGAAACGGATGGTAATACCTC




ATAACATAGCGGTACCGCATGATACTGCTATCAAAGATTTATCGCTCAGAGATGGGCT




CGCGTCTGATTAGCTAGATGGTGAGGTAACGGCTCACCATGGCGACGATCAGTAGCC




GGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGATGCCGCGT




GGAGGAAGAAGGTTTTCGGATTGTAAACTCCTGTCTTAAGGGACGATAATGACGGTA




CCTTAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAG




CGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATTGCAAGTCAG




ATGTGAAAACTATGGGCTTAACCCATAGACTGCATTTGAAACTGTAGTTCTTGAGTGA




AGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAA




CATCGGTGGCGAAGGCGGCTTACTGGGCTTTTACTGACGCTGAGGCTCGAAAGCGTG




GGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTACTAGG




TGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCTGGG




GAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGT




GGAGTATGTGGTTTAATTCGAAGCAACGCGAAAAACCTTACCAGGTCTTGACATCGA




GTGAATGATCTAGAGATAGATCAGTCCTTCGGGACACAAAGACAGGTGGTGCATGGT




TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTA




CCTTTAGTTGCTACGCAAGAGCACTCTAGAGGGACTGCCGTTGACAAAACGGAGGAA




GGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACA




ATGGCAATGAACAGAGGGAAGCAATACAGTGATGTGGAGCAAATCCCCAAAAATTGT




CCCAGTTCAGATTGTAGGCTGCAACTCGCCTACATGAAGTCGGAATTGCTAGTAATCG




CAGATCAGCATGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACAC




CATGGAGTCGGTAACACCCGAAGCCAGTAGCCTAACCGCAAGGAGGGCGCTGTCGAA




GGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGG




CTGGATCACCTCCTTT (SEQ ID NO: 25)





GCF_001486165

Bittarella

ATAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




massiliensis

GTCGAACGGACACATCCGACGGAATAGCTTGCTAGGAAGATGGATGTTGTTAGTGGC




GGACGGGTGAGTAACACGTGAGCAACCTGCCTCGGAGTGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATACGGTGGTCGGGGGACATCCCCTGGCTAAGAAAGGATC




TATGATCCGCTCTGAGATGGGCTCGCGTCTGATTAGCTAGTTGGCGGGGTAACGGCCC




ACCAAGGCAACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAG




ACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGGA




ACCCTGATGCAGCGACGCCGCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGT




CTTGTGGGACGATAATGACGGTACCACAGGAGGAAGCCATGGCTAACTACGTGCCAG




CAGCCGCGGTAATACGTAGATGGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGA




GTGTAGGCGGGATCATAAGTTGCGTGTGAAATGCAGGGGCTCAACCCCTGAACTGCG




CGCAAAACTGTGGTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCCGGTGTAGCGGT




GGAATGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTTA




CTGACGCTGAGGCTCGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCC




ATGCCGTAAACGATGATTACTAGGTGTGGGGGGATAACCCCCTCCGTGCCGGAGTTA




ACACAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATT




GACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAAAA




CCTTACCAGGTCTTGACATCTATCGCTATCCCAAGAGATTGGGAGTTCCCTTCGGGGA




CGGTAAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAG




TCCCGCAACGAGCGCAACCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAACGGGA




CTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTTAT




GACCTGGGCTACACACGTACTACAATGGCCGCAAACAACGAGCAGCGAAACCGCGA




GGTGGAGCGAATCTATAAAAGCGGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTG




CATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGCCGGTAACACCCGAAGTCAGTA




GTCTAACCGCAAGGGGGACGCTGCCGAAGGTGGGGCTGGTGATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 26)





GCF_002157465

Butyricicoccus

TTTAGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCCTAACACATGCA




porcorum

AGTCGAACGGAGCACTGAGACTTCGGTTTTTGTGCTTAGTGGCGGACGGGTGAGTAA




CGCGTGAGCAATCTGCCTTTCAGAGGGGGATAACGACTGGAAACGGTCGCTAATACC




GCATAACGTATTTTGCAGGCATCTGCGAGATACCAAAGGAGCAATCCGCTGAAAGAT




GAGCTCGCGTCTGATTAGATAGTTGGTGAGGTAACGGCCCACCAAGTCGACGATCAG




TAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCT




ACGGGAGGCAGCAGTGGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACG




CCGCGTGATCGAAGAAGGTCTTCGGATTGTAAAGATCTTTTATCAGGGACGAAGAAA




GTGACGGTACCTGATGAATAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATA




CGTAGGGAGCGAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGAGTAGGCGGGCTG




GTAAGTTGGAAGTGAAATGTCGGGGCTTAACCCCGGAACTGCTTTCAAAACTGCTGG




TCTTGAGTGATGGAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATA




TTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGAG




CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGAT




GGATACTAGGTGTGGGAGGTATTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAT




CCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGC




ACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTGGTCT




TGACATCCCGGTGACCGGCATAGAGATATGCCTTTCCCTTCGGGGACAGCGGTGACA




GGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG




AGCGCAACCCTTATTGTTAGTTGATACATTTAGTTGATCACTCTAGCGAGACTGCCGT




TGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCAGG




GCTACACACGTACTACAATGGCAGACATACAGAGGGAAGCAAAGCTGTGAGGCAGA




GCAAATCCCTAAAAGCTGTCCCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGAA




GTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCACACCATGAGAGCCGGTAATGCCCGAAGTCCGTAGTCTAAC




CGCAAGGAGGACGCGGCCGAAGGCAGGACTGGTAATTAGGGTGAAGTCGTAACAAG




GTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 27)





GCF_002201475

Acutalibactermuris

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAATACATGCA




AGTCGAACGGAGATATTCGCTGATGAAGTACTTCGGTAATGAATCTTGGATATCTTAG




TGGCGGACGGGTGAGTAACGCGTGAGCAACCTGCCTTTCAGAGGGGGATAACGTTTG




GAAACGAACGCTAATACCGCATGACATTATCTTATCGCATGGTAGGATAATCAAAGG




AGCAATCCGCTGAAAGATGGGCTCGCGTCCGATTAGGTAGTTGGTGGGGTAACGGCC




CACCAAGCCGACGATCGGTAGCCGGACTGAGAGGTTGGACGGCCACATTGGGACTGA




GACACGGCCCAGACTCCTACGGGAGGCAGCAGTAAGGGATATTGGTCAATGGGGGA




AACCCTGAACCAGCAACGCCGCGTGAGGGAAGACGGTTTTCGGATTGTAAACCTCTG




TCCTCTGTGAAGATGATGACGGTAGCAGAGGAGGAAGCTCCGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGATTTACTGGGTGTAAAGGG




TGCGTAGGCGGCTTGGCAAGTCAGTAGTGAAATCCATGGGCTTAACCCATGAACTGC




TATTGAAACTGTCGAGCTTGAGTGAAGTAGAGGTAGGCGGAATTCCCGGTGTAGCGG




TGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTTTA




ACTGACGCTGAGGCACGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTC




CACGCTGTAAACGATGATTACTAGGTGTGGGTGGACTGACCCCATCCGTGCCGGAGTT




AACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAAT




TGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGATTAATTCGATGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCCCGCTAACGAGGTAGAGATACGTTAGGTGCCCTTCGG




GGAAAGCGGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGG




TTAAGTCCCGCAACGAGCGCAACCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGC




AGGACCGCCGTTGACAAAACGGAGGAAGGTGGGGATGATGTCAAATCATCATGCCCC




TTATGACCTGGGCCTCACACGTACTACAATGGCCATTAACAGAGGGAGGCAAAGCCG




CGAGGCAGAGCAAAACCCTAAAAATGGTCCCAGTTCGGATCGCAGGCTGCAACCCGC




CTGCGTGAAGTTGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTC




CCGGGCCTTGTACACACCGCCCGTCACACCATGGAAGTCGGTAATGCCCGAAGTCAG




TAGCCTAACCGCAAGGGGGGCGCTGCCGAAGGCAGGATTGATGACTGGGGTGAAGTC




GTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 28)





GCF_002556665

Clostridiumleptum

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




AGTCGAACGGAGTTAAATTCGACACCCGAGTATCCGGCCGGGAGGCGGGGTGCTGGG




GGTTGGATTTAACTTAGTGGCGGACGGGTGAGTAACGCGTGAGTAACCTGCCTTTCAG




AGGGGGATAACGTTCTGAAAAGAACGCTAATACCGCATAACATCAATTTATCGCATG




ATAGGTTGATCAAAGGAGCAATCCGCTGGAAGATGGACTCGCGTCCGATTAGCCAGT




TGGCGGGGTAACGGCCCACCAAAGCGACGATCGGTAGCCGGACTGAGAGGTTGAAC




GGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGAT




ATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAGGGAAGAAGGTTTTC




GGATTGTAAACCTCTGTTCTTAGTGACGATAATGACGGTAGCTAAGGAGAAAGCTCC




GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGATT




TACTGGGTGTAAAGGGTGCGTAGGCGGCGAGGCAAGTCAGGCGTGAAATCTATGGGC




TTAACCCATAAACTGCGCTTGAAACTGTCTTGCTTGAGTGAAGTAGAGGTAGGCGGA




ATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGC




GGCCTACTGGGCTTTAACTGACGCTGAAGCACGAAAGCATGGGTAGCAAACAGGATT




AGATACCCTGGTAGTCCATGCCGTAAACGATGATTACTAGGTGTGGGGGGTCTGACC




CCCTCCGTGCCGCAGTTAACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGG




TTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAAT




TCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCGTCTAACGAAGCAGAGAT




GCATTAGGTGCCCTTCGGGGAAAGGCGAGACAGGTGGTGCATGGTTGTCGTCAGCTC




GTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTTTCTAGTTGCT




ACGCAAGAGCACTCTAGAGAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGA




CGTCAAATCATCATGCCCCTTATGACCTGGGCCACACACGTACTACAATGGCTGTAAA




CAGAGGGAAGCAAAGCCGCGAGGTGGAGCAAAACCCTAAAAGCAGTCCCAGTTCGG




ATCGCAGGCTGCAACCCGCCTGCGTGAAGTCGGAATTGCTAGTAATCGCGGATCAGC




ATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAG




CCGGTAATACCCGAAGCCAGTAGTTCAACCGCAAGGAGAGCGCTGTCGAAGGTAGGA




TTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATC




ACCTCCTTT (SEQ ID NO: 29)





GCF_002834225

Ruminococcus

TTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCAA




bromii

GTCGAACGGAACTGTTTTGAAAGATTTCTTCGGAATGAATTTGATTTAGTTTAGTGGC




GGACGGGTGAGTAACGCGTGAGTAACCTGCCTTCAAGAGGGGGATAACATTCTGAAA




AGAATGCTAATACCGCATGACATATCGGAACCACATGGTTCTGATATCAAAGATTTTA




TCGCTTGAAGATGGACTCGCGTCCGATTAGTTAGTTGGTGAGGTAACGGCTCACCAAG




ACCGCGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCGCAATGGGGGCAACCCTGA




CGCAGCAACGCCGCGTGAAGGATGAAGGTTTTCGGATTGTAAACTTCTTTTATTAAGG




ACGAAAAATGACGGTACTTAATGAATAAGCTCCGGCTAACTACGTGCCAGCAGCCGC




GGTAATACGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGG




CGGCTTTGCAAGTCAGATGTGAAATCTATGGGCTCAACCCATAAACTGCATTTGAAAC




TGTAGAGCTTGAGTGAAGTAGAGGCAGGCGGAATTCCCCGTGTAGCGGTGAAATGCG




TAGAGATGGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGCT




GAGGCACGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTA




AACGATGATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAAT




AAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGG




GCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACC




AGGTCTTGACATCCAACTAACGAAGTAGAGATACATTAGGTGCCCTTCGGGGAAAGT




TGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCC




CGCAACGAGCGCAACCCTTGCTATTAGTTGCTACGCAAGAGCACTCTAATAGGACTG




CCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGAC




CTGGGCTACACACGTACTACAATGGATGTTAACAGAGGGAAGCAAGACAGTGATGTG




GAGCAAACCCCTAAAAACATTCTCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATG




AAGATGGAATTGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGTCC




AACCTCGTGAGGACGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAA




GGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 30)





GCF_002874775

Monoglobus

ATCGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCAA




pectinilyticus

GTCGAGCGAGAAATTTTTAACGGATCCCTTCGGGGAGAAGATAAGGATGGAAAGCGG




CGGACGGGTGAGTAACGCGTGAGTAACCTGCCTTTAGGAGGGGGACAACATTCCGAA




AGGGATGCTAATACCGCATAAAATTATTGTATCGCATGGTATAATAATCAAAGATTTA




TCGCCTAAAGATGGACTCGCGTCCGATTAGCTAGTTGGTGGGGTAAAAGCCTACCAA




GGCGACGATCGGTAGCCGAACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCGCAATGGGGGAAACCCTG




ACGCAGCAACGCCGCGTGAAGGAAGAAGGCCTTCGGGTTGTAAACTTCTTTAAGTGT




GGAAGATAATGACGGTACACACAGAATAAGCCACGGCTAACTACGTGCCAGCAGCCG




CGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGTAG




GCGGGTAGACAAGTCAGATGTGAAATACCGGGGCTCAACTCCGGGGCTGCATTTGAA




ACTGTATATCTTGAGTGTCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAAATG




CGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGATAACTGACG




CTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCG




TAAACGATGGATACTAGGTGTAGGAGGTATCGACCCCTTCTGTGCCGCAGTTAACAC




AATAAGTATCCCACCTGGGGAGTACGGTCGCAAGATTGAAACTCAAAGGAATTGACG




GGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTT




ACCAGGACTTGACATCCCACGCATAGCCTAGAGATAGGTGAAGTCCTACGGGACGTG




GAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTACTGTCAGTTACCATCATTAAGTTGGGGACTCTGGCAGG




ACTGCCGGTGACAAATCGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTA




TGTCCTGGGCTACACACGTACTACAATGGCTGTTAACAAAGTGAAGCAAAGCAGTGA




TGTGGAGCAAAACACAAAAAGCAGTCTCAGTTCAGATTGTAGGCTGAAACTCGCCTA




TATGAAGTCGGAATTGCTAGTAATCGCAGATCAGCATGCTGCGGTGAATACGTTCCCG




GGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGATAACACCCGAAGCCTGTAG




CTTAACCTTAGGGAGAGCGCAGTCGAAGGTGGGATTGATAATTAGGGTGAAGTCGTA




ACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 31)





GCF_003020045

Ethanoligenens

TTGGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




harbinense

GTCGAGCGGAGTCCTTCGGGACTTAGCGGCGGACGGGTGAGTAACGCGTGAGCAACC




TGGCCTTCAGAGGGGGATAACGTCTGGAAACGGACGCTAATACCGCATGACATGGCG




GAGTCGCATGGCTCTGCCATCAAAGGAGTAATCCGCTGAGGGATGGGCTCGCGTCCG




ATTAGGTAGTTGGTGAGGTAACGGCTCACCAAGCCCGCGATCGGTAGCCGGACTGAG




AGGTTGGCCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCGACGCCGCGTGAGGGAA




GAAGGTCTTCGGATTGTAAACCTCTGTCTTTGGGGACGAATCAATGACGGTACCCAAG




GAGGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCG




TTGTCCGGAATTACTGGGTGTAAAGGGTGCGCAGGCGGGGCGGCAAGTTGGATGTGA




AAACTCCGGGCTCAACCCGGAGCCTGCATTCAAAACTGTCGCTCTTGAGTGAAGTAG




AGGCAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATCGGGAGGAACACCA




GTGGCGAAGGCGGCCTGCTGGGCTTTTACTGACGCTGAGGCACGAAAGCATGGGTAG




CAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGATTGCTAGGTGTGG




GGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGCAATCCACCTGGGGAGTA




CGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGAGT




ATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCACCGAAT




CCCCCAGAGATGGGGGAGTGCCCTTCGGGGAGCGGTGAGACAGGTGGTGCATGGTTG




TCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTG




AATAGTTGCTACGAAAGAGCACTCTATTCAGACCGCCGTTGACAAAACGGAGGAAGG




TGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAAT




GGCCATCAACAGAGGGAAGCAAGGCCGCGAGGTGGAGCGAACCCCTAAAAATGGTC




TCAGTTCAGATTGCAGGCTGAAACCCGCCTGCATGAAGATGGAATTGCTAGTAATCG




CGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACAC




CATGAGAGCCGGGGACACCCGAAGTCGGTTGGGTAACCGTAAGGAGCCCGCCGCCGA




AGGTGGAATCGGTAATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCG




GCTGGATCACCTCCTTT (SEQ ID NO: 32)





GCF_900048895

Neglectatimonensis

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




AGTCGAACGGAGATAGACGCTGAAAGGGAGACAGCTTGCTGTAAGAATTTCTTGTTT




ATCTTAGTGGCGGACGGGTGAGTAACGCGTGAGTAACCTGCCTTTCAGAGGGGGATA




ACGTCTGGAAACGGACGCTAATACCGCATGAGACCACAGCTTCACATGGAGCGGCGG




TCAAAGGAGCAATCCGCTGAAAGATGGACTCGCGTCCGATTAGATAGTTGGCGGGGT




AACGGCCCACCAAGTCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTG




GGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGAGGGATATTGGTCAAT




GGGGGAAACCCTGAACCAGCAACGCCGCGTGAGGGAAGACGGTTTTCGGATTGTAAA




CCTCTGTCCTCTGTGAAGATAGTGACGGTAGCAGAGGAGGAAGCTCCGGCTAACTAC




GTGCCAGCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGATTTACTGGGTGT




AAAGGGTGCGTAGGCGGCTCTGCAAGTCAGAAGTGAAATCCATGGGCTTAACCCATG




AACTGCTTTTGAAACTGTAGAGCTTGAGTGAAGTAGAGGTAGGCGGAATTCCCGGTG




TAGCGGTGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTG




GGCTTTAACTGACGCTGAGGCACGAAAGCATGGGTAGCAAACAGGATTAGATACCCT




GGTAGTCCATGCCGTAAACGATGATTACTAGGTGTGGGGGGTCTGACCCCCTCCGTGC




CGGAGTTAACACAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCA




AAGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGATTAATTCGAAGCAAC




GCGAAGAACCTTACCAGGTCTTGACATCCAACTAACGAAGCAGAGATGCATTAGGTG




CCCTTCGGGGAAAGTTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAG




ATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTACTGTTAGTTGCTACGCAAGAGC




ACTCTAGCAGGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCAT




CATGCCCCTTATGACCTGGGCCTCACACGTACTACAATGGCCATTAACAGAGGGAAG




CAAGCCCGCGAGGTGGAGCAAAACCCTAAAAATGGTCTCAGTTCGGATCGTAGGCTG




AAACCCGCCTGCGTGAAGTTGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTG




AATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATACCC




GAAGTCAGTAGTCTAACCGCAAGGGGGACGCTGCCGAAGGTAGGATTGGCGACTGGG




GTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ




ID NO: 33)





GCF_900078395

Anaerotruncus

AAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAAGT




rubiinfantis

CGAACGGAGTTTATCCGACTGAAGTTTTCGGATGGAAGATGGATAAACTTAGTGGCG




GACGGGTGAGTAACACGTGAGCAACCTGCCTTTCAGAGGGGGATAACGATTGGAAAC




GATCGCTAATACCGCATAACATTATGAGGAGACATCTTCTTATAATCAAAGGAGCAA




TCCGCTGAAAGATGGGCTCGCGGCCGATTAGCTAGATGGTGGGGTAACGGCCCACCA




TGGCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCT




GATGCAGCGACGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCTTAG




GGGAAGAAAATGACGGTACCCTAAGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTA




GGCGGGATGGCAAGTTGGATGTTTAAACTAACGGCTCAACTGTTAGGTGCATCCAAA




ACTGCTGTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATG




CGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACG




CTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTG




TAAACGATGATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACA




ATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGG




GGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTA




CCAGGTCTTGACATCGGATGCATACCATAGAGATATGGGAAGTCCTTCGGGACATCC




AGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTATTATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCG




TTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTG




GGCTACACACGTACTACAATGGCACTTAAACAAAGGGCAGCAACGTCGCGAGGCGAA




GCGAATCCCGAAAAAGTGTCTCAGTTCGGATCGCAGGCTGCAACCCGCCTGCGTGAA




GTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCACACCATGGGAGTCGGTAACACCCGAAGCCAGTAGTCTAAC




TGCAAAGAGGACGCTGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGG




TAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 34)





GCF_900095865

Massilioclostridium

ATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




coli

GTCGAACGGAGATACCTGTTAGATCCCTTCGGGGTGACGATGGACTATCTTAGTGGCG




GACGGGTGAGTAACACGTGAGCAACCTGCCTTACAGAGTGGGATAACGTTTGGAAAC




GAACGCTAATACCGCATAACATTAACTTATCGCATGGTAAGATAATCAAAGAAATTC




GCTGTAAGATGGGCTCGCGTCTGATTAGATAGTTGGTGAGGTAACGGCTCACCAAGT




CGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGC




CCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGAT




GCAGCGACGCCGCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCTTCAGGG




ACGATAGTGACGGTACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCG




GTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGC




GGGACAGCAAGTTGAATGTGAAATCTATGGGCTCAACCCATAAACTGCGTTCAAAAC




TGTTGTTCTTGAGTGAAGTAGAGGTAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGT




AGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTTTAACTGACGCTG




AGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAA




ACGATGATTACTAGGTGTNNNNNNNTCAACCTTCCGTGCCGGAGTTAACACAATAAG




TAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCC




CGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGG




TCTTGACATCCAACTAACGAGATAGAGATATGTTAGGTGCCCTTCGGGGAAAGTTGA




GACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGC




AACGAGCGCAACCCTTACCATTAGTTGCTACGCAAGAGCACTCTAATGGGACTGCCG




TTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTG




GGCCACACACGTACTACAATGGCTATTAACAGAGGGAAGCAATACCGCGAGGAGGA




GCAAACCCCTAAAAATAGTCTCAGTTCGGATTGCAGGCTGCAACCCGCCTGCATGAA




GCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCACACCATGAGAGTTGGCAACACCCGAAGCCAGTAGCCTAAC




CGCAAGGAGGGCGCTGTCGAAGGTGGGGTTGATGATTAGGGTGAAGTCGTAACAAGG




TAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 35)





GCF_900104675

Angelakisella

AATGAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCA




massiliensis

AGTCGAACGGAGTAAGATGAGCTTGCTTATCTTACTTAGTGGCGGACGGGTGAGTAA




CACGTGAGCAACCTGCCTTCGAGTGGGGAATAACAGTCGGAAACGACTGCTAATACC




GCATAACACATTGGGATGGCATCATCCTGATGTCAAAGATTTATCGCTCGAAGATGG




GCTCGCGTCCGATTAGCTAGTTGGCGGGGTAACGGCCCACCAAGGCGACGATCGGTA




GCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTGGGGGATATTGCACAATGGGGGAAACCCTGATGCAGCGACGCC




GCGTGTAGGAAGACGGTCCTCTGGATTGTAAACTACTGTCTTCAGGGACGATAATGA




CGGTACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGGAGGCA




AGTTGGATGTGAAAACTATCGGCTCAACTGATAGACTGCATTCAAAACTGTTTCTCTT




GAGTGAAGTAGAGGCAGGCGGGATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAG




GAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTTACTGACGCTGAGGCTCGAA




AGTGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACACCGTAAACGATGATT




ACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATCCA




CCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACA




AGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGA




CATCTCCTGCATAACCTAGAGATAGGTGAAGTCCTTCGGGACAGGAAGACAGGTGGT




GCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTTGTTTTTAGTTGCTACGCAAGAGCACTCTAAAGAGACTGCCGTTGACAAAACG




GAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACG




TACTACAATGGCAATTAACAGAGGGAAGCGACACCGCGAGGTGGAGCAAAACCCTA




AAAATTGTCCCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCT




AGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGC




CCGTCACACCATGGGAGTCGGTAACACCCGAAGTCAGTAGCCTAACCGCAAGGAGGG




CGCTGCCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCG




GAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 36)





GCF_900130065

Sporobacter

TATTGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




termitidis

AGTCGAACGGAGACAATTGGTTCGCTGATTGTCTTAGTGGCGGACGGGTGAGTAACG




CGTGAGCAATCTGCCCTTCGGAGGGGGACAACAGCTGGAAACGGCTGCTAATACCGC




ATAATGTATATTCAAGGCATCTTGGATATACCAAAGATTTATCGCCGAAGGATGAGCT




CGCGTCTGATTAGCTAGTTGGTGAGGTAAAGGCTCACCAAGGCTGCGATCAGTAGCC




GGACTGAGAGGTTGAACGGCCACATTGGGACTGAGATACGGCCCAGACTCCTACGGG




AGGCAGCAGTGGGGAATATTGGGCAATGGGGGCAACCCTGACCCAGCAACGCCGCGT




GAAGGAAGAAGGCCTTCGGGTTGTAAACTTCTTTGACCAGGGACGAAACAAATGACG




GTACCTGGAAAACAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG




TGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGCGTAGGCGGGAGTACAAGT




CAGATGTGAAATCTGGGGGCTTAACCCTCAAACTGCATTTGAAACTGTATTTCTTGAG




TATCGGAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAG




GAACACCAGTGGCGAAGGCGGCCTGCTGGACGACAACTGACGCTGAGGCGCGAAAG




CGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGAATAC




TAGGTGTGGGGGGACTGACCCCCTCCGTGCCGGAGTTAACACAATAAGTATTCCACCT




GGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGGCTTGACAT




CGTACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGGAAAGTATAGACAGGTGG




TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCCTATTGTTAGTTGCTACGCGAGAGCACTCTAGCGAGACTGCCGTTGACAAAAC




GGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGTCCTGGGCTACACAC




GTAATACAATGGCGCTCAACAGAGGGAAGCAAGACCGCGAGGTGGAGCAAATCCCT




AAAAGGCGTCTCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTG




CTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCG




CCCGTCACACCATGAGAGCCGGGAACACCCGAAGTCCGTAGTCTAACCGCAA (SEQ




ID NO: 37)





GCF_900148495

Negativibacillus

ACAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




massiliensis

GTCGAACGGAGTTGTGTTGAAAGCTTGCTGGATATACAACTTAGTGGCGGACGGGTG




AGTAACACGTGAGTAACCTGCCTCTCAGAGTGGAATAACGTTTGGAAACGAACGCTA




ATACCGCATAACGTGAGAAGAGGGCATCCTCTTTTTACCAAAGATTTATCGCTGAGAG




ATGGGCTCGCGGCCGATTAGGTAGTTGGTGAGATAACAGCCCACCAAGCCGACGATC




GGTAGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTC




CTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGGGAAACCCTGATGCAGCGA




CGCCGCGTGAGGGAAGACGGTTTTCGGATTGTAAACCTCTGTCTTTAGGGACGAAAA




AATGACGGTACCTAAGGAGGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAAT




ACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGGA




GACAAGTTGAATGTCTAAACTATCGGCTTAACTGATAGTCGCGTTCAAAACTATCACT




CTTGAGTGCAGTAGAGGTAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATAT




TAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTGTAACTGACGCTGAGGCTC




GAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATG




ATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAAT




CCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCA




CAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTT




GACATCGAGCGACGAACCAAGAGATTGGTTCTTCCTTCGGGACGCGAAGACAGGTGG




TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTTATCATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGTTGATAAAAC




GGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTACTACAATGGTGATCAAACAGAGGGAAGCAACACAGCGATGTGAAGCAAATCCC




GAAAAATCATCTCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATT




GCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACC




GCCCGTCACACCATGGGAGTCGGTAACACCCGAAGCCAGTAGCCTAACCGCAAGGAG




GGCGCTGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAT




CGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 38)





GCF_900155615

Massilimaliae

AAAGAGTTTGATCCTGGCTCAGGACGAACGCTGTCGGCGCGCCTAACACATGCAAGT




massiliensis

CGAACGAAGCTGCATCGAACGAATTCTTCGGAAAGAGATTGGTACAGCTTAGTGGCG




GACGGGTGAGTAACGCGTGAGTAACCTGCCTTTCAGAGGGGGATAACGTTTGGAAAC




GAACGCTAATACCGCATAACATATTAAATTCGCATGGATTTGATATCAAAGGAGCAA




TCCGCTGAAAGATGGACTCGCGTCCAATTAGCTAGTTGGTGAGGTAACGGCCCACCA




AGGCGACGATTGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCT




GATGCAGCGACGCCGAGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCCTTG




GTGAAGATAATGACGGTAGCCAAGGAGGAAGCTACGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGTAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTA




GGCGGGATTGCAAGTTGAATGTCAAATCTACGGGCTTAACCCGTAGCCGCGTTCAAA




ACTGCAGTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATG




CGTAAATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACG




CTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTG




TAAACGATGATTACTAGGTGTNNNNNNNACTGACCCCTTCCGTGCCGGAGTTAACAC




AATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACG




GGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTT




ACCAGGTCTTGACATCGTGCGCATAGCCTAGAGATAGGTGAAGCCCTTCGGGGCGCA




TAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTACGTTTAGTTGCTACGCAAGAGCACTCTAGACGGACTGC




CGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTACTACAATGGCTATTAACAGAGGGAAGCAAGATGGTGACATGG




AGCAAACCCCTAAAAATAGTCTCAGTTCGGATTGCAGGCTGCAACCCGCCTGCATGA




AGCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCC




TTGTACACACCGCCCGTCACACCATGAGAGTTGGCAACACCCGAAGCCGATAGTCTA




ACCGCAAGGGGGACGTCGTCGAAGGTGGGGTTGATGATTGGGGTGAAGTCGTAACAA




GGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 39)





GCF_900155735

Intestinibacillus

TAGTGGCGGACGGGTGAGTAACGCGTGAGCAATCTGCCTTTAGGAGGGGGATAACGA




massiliensis

CCGGAAACGGTCGCTAATACCGCATGAAGTGCCGGGTGGGCATCCACCTGGCACCAA




AGGAGCAATCCGCCTTTAGATGAGCTCGCGTCCCATTAGCTAGTTGGTGAGGTAACG




GCCCACCAAGGCGACGATGGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGAC




TGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCGCAATGGGG




GAAACCCTGACGCAGCAACGCCGCGTGATTGAAGAAGGCCTTCGGGTTGTAAAGATC




TTTAATGAGGGACGAAAAATGACGGTACCTCAAGAATAAGCTCCGGCTAACTACGTG




CCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAA




GGGCGAGTAGGCGGGCTGGCAAGTTGGGAGTGAAATCCGGGGGCTTAACCCCCGAAC




TGCTTTCAAAACTGCTGGCCTTGAGTGATGGAGAGGCAGGCGGAATTCCGTGTGTAG




CGGTGAAATGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGAC




ATTAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGT




AGTCCACGCCGTAAACGATGGATACTAGGTGTGGGAGGTATTGACCCCTTCCGTGCC




GGAGTTAACACAATAAGTATCCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAA




AGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACG




CGAAGAACCTTACCAGGTCTTGACATCCCTCTGACCGGTACAGAGATGTACCTTCCCT




TCGGGGCAGGGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTG




GGTTAAGTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGATACATTCAGTTGATCAC




TCTAGCGAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCA




TGCCCCTTATGACCTGGGCTACACACGTACTACAATGGCAGTCATACAGAGGGAAGC




AAAGCCGCGAGGTGGAGCAAATCCCTAAAAGCTGTCCCAGTTCAGATTGCAGGCTGC




A (SEQ ID NO: 40)





GCF_900167205

Eubacterium

TGTACCAAAGCTATTGCGCTGAAGGATGGGCTCGCGTCTGATTAGATAGTTGGTGGGG




coprostanoligenes

TAACGGCCTACCAAGTCGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATT




GGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACA




ATGGGCGCAAGCCTGATGCAGCAACGCCGCGTGGAGGAAGACGGTTTTCGGATTGTA




AACTCCTGTTCTTAGTGAAGAAAAATGACGGTAGCTAAGGAGCAAGCCACGGCTAAC




TACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGG




TGTAAAGGGAGCGCAGGCGGGGGAGCAAGTCAGCTGTGAAATCTATGGGCTTAACCC




ATAAACTGCAGTTGAAACTGTTCTTCTTGAGTGAAGTAGAGGTTGGCGGAATTCCGAG




TGTAGCGGTGAAATGCGTAGATATTCGGAGGAACACCGGTGGCGAAGGCGGCCAACT




GGGCTTTTACTGACGCTGAGGCTCGAAAGTGTGGGGAGCAAACAGGATTAGATACCC




TGGTAGTCCACACTGTAAACGATGATAACTAGGTGTAGGGGGTCTGACCCCTTCTGTG




CCGCAGCTAACGCAATAAGTTATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTC




AAAGGAATTGACGGGGACCCGCACAAGCAGTGGATTATGTGGTTTAATTCGATGCAA




CGCGAAGAACCTTACCAGCACTTGACATCCAACTAACGAAATAGAGATATATTAGGT




GCCCCTCGGGGAAAGTTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGA




GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTGCCATTAGTTGCTACGCAAGA




GCACTCTAATGGGACCGCTACCGACAAGGTGGAGGAAGGTGGGGATGACGTCAAATC




ATCATGCCCCTTATGTGCTGGGCTACACACGTAATACAATGGTCGTTAACAAAGAGA




AGCAATACCGCGAGGTGGAGCAAAACTTCAAAAACGATCTCAGTTCGGACTGTAGGC




TGAAACTCGCCTGCACGAAGTTGGAATTGCTAGTAATCGTGGATCAGCATGCCACGG




TGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATAC




CCGAAGTCAGTAGTCTAACCTTAATGGAGGACGCTGCCGAAGGTAGGATTGGCGACT




GGGGTGAAGTCGTAACAAGGTAGCCGTAGGAGAACCTGCGGCTGGATCACCTCCTTT




(SEQ ID NO: 41)





GCF_900169495

Provencibacterium

CTAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




massiliense

GTCGAACGGAGAAATGCTGAGCTTGCTTTGCATTTTTTAGTGGCGGACGGGTGAGTAA




CACGTGAGCAACCTGCCTTTGTGAGGGGAATAACGTCTGGAAACGGACGCTAATACC




GCATAACGTCAAGGAACCGCATGGTTTTTTGACCAAAGATTTTATCGCAAAAAGATG




GGCTCGCGGCTGATTAGCTAGTTGGCGGGGTAACGGCCCACCAAGGCGACGATCAGT




AGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTA




CGGGAGGCAGCAGTGGGGGATATTGCACAATGGGGGAAACCCTGATGCAGCGACGC




CGCGTGAGGGAAGACGGTTTTCGGATTGTAAACCTCTGTCTTCAGGGACGAAATCAA




TGACGGTACCTGAGGAGGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC




GTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGAATG




CAAGTTGAATGTTTAAACTATCGGCTCAACTGATAATCGCGTTCAAAACTGCATTTCT




TGAGTGGAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTA




GGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTCTAACTGACGCTGAGGCTCGA




AAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAT




TACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATCC




ACCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCAC




AAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG




ACATCGTGCGCATACCGTAGAGATACGGGAAGTCCTTCGGGACGCATAGACAGGTGG




TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTTATTATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGTTGACAAAAC




GGCGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTACTACAATGGCACTTAACAGAGGGAAGCAAGACCGCGAGGTGGAGCAAACCCCC




AAAAAGTGTCTCAGTTCGGATTGCAGGCTGCAACCCGCCTGTATGAAGTCGGAATTG




CTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCG




CCCGTCACACCATGAGAGCCGGTAACACCCGAAGTCAGTAGCCTAACCGCAAGGAGG




GCGCTGCCGAAGGTGGGATTGGTGATTAGGGTGAAGTCGTAACAAGGTAGCCGTATC




GGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 42)





GCF_900176335

Papillibacter

TATTGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




cinnamivorans

AGTCGAACGAAAATACCAAAGCAGCAATGCGGGGGTATTTTAGTGGCGGACGGGTGA




GTAACGCGTGAGCAATCTGCCTTTTGGAGGGGGATACCGACTGGAAACGGTCGTTAA




TACCGCATAACGTATATGGACGACATCGTCCGTATACCAAAGGAGCAATCCGCCGAA




AGATGAGCTCGCGTCTGATTAGCTAGTTGGCGGGGTAAAGGCCCACCAAGGCGACGA




TCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGATACGGCCCAGAC




TCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGAAAGCCTGACCCAGCA




ACGCCGCGTGAAGGAAGAAGGCCTTCGGGTTGTAAACTTCTTTGACCAGGGAAGAAG




AAGTGACGGTACCTGGAAAACAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAA




TACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGTAGGCGGGA




TTGCAAGTCAGATGTGAAATGCCGGGGCTTAACCCCGGAGCTGCATTTGAAACTGTA




GTTCTTGAGTGATGGAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGA




TATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGG




CGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACG




ATGGATACTAGGTGTGGGAGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGT




ATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCC




GCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGA




TTTGACATCCTACTAACGAGGTAGAGATACGTCAGGTGCCCTTCGGGGAAAGTAGAG




ACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA




ACGAGCGCAACCCTTATTGCTAGTTGCTACGCAAGAGCACTCTAGCGAGACTGCCGTT




GACAAAACGGAGGAAGGCGGGGACGACGTCAAATCATCATGCCCCTTATGTCCTGGG




CTACACACGTACTACAATGGCGGTTAACAGAGGGAAGCAAGACAGTGATGTGGAGCA




AATCCCTAAAAACCGTCTCAGTTCGGATCGCAGGCTGCAACCCGCCTGCGTGAAGTC




GGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTA




CACACCGCCCGTCACACCATGAGAGTCGGGAATACCCGAAGTCCGTAGTCTAACCGC




AAGGGGGACGCGGCCGAAGGTAGGTTCGATAATTGGGGTGAAGTCGTAACAAGGTA




GCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 43)





GCF_900176635

Clostridiummerdae

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCATGCCTAACACATGCA




AGTCGAACGGAGTAAGAGAGAAGCTTGCTTAGCTCTTACTTAGTGGCGGACGGGTGA




GTAACGCGTGAGTAACCTGCCTTTCAGAGGGGGATAACGTTCTGAAAAGAACGCTAA




TACCGCATAACATATTGGTGTCGCATGGCACTGGTATCAAAGGAGCAATCCGCTGAA




AGATGGACTCGCGTCCGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGA




TCGGTAGCCGGGTTGAGAGACTGAACGGCCACATTGGGACTGAGACACGGCCCAGAC




TCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGCGAAAGCCTGATGCAGCA




ATGCCGCGTGAGGGAAGACGGTTTTCGGATTGTAAACCTCTGTCCTTGGTGAAGATAA




TGACGGTAGCCAAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATAC




GTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCTCTTT




AAGTCGGGCGTGAAAGCTGTGGGCTCAACCCACAAATTGCGTTCGAAACTGGAGAGC




TTGAGTGAAGTAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGATC




GGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTTTAACTGACGCTGAGGCACG




AAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGA




TTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATCC




ACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCAC




AAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG




ACATCCAACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGGAAAGTTGAGACAG




GTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA




GCGCAACCCCTGTGATTAGTTGCTACGCAAGAGCACTCTAATCAGACTGCCGTTGACA




AAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTAC




ACACGTACTACAATGGTCGCTAACAGAGGGAAGCCAAGCCGCGAGGTGGAGCAAAC




CCCCAAAAGCGGTCTCAGTTCGGATTGTAGGCTGCAACCCGCCTACATGAAGTTGGA




ATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACAC




ACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGCCAATAGTCTAACCGCAAG




GAGGACGTTGTCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCG




TATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 44)





GCF_900186535

Marasmitruncus

AAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAAGT




massiliensis

CGAACGGACAGAAGAGAAGCTTGCTTAGCTTCTGTTAGTGGCGGACGGGTGAGTAAC




ACGTGAGTAACCTGCCTTTCAGAGGGGGATAACGATTGGAAACGATCGCTAATACCG




CATGATGTTGCGATGGGACATCCTATTGCAACCAAAGGAGTAATCCGCTGAAAGATG




GGCTCGCGGCCGATTAGATAGTTGGTGAGGTAACGGCCCACCAAGTCAGCGATCGGT




AGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTA




CGGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCGACGC




CGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCTTAGGGGAAGAAAATGA




CGGTACCCTAAGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGGCAGCA




AGTTGGATGTTTAAACTACCGGCTTAACCGGTAACTGCATCCAAAACTGCAGTTCTTG




AGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGG




AGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGCTGAGGCTCGAAA




GCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTA




CTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCAC




CTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA




GCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGAC




ATCGTGCGCATACCATAGAGATATGGGAAGCCCTTCGGGGCGCATAGACAGGTGGTG




CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAA




CCCTTATTACTAGTTGCTACGCAAGAGCACTCTAGTGAGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGT




ACTACAATGGCACTTAAACAGAGGGCTGCTACATCGCGAGATGAAGCGAATCCCGAA




AAAGTGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTA




GTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACACCATGGGAGTCGGTAACACCCGAAGCCAGTAGTCTAACCGCAAGGGGGACG




CTGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 45)





GCF_900186585

Massilimaliae

TAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGTCGGCGCGCCTAACACATGCAAG




timonensis

TCGAACGAAGTTGCTTTGAATGAATTCTTCGGAAGGAATTTGATTCAACTTAGTGGCG




GACGGGTGAGTAACGCGTGAGTAACCTGCCTTTCAGAGGGGGATAACGTCTGGAAAC




GGACGCTAATACCGCATAACATATTGGTTTCGCATGGAGCTGATATCAAAGGAGCAA




TCCGCTGAAAGATGGACTCGCGTCCAATTAGCTAGTTGGTGAGGTAACGGCCCACCA




AGGCGACGATTGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCT




GATGCAGCGACGCCGAGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCCTTG




GTGAAGATAATGACGGTAACCAAGGAGGAAGCTACGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGTAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTA




GGCGGGATTGCAAGTTGAATGTTAAATCTATGGGCTCAACCCATAGCCGCGTTCAAA




ACTGCAGTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATG




CGTAAATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACG




CTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTG




TAAACGATGATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGGAGTTAACACA




ATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGG




GGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTA




CCAGGTCTTGACATCCGGTGCATAGCCTAGAGATAGGTGAAGCCCTTCGGGGCACCG




AGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTACGTTTAGTTGCTACGCAAGAGCACTCTAGACGGACTGCC




GTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCT




GGGCTACACACGTACTACAATGGCTATTAACAGAGGGAAGCAAGATGGTGACATGGA




GCAAACCCCTAAAAATAGTCTCAGTTCGGATTGCAGGCTGCAACCCGCCTGCATGAA




GCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCACACCATGAGAGTTGGCAACACCCGAAGCCGATAGTCTAAC




CGCAAGGGGGACGTCGTCGAAGGTGGGGTTGATGATTGGGGTGAAGTCGTAACAAGG




TAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 46)





GCF_900199435

Pygmaiobacter

ATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




massiliensis

GTCGAACGGAGCTTGCACTTCTGAAGTTTTCGGATGGACGAGGTACAAGCTTAGTGG




CGAACGGGTGAGTAACACGTGAAGAACCTGCCCTTCAGTGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATAAGACCACAGTACCGCATGGTACAGTGATCAAAGGATT




TATTCGCTGAAGGATGGCTTCGCGTCCGATTAGGTAGTTGGTGAGGTAACGGCCCACC




AAGCCTACGATCGGTAGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACA




CGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGAGGAAACTC




TGATGCAGCGACGCCGCGTGAGGGAAGAAGGTCTTCGGATTGTAAACCTCTGTCTTC




AGGGACGATAATGACGGTACCTGAGGAGGAAGCACCGGCTAACTACGTGCCAGCAG




CCGCGGTAAAACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCG




CAGGCGGGAAGATAAGTTGGATGTTTAATCTACGGGCTCAACCCGTATCAGCATTCA




AAACTATTTTTCTTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGGAAT




GCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACTAACTGAC




GCTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCC




GTAAACGATGATTACTAGGTGTGGGAGGATTGACCCCTTCCGTGCCGCAGTTAACAC




AATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACG




GGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTT




ACCAGGTCTTGACATCCCGTGCATAGTGTAGAGATACATGAAGTCCTTCGGGACACG




GTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTATTGCTAGTTACTACGAAAGAGGACTCTAGCAAGACTGC




CGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTTATGACC




TGGGCCACACACGTACTACAATGGCTATTAACAAAGAGATGCTAAGCCGCGAGGTGG




AGCGAACCTCATAAAAATAGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATG




AAGCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTCAGTAGTCT




AACCGCAAGGAGGACGCTGCCGAAGGTAAAACTGGTGATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 47)





GCF_900240385

Clostridium

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCATGCCTAACACATGCA




minihomine

AGTCGAACGGAGTAAGAGATAAGCTTGCTTAACTCTTACTTAGTGGCGGACGGGTGA




GTAACGCGTGAGTAACCTGCCTTTCAGAGGGGGATAACGTTCTGAAAAGAACGCTAA




TACCGCATGATATATCGGTGTCGCATGGCACTGATATCAAAGGAGCAATCCGCTGAA




AGATGGACTCGCGTCCGATTAGCCAGTTGGCGGGGTAATGGCCCACCAAAGCGACGA




TCGGTAGCCGGGTTGAGAGACTGGACGGCCACATTGGGACTGAGACACGGCCCAGAC




TCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCA




ATGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCCTTGGTGAAGATA




ATGACGGTAGCCAAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATA




CGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCTTTT




CAAGTCGGGCGTGAAAGCTGTGGGCTTAACCCACAAATTGCGTTCGAAACTGGAGAG




CTTGAGTGAAGTAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGAT




CGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTTTAACTGACGCTGAGGCAC




GAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATG




ATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATC




CACCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCA




CAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTT




GACATCCAACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGGAAAGTTGAGACA




GGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACG




AGCGCAACCCCTGTGATTAGTTGCTACGCAAGAGCACTCTAATCAGACTGCCGTTGAC




AAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTA




CACACGTACTACAATGGTCGTTAACAACGGGAAGCTAAGCCGCGAGGTGGCGCAAAT




CCCCAAAAACGGTCTCAGTTCGGATTGTAGGCTGCAACCCGCCTACATGAAGTTGGA




ATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACAC




ACCGCCCGTCACACCACGGGAGCCGGTAATACCCGAAGCCGATAGTCTAACCGCAAG




GAGGACGTCGTCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCG




TATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 48)





GCF_900289145

Neobitarella

TAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCTTAACACATGCAAG




massiliensis

TCGAACGGACACATCCGACGGAATAGCTTGCTAGGAAGATGGATGTTGTTAGTGGCG




GACGGGTGAGTAACACGTGAGCAACCTACCTCAGAGTGGGGGACAACAGTTGGAAA




CGACTGCTAATACCGCATAAGATGGCAGGGTCGCATGGCCTGGTCATAAAAGGAGCA




ATTCGCTCTGAGATGGGCTCGCGTCTGATTAGCTAGTTGGTGAGGTAACGGCTCACCA




AGGCAACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCT




GATGCAGCGACGCCGCGTGAGGGAAGACGGTTTTCGGATTGTAAACCTCTGTCTTGTG




GGACGATAGTGACGGTACCACAGGAGGAAGCCATGGCTAACTACGTGCCAGCAGCCG




CGGTAATACGTAGATGGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGTAG




GCGGGCTGGTAAGTTGAATGTGAAACCTTCGGGCTCAACCCGGAGCGTGCGTTCAAA




ACTGCTGGTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCCGGTGTAGCGGTGGAATG




CGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTTACTGACG




CTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCG




TAAACGATGATTACTAGGTGTGGGGGGATTGACCCCCTCCGTGCCGGAGTTAACACA




ATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGG




GGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAAAACCTTA




CCAGGTCTTGACATCCATCGCCAGGCTAAGAGATTAGCTGTTCCCTTCGGGGACGATG




AGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTACTATTAGTTGCTACGCAAGAGCACTCTAATGGGACTGCC




GTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCT




GGGCTACACACGTACTACAATGGCCGTTAACAGAGAGCAGCGATACCGCGAGGTGGA




GCGAATCTAGAAAAACGGTCTCAGTTCGGATTGCAGGCTGAAACTCGCCTGCATGAA




GTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTT




GTACACACCGCCCGTCACACCATGAGAGCCGGTAACACCCGAAGTCAGTAGCCTAAC




CGCAAGGAGGGCGCTGCCGAAGGTGGGGCTGGTAATTGGGGTGAAGTCGTAACAAG




GTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 49)





GCF_000154385

Faecalibacterium

TATAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCA




prausnitzii

AGTCGAACGAGCGAGAGAGAGCTTGCTTTCTTGAGCGAGTGGCGAACGGGTGAGTAA




CGCGTGAGGAACCTGCCTCAAAGAGGGGGACAACAGTTGGAAACGACTGCTAATACC




GCATAAGCCCACGGCTCGGCATCGAGCAGAGGGAAAAGGAGCAATCCGCTTTGAGAT




GGCCTCGCGTCCGATTAGCTGGTTGGTGAGGTAACGGCCCACCAAGGCGACGATCGG




TAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCT




ACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGACG




CCGCGTGGAGGAAGAAGGTCTTCGGATTGTAAACTCCTGTTGTTGAGGAAGATAATG




ACGGTACTCAACAAGGAAGTGACGGCTAACTACGTGCCAGCAGCCGCGGTAAAACGT




AGGTCACAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGGAAGAC




AAGTTGGAAGTGAAATCCATGGGCTCAACCCATGAACTGCTTTCAAAACTGTTTTTCT




TGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGGAATGCGTAGATATCG




GGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTCG




AAAGTGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACACTGTAAACGATGA




TTACTAGGTGTTGGAGGATTGACCCCTTCAGTGCCGCAGTTAACACAATAAGTAATCC




ACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCAC




AAGCAGTGGAGTATGTGGTTTAATTCGACGCAACGCGAAGAACCTTACCAAGTCTTG




ACATCCCTTGACGATGCTGGAAACAGTATTTCTCTTCGGAGCAAGGAGACAGGTGGT




GCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTTATGGTCAGTTACTACGCAAGAGGACTCTGGCCAGACTGCCGTTGACAAAAC




GGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTTATGACTTGGGCTACACAC




GTACTACAATGGCGTTAAACAAAGAGAAGCAAGACCGCGAGGTGGAGCAAAACTCA




GAAACAACGTCCCAGTTCGGACTGCAGGCTGCAACTCGCCTGCACGAAGTCGGAATT




GCTAGTAATCGCAGATCAGCATGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACC




GCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTCGGTAGTCTAACCGCAAGGAG




GACGCCGCCGAAGGTAAAACTGGTGATTGGGGTGAAGTCGTAACAAGGTAGCCGTAG




GAGAACCTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 50)





GCF_000174895

Ruminococcus

TAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCAAG




flavefaciens

TCGAACGGAGATAATTTGAGTTTACTTGGATTATCTTAGTGGCGGACGGGTGAGTAAC




ACGTGAGCAACCTGCCTTTGAGAGAGGGATAGCTTCTGGAAACGGATGGTAATACCT




CATAACATAATTGAAGGGCATCCTTTAATTATCAAAGATTTATCACTCAAAGATGGGC




TCGCATCTGATTAGATAGTTGGTGAGGTAACGGCTCACCAAGTCGACGATCAGTAGC




CGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGG




GAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCGATGCCGC




GTGGAGGAAGAAGGTTTTCGGATTGTAAACTCCTGTCTTAAAGGACGATAATGACGG




TACTTTAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG




AGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATTGCAAGTC




AGATGTGAAATACATGGGCTCAACCCATGGGCTGCATTTGAAACTGTAGTTCTTGAGT




GAAGTAGAGGTAAGCGGAATTCCTGGTGTAGCGGTGAAATGCGTAGATATCAGGAGG




AACACCGGTGGCGAAGGCGGCTTACTGGGCTTTTACTGACGCTGAGGCTCGAAAGCG




TGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTACTA




GGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCTG




GGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCA




GTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATC




GTATGCATAACTTAGAGATAAGTGAAATCCCTTCGGGGACATATAGACAGGTGGTGC




ATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAAC




CCTTACCTTTAGTTGCTACGCAAGAGCACTCTAAAGGGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGT




ACTACAATGGCAATTAACAAAGAGAAGCAAGACAGCGATGTGGAGCAAATCTCGAA




AAATTGTCCCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTA




GTAATCGTGGATCAGCATGCCACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACACCATGGGAGTCGGTAACACCCGAAGTCGGTAGTCTAACAGCAATGAGGACG




CCGCCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 51)





GCF_000177015

Ruminococcaceae

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA




bacterium D16

GTCGAACGGAGTGCCTTTGAAAGAGGATTCGTCCAATTGATAAGGTTACTTAGTGGCG




GACGGGTGAGTAACGCGTGAGGAACCTGCCTTGGAGTGGGGAATAACACAGTGAAA




ATTGTGCTAATACCGCATAATGCAGTTGGGCCGCATGGCTCTGACTGCCAAAGATTTA




TCGCTCTGAGATGGCCTCGCGTCTGATTAGCTAGTTGGTGGGGTAACGGCCCACCAAG




GCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTGA




CCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTCTTAGGG




ACGAAGCAAGTGACGGTACCTAAGGAATAAGCCACGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGTA




GGCGGGATTGCAAGTCAGATGTGAAAACCACGGGCTCAACCTGTGGCCTGCATTTGA




AACTGTAGTTCTTGAGTACTGGAGAGGCAGACGGAATTCCTAGTGTAGCGGTGAAAT




GCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGTCTGCTGGACAGCAACTGAC




GCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCT




GTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGCAGTTAACAC




AATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGACG




GGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTT




ACCAGGGCTTGACATCCCGAGGCCCGGTCTAGAGATAGACCTTTCTCTTCGGAGACCT




CGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTC




CCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAGACT




GCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGT




CCTGGGCCACACACGTACTACAATGGTGGTTAACAGAGGGAGGCAATACCGCGAGGT




GGAGCAAACCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGCAACCCGCCTGCAT




GAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGG




CCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTAGCC




TAACCGCAAGGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 52)





GCF_000178155

Ruminococcusalbus

GGCCCACCAAGCCGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGA




CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGG




CGAAAGCCTGATGCAGCGATGCCGCGTGAGGGAAGAAGGTTTTAGGATTGTAAACCT




CTGTCTTCGGGGACGATAATGACGGTACCCGAGGAGGAAGCTCCGGCTAACTACGTG




CCAGCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAA




GGGAGCGTAGGCGGGACTGCAAGTCAGGTGTGAAATGTAGGGGCTTAACCCCTACCC




TGCACTTGAAACTGTGGTTCTTGAGTGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGC




GGTGAAATGCGTAGATATTAGGAGGAACATCAGTGGCGAAGGCGGCTTACTGGGCTT




TAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAG




TCCACGCCGTAAACGATGATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCA




GTTAACACAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGG




AATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGA




AGAACCTTACCAGGTCTTGACATCGTGAGCATAGCTTAGAGATAAGTGAAATCCCTTC




GGGGACTCATAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGG




TTAAGTCCCGCAACGAGCGCAACCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGC




AGGACTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCC




TTATGACCTGGGCTACACACGTACTACAATGGCTGTTAACAGAGGGAAGCAAAGCAG




TGATGCAGAGCAAAACCCTAAAAGCAGTCTTAGTTCGGATTGTAGGCTGCAACCCGC




CTACATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTT




CCCGGGCCTTGTACACACCGCCCGTCACGCCATGGGAGTCGGTAACACCCGAAGCCT




GTGTTCTAACCGCAAGGAGGAAGCAGTCGAAGGTGGGATTGATGACTGGGGTGAAGT




CGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 53)





GCF_000403395

Anaerotruncus sp

AGATGGGCTCGCGGCCGATTAGCTAGTTGGTGGGGCAACGGCCCACCAAGGCGACGA



G3 2012
TCGGTAGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGAC




TCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCG




ACGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCTTTGGGGAAGAAA




ATGACGGTACCCAAAGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATA




CGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGCGA




GAAAGTTGAATGTTAAATCTACCGGCTTAACTGGTAGCTGCGTTCAAAACTTCTTGTC




TTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATT




AGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGCTGAGGCTCG




AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGA




TTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCC




ACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCAC




AAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG




ACATCGTGCGCATAGCCTAGAGATAGGTGAAGCCCTTCGGGGCGCACAGACAGGTGG




TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTTATTATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGTTGACAAAAC




GGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTACTACAATGGCACTGAAACAGAGGGAAGCGACATCGCGAGGTGAAGCGAATCCC




AAAAAAGTGTCCCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATT




GCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACC




GCCCGTCACACCATGGGAGTCGGTAACACCCGAAGCCAGTAGCCTAACCGCAAGGAG




GGCGCTGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTAT




CGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 54)





GCF_000403435

Oscillibacter sp 1 3

TATAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCA




AGTCGAACGGAGCACCCCTGAAGGAGTTTTCGGACAACGGAAGGGAATGCTTAGTGG




CGGACTGGTGAGTAACGCGTGAGGAACCTGCCTTCCAGAGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATGAAACATTTGAACCGCATGGTTTGAATGTCAAAGATTTA




TCGCTGGAAGATGGCCTCGCGTCTGATTAGCTAGTAGGCGGGGTAACGGCCCACCTA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGATACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTAAGAG




GGAAGAGAAGAAGACGGTACCTCTTGAATAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGC




AGCCGGGAAGACAAGTCAGATGTGAAATCCCGCGGCTCAACCGCGGAACTGCATTTG




AAACTGTTTTTCTTGAGTACCGGAGAGGTCATCGGAATTCCTTGTGTAGCGGTGAAAT




GCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATGACTGGACGGCAACTGA




CGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




TGTAAACGATGGATACTAGGTGTGCGGGGACTGACCCCCTGCGTGCCGCAGTTAACA




CAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAACCT




TACCAGGGCTTGACATGGAGAGGACCGCTCTAGAGATAGGGTTTTCCCTTCGGGGAC




CTCTCACACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAG




TCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAGA




CTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTAT




GTCCTGGGCTACACACGTAATACAATGGCGGTCAACAGAGGGATGCAAATCCGCGAG




GAGGAGCGAACCCCCAAAAGCCGTCCCAGTTCGGATCGCAGGCTGCAACCCGCCTGC




GTGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCG




GGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTAG




CCTAACAGCAATGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGTA




ACAAGGTAGCCGTTCGAGAACGAGCGGCTGGATCACCTCCTTT (SEQ ID NO: 55)





GCF_000421005

Clostridiales

ATTAGCTAGTTGGTGAGGTAACGGCCCACCAAGGCGACGATCAGTAGCCGGACTGAG




bacterium NK3B98

AGGTTGACCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAGTGATG




ACGGCCTTCGGGTTGTAAAGCTCTGTCTTCAGGGACGATAATGACGGTACCTGAGGA




GGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTT




ATCCGGATTTACTGGGCGTAAAGGATGCGTAGGTGGAATTTTAAGTGGGATGTGAAA




TACCCGGGCTCAACCTGGGAACTGCATTCCAAACTGGAATTCTAGAGTGCAGGAGAG




GAAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGAGATTAGGAAGAACACCAGT




GGCGAAGGCGGCTTGCTGGACAGTAACTGACGCTAAGGCGCGAAAGCGTGGGGAGC




AAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGGTACTAGGTGTAGG




GGTTTCGATACCTCTGTGCCGCCGTAAACACAATAAGTACCCCGCCTGGGGAGTACG




GTCGCAAGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGTAGCGGAGCAT




GTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCGGCGACC




GGTGTAGAGATACACCTTCTTCTTCGGAAGCGCCGGTGACAGGTGGTGCATGGTTGTC




GTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATAGT




TAGTTGCTAACAGTAAGATGAGCACTCTAGCTAGACTGCCGTGGTTAACGCGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTATGTCTAGGGCTACACACGTGCTAC




AATGGCGAGAACAAAGAGAAGCAAGACCGCGAGGTGGAGCAAAACTCATAAAACTC




GTCCCAGTTCGGATTGCAGGCTGAAACCCGCCTGTATGAAGTTGGAATCGCTAGTAAT




CGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGAGAGTCGGGAACACCCGAAGTCCGTAGCCTAACCGCAAGGGGGGCGCGGC




CGAAGGTGGGTTCGATAATTGGGGTGAAGTCGTAACAAGGTAGCCGT (SEQ ID NO: 56)





GCF_000469425

Oscillibacter sp

TATAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCA



KLE 1728
AGTCGAACGGAGCACCCTTGACTGAGGTTTCGGCCAAATGATAGGAATGCTTAGTGG




CGGACTGGTGAGTAACGCGTGAGGAACCTACCTTCCAGAGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATGACGCATGACCGGGGCATCCCGGGCATGTCAAAGATTT




TATCGCTGGAAGATGGCCTCGCGTCTGATTAGCTAGATGGTGGGGTAACGGCCCACC




ATGGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGATA




CGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGACGCAAGTC




TGACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTGTCA




GGGAAGAGTAGAAGACGGTACCTGACGAATAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGT




GCAGCCGGGCCGGCAAGTCAGATGTGAAATCTGGAGGCTTAACCTCCAAACTGCATT




TGAAACTGTAGGTCTTGAGTACCGGAGAGGTTATCGGAATTCCTTGTGTAGCGGTGAA




ATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATAACTGGACGGCAACT




GACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCA




CGCTGTAAACGATGGATACTAGGTGTGCGGGGACTGACCCCCTGCGTGCCGCAGTTA




ACACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATT




GACGGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAA




CCTTACCAGGGCTTGACATCCTACTAACGAAGTAGAGAT (SEQ ID NO: 57)





GCF_000492175

Firmicutesbacterium

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



ASF500
GTCGAACGGAGGACCCCTGAAGGAGTTTTCGGACAACTGAAGGGAATCCTTAGTGGC




GGACGGGTGAGTAACGCGTGAGTAACCTGCCTTGGAGTGGGGAATAACAGCTGGAAA




CAGCTGCTAATACCGCATGATATGTCTGTGTCGCATGGCACTGGACATCAAAGATTTA




TCGCTCTGAGATGGACTCGCGTCTGATTAGCTAGTTGGCGGGGTAACGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTCTCAGG




GACGAAGCAAGTGACGGTACCTGAGGAATAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGT




AGGCGGGACTGCAAGTCAGATGTGAAAACCACGGGCTCAACCTGTGGCCTGCATTTG




AAACTGTAGTTCTTGAGTACTGGAGAGGCAGACGGAATTCCTAGTGTAGCGGTGAAA




TGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGTCTGCTGGACAGCAACTGA




CGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




TGTAAACGATGGATACTAGGTGTGGGGGGACTGACCCCCTCCGTGCCGCAGTTAACA




CAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCT




TACCAGGGCTTGACATCCCGGCGACCGGTGTAGAGATACACTTTCTTCTTCGGAAGCG




CCGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAGACT




GCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGT




CCTGGGCCACACACGTACTACAATGGTGGTCAACAGAGGGAAGCAAAACCGCGAGGT




GGAGCAAATCCCTAAAAGCCATCCCAGTTCGGATCGCAGGCTGCAACCCGCCTGCGT




GAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGG




CCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTAGCC




TAACAGCAATGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 58)





GCF_000621805

Ruminococcus sp

AATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCA



FC2018
AGTCGAACGGGGTTACAAGATAAGCTTGCTTAATTTGTAACCTAGTGGCGGACGGGT




GAGTAACACGTGAGCAATCTGCCCTTAAGAGGGGGATACCAGTTAGAAATGACTGTT




AATACCGCATAAGATAGTAGTACCGCATGGTACAGCTATAAAAGATTTATCGCTTAA




GGATGAGCTCGCGTCTGATTAGCTAGTTGGTGAGGTAACGGCCCACCAAGGCAACGA




TCAGTAGCCGGACTGAGAGGTTGGACGGCCACATTGGGACTGAGACACGGCCCAGAC




TCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGAGGAAACTCTGATGCAGCG




ATGCCGCGTGAGGGAAGAAGGTTTTAGGATTGTAAACCTCTGTTGACAGGGACGATA




ATGACGGTACCTGTTGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATA




CGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGATC




GCAAGTCAGGTGTGAAATGCGGGGGCTCAACCCCCGAACTGCACTTGAAACTGTGGT




TCTTGAGTGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATA




TTAGGAGGAACATCAGTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCT




CGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGAT




GATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGCTAACGCAATAAGTAA




TCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGC




ACAAGCAGTGGAGTATGTGGATTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCT




TGACATCGTACGCATAGCATAGAGATATGTGAAATCCCTTCGGGGACGTATAGACAG




GTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA




GCGCAACCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGCAGGACTGCCGTTGACA




AAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCCTC




ACACGTACTACAATGGCTGCCAACAGAGGGAAGCAAAGCAGTGATGCAGAGCAAAG




CCCCAAAAGCAGTCTTAGTTCGGATTGCAGGCTGAAACCCGCCTGCATGAAGTCGGA




ATTGCTAGTAATCGCAGATCAGCATGCTGCGGTGAATACGTTCCCGGGCCTTGTACAC




ACCGCCCGTCACGCCATGGGAGTCGGTAACACCCGAAGCCTGTAGCCCAACCGCAAG




GAGGACGCAGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCC




GTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 59)





GCF_000686125

Ruminococcus sp

TTAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCAA



NK3A76
GTCGAACGGAGTTTTAGAGAGCTTGCTTTTTAAAACTTAGTGGCGGACGGGTGAGTAA




CACGTGAGCAATCTGCCTTTCAGAGGGGGATAGCAGTTGGAAACGACTGATAATACC




GCATAATATAGTAGGATCGCATGGTTCAACTATCAAAGATTTATCGCTGAAAGATGA




GCTCGCGTCTGATTAGATAGTTGGTGAGGTAACGGCTCACCAAGTCGACGATCAGTA




GCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGATGCC




GCGTGAGGGAAGAAGGTTTTAGGATTGTAAACCTCTGTCTTCAGGGACGATAATGAC




GGTACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG




GGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGCAGGCGGGACTGCAAG




TCAGATGTGAAATGTAGGGGCTTAACCCCTGAACTGCATTTGAAACTGTAGTTCTTGA




GTGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGA




GGAACATCAGTGGCGAAGGCGGCTTACTGGGCTTTTACTGACGCTGAGGCTCGAAAG




CGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTAC




TAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGAGTATGTGGATTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CGTACGCATAGCATAGAGATATGTGAAATCCCTTCGGGGACGGACAGACAGGTGGTG




CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAA




CCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGCAGGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCCTCACACGT




ACTACAATGGCTGTTAACAGAGAGAAGCGACATAGTGATATGAAGCAAAACCCTAAA




AGCAGTCTCAGTTCGGATTGCAGGCTGAAACCCGCCTGCATGAAGTCGGAATTGCTA




GTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACACCATGGGAGTCGGTAACACCCGAAGTCAGTAGCCTAACCGTAAGGAGGGCG




CTGCCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 60)





GCF_000701945

Ruminococcus

CAAAGATTTATCACTCAGAGATGGGCTCGCGTCTGATTAGATAGTTGGTGAGGTAACG




flavefaciens

GCTCACCAAGTCGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGAC




TGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGG




GGAACCCTGATGCAGCGATGCCGCGTGGAGGAAGAAGGTTTTCGGATTGTAAACTCC




TGTCTTAAAGGACGATAATGACGGTACTTTAGGAGGAAGCTCCGGCTAACTACGTGC




CAGCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAG




GGAGCGTAGGCGGGACTGCAAGTCAGATGTGAAATGCCGGGGCTTAACCCCGGAGCT




GCATTTGAAACTGTGGTTCTTGAGTGAAGTAGAGGCAAGCGGAATTCCTGGTGTAGC




GGTGAAATGCGTAGATATCAGGAGGAACACCGGTGGCGAAGGCGGCTTGCTGGGCTT




TTACTGACGCTGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAG




TCCACGCTGTAAACGATGATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAG




TTAACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGA




ATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAA




GAACCTTACCAGGTCTTGACATCGTATGCATAGCATAGAGATATGTGAAATCTCTTCG




GAGACATATAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGT




TAAGTCCCGCAACGAGCGCAACCCTTACCTTTAGTTGCTACGCAAGAGCACTCTAAAG




GGACTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCT




TATGACCTGGGCTACACACGTACTACAATGGCAATCAACAAAGAGAAGCAAGACAGT




GATGTGGAGCGAATCTCAAAAAATTGTCCCAGTTCGGATTGCAGGCTGCAACTCGCCT




GCATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTCGGTAACACCCGAAGTCAGT




AGTCTAACAGCAATGAGGACGCTGCCGAAGGTGGGATTGATGACTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 61)





GCF_000712055

Ruminococcus sp

ATAAAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCACGCCTAACACATGCAA



HUN007
GTCGAACGGAGTTTAAGAGAGCTTGCTCTTTTAAACTTAGTGGCGGACGGGTGAGTA




ACACGTGAGCAACCTGCCTTTCAGAGAGGGATAGCTTCTGGAAACGGATGGTAATAC




CTCATAACATATTGATACGGCATCGTATTGATATCAAAGATTTATCGCTGAAAGATGG




GCTCGCGTCTGATTAGCTGGTTGGTGAGGTAACGGCCCACCAAGGCAACGATCAGTA




GCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGATGCC




GCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCATCGGGGACGAAAATGAC




GGTACCCGAGAAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG




GGAGCAAGCGTTATCCGGAATTACTGGGTGTAAAGGGAGTGTAGGCGGGACTGCAAG




TCAGATGTGAAATATGCCGGCTCAACTGGCAGACTGCATTTGAAACTGTGGTTCTTGA




GTGAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGA




GGAACATCAGTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCTCGAAAG




CGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTAC




TAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CGAGTGAAGTATCAAGAGATTGATATGTCTTCGGACACAAAGACAGGTGGTGCATGG




TTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTT




ACCATTAGTTGCTACGCAAGAGCACTCTAATGGGACTGCCGTTGACAAAACGGAGGA




AGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTAC




AATGGCAATCGAACAGAGGGAAGCAATACAGCGATGTAAAGCAAAACCCGAAAAAA




TTGTCTCAGTTCGGATTGCAGGCTGCAACCCGCCTGCATGAAGTCGGAATTGCTAGTA




ATCGCAGATCAGCATGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTC




ACACCATGGGAGTCGGTAACACCCGAAGCCAGTAGTCCAACCGCAAGGAGGACGCTG




TCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGG




TGCGGCTGGATCACCTCCTTT (SEQ ID NO: 62)





GCF_000752215

bacterium M54

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




AGTCGAACGGAATTAAGTTTAACACCGAACACTTTGTTTGGTGGGGACACCTGACCG




AGTGGTGGGTGTTGAGCTTAATTTAGTGGCGGACGGGTGAGTAACGCGTGAGTAACC




TGCCTTTCAGAGGGGGATAACGTCTGGAAACGGACGCTAATACCGCATGACATATTT




GGGCTGCATGGTCTGAATATCAAAGGAGCAATCCGCTGAAAGATGGACTCGCGTCCG




ATTAGCTAGTTGGTGAGATAAAGGCCCACCAAGGCGACGATCGGTAGCCGGACTGAG




AGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCA




GTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCAACGCCGCGTGAGGGAA




GACGGTTTTCGGATTGTAAACCTCTGTCCTTGGTGACGAAACAAATGACGGTAGCCAA




GGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAGCAAGC




GTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCTCTGCAAGTCAGGCGTG




AAATATATGGGCTTAACCCATAGACTGCGTTTGAAACTGTGGAGCTTGAGTGAAGTA




GAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCGGGAGGAACAC




CAGTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCACGAAAGCATGGGT




AGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGATTACTAGGTGT




GGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATCCACCTGGGGAG




TACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGA




GTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCAACTA




ACGAAGCAGAGATGCATCAGGTGCCCTTCGGGGAAAGTTGAGACAGGTGGTGCATGG




TTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCT




GTGATTAGTTGCTACGCAAGAGCACTCTAATCAGACTGCCGTTGACAAAACGGAGGA




AGGTGGGGACGACGTCAAATCATCATGCCCTTTATGACCTGGGCTACACACGTACTAC




AATGGCTGTTAACAAAGGGAAGCAAGACCGCGAGGTGGAGCAAAACCTAAAAAACA




GTCTCAGTTCGGATCGCAGGCTGCAACCCGCCTGCGTGAAGTTGGAATTGCTAGTAAT




CGCGGATCATCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCAC




ACCATGGGAGCCGGTAATACCCGAAGTCAGTAGCCTAACCGCAAGGGAGGCGCTGCC




GAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTG




CGGCTGGATCACCTCCTTT (SEQ ID NO: 63)





GCF_000765135

Intestinimonas

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA




butyriciproducens

GTCGAACGGAGCACCCCTGACGGAGTTTTCGGACAACGAAAGGGAATGCTTAGTGGC




GGACGGGTGAGTAACGCGTGAGTAACCTGCCTTGGAGTGGGGAATAACAGCCGGAA




ACGGCTGCTAATACCGCATGATGTATCTGGATCGCATGGTTCTGGATACCAAAGATTT




ATCGCTCTGAGATGGACTCGCGTCTGATTAGCTAGTTGGTGAGGTAATGGCTCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGAAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCCCTCGGGTTGTAAACTTCTTTTGTCAG




GGACGAAGCAAGTGACGGTACCTGACGAATAAGCCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTG




TAGGCGGGAGTGCAAGTCAGATGTGAAAACTATGGGCTCAACCCATAGCCTGCATTT




GAAACTGTACTTCTTGAGTGATGGAGAGGCAGGCGGAATTCCCTGTGTAGCGGTGAA




ATGCGTAGATATAGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTG




ACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CCGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAAC




ACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGACTTGACATCCTACTAACGAAGCAGAGATGCATAAGGTGCCCTTCGGGG




AAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTA




AGTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGA




GACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTT




ATGTCCTGGGCCACACACGTACTACAATGGCGGTCAACAGAGGGAAGCAAAGCCGCG




AGGTGGAGCAAATCCCTAAAAGCCGTCCCAGTTCGGATTGCAGGCTGAAACTCGCCT




GTATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGT




AGCCTAACAGCAATGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 64)





GCF_000765235

Oscillibacter sp ER4

TATTGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCA




AGTCGAACGAGAATCTACTGAAAGAGTTTTCGGACAATGGATGTAGAGGAAAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTTGAAGAGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATGATGCATAGGGGTCGCATGATCTTTATGCCAAAGATTTA




TCGCTTCAAGATGGCCTCGCGTCTGATTAGCTAGTTGGCGGGGTAACGGCCCACCAAG




GCGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGATACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTGA




CCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTAAGAGG




GAAGAGCAGAAGACGGTACCTCTAGAATAAGCCACGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGTGCA




GCCGGGTCTGCAAGTCAGATGTGAAATCCATGGGCTCAACCCATGAACTGCATTTGA




AACTGTAGATCTTGAGTGTCGGAGGGGCAATCGGAATTCCTAGTGTAGCGGTGAAAT




GCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACGATAACTGAC




GGTGAGGCGCGAAAGTGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACACT




GTAAACGATGAATACTAGGTGTGCGGGGACTGACCCCCTGCGTGCCGCAGTAAACAC




AATAAGTATTCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGACG




GGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTT




ACCAGGGTTTGACATCCTGCTAACGAAGTAGAGATACATTAGGTGCCCTTCGGGGAA




AGCAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA




GTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAG




ACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTA




TATCCTGGGCTACACACGTAATACAATGGCGGTCAACAGAGGGAAGCAAAGCCGCGA




GGCAGAGCAAACCCCCAAAAGCCGTCCCAGTTCGGATTGTAGGCTGCAACTCGCCTG




CATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTA




GCCTAACCTGAAAAGGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTC




GTAACAAGGTAGCCGTTCGAGAACGAGCGGCTGGATCACCTCCTTT (SEQ ID NO: 65)





GCF_000820765

Candidatus

ATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCTTAACACATGCAA




Soleaferrea

GTCGAACGGGGTTGTTTCTGACACTCAGTGGGTAATCGGTAGATTGCTGATTGAGTGT




massiliensis

TGGGAATAACCTAGTGGCGGACGGGTGAGTAACACGTGAGCAACCTACCTTTCAGAG




GGGGATAACGTTTGGAAACGAACGCTAATACCGCATGATATAATTGGATGGCATCAT




CTGATTATCAAAGGAGCAATCCGCTGAAAGATGGGCTCGCGGCCGATTAGGTAGTTG




GAGTGGTAACGGCACACCAAGCCGACGATCGGTAGCCGGACTGAGAGGTTGAACGG




CCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATAT




TGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGAGGGAAGACGGTTTTCGG




ATTGTAAACCTCTGTCTTATGTGACGATAATGACGGTAGCATAGGAGGAAGCCACGG




CTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTA




CTGGGTGTAAAGGGAGCGTAGGCGGGAATGCAAGTTGAATGTTAAATCTACCGGCTC




AACCGGTAGCTGCGTTCAAAACTGTATTTCTTGAGTGAAGTAGAGGCAGGCGGAATT




CCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGC




CTGCTGGGCTTTTACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGA




TACCCTGGTAGTCCACGCTGTAAACGATGATTACTAGGTGTGGGGGGTCTGACCCCTT




CCGTGCCGGAGTTAACACAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGA




AACTCAAAGGAATTGACGGGGACCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGA




AGCAACGCGAAGAACCTTACCAGGTCTTGACATCCAACTAACGAGGCAGAGATGCGT




TAGGTGCCCTTCGGGGAAAGTTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTC




GTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTACTATTAGTTGCTACGCA




AGAGCACTCTAATGGGACTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCA




AATCATCATGCCCCTTATGACCTGGGCCACACACGTACTACAATGGTGTTCAACAGAG




GGAAGCAAAACTGTGAAGTGGAGCAAACCCCTAAAAGACATCCCAGTTCGGATCGTA




GGCTGCAACCCGCCTACGTGAAGTTGGAATTGCTAGTAATCGCGGATCAGCATGCCG




CGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCATGAGAGTCGGTAA




CACCCGAAGTCAGTAGCCTAACCGCAAGGAGGGCGCTGCCGAAGGTGGGATTGATGA




TTAGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCT




TT (SEQ ID NO: 66)





GCF_000953215

Clostridiumcellulosi

TTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA




GTCGAGCGGAGATAGTACTTCGGTTCTATCTTAGCGGCGGACGGGTGAGTAACGCGT




GAGCAACCTGCCCTTGAGCGGGGGATAGCGTCTGGAAACGGACGGTAATACCGCATA




ATGTACGTTGGAGGCATCTCCGATGTACCAAAGGAGAAATCCACTCAAGGATGGGCT




CGCGTCCGATTAGGTAGTTGGTGAGGTAATGGCCCACCAAGCCTGCGATCGGTAGCC




GGACTGAGAGGTTGTACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGG




AGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCGACGCCGCGT




GAGGGAAGAAGGTCTTCGGATTGTAAACCTCTGTCTTTCGGGACGAAGGAAGTGACG




GTACCGAAAGAGGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGG




TGGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGTGCGTAGGCGGGTTGTCAAGT




TGGATGTGAAATCTCTGGGCTTAACTCAGAGGTTGCATTCAAAACTGGCGATCTTGAG




TGAGGTAGAGGCAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGATATCGGGAG




GAACACCAGTGGCGAAGGCGGCCTGCTGGGCCTTAACTGACGCTGAGGCACGAAAGC




ATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCATGCTGTAAACGATGATTGCT




AGGTGTGGGTGGACTGACCCCATCCGTGCCGGAGTTAACACAATAAGCAATCCACCT




GGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CCACCGAATCCGGAAGAGATTCTGGAGTGCCCTTCGGGGAGCGGTGAGACAGGTGGT




GCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCA




ACCCTTGTTAATAGTTGCTACGCAAGAGCACTCTATTAAGACTGCCGTTGATAAAACG




GAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACG




TACTACAATGGCCGCCAACAAAGGGAAGCAATACCGCGAGGTGGAGCGAATCCCCA




AAAGCGGTCCCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGAAGACGGAATTGC




TAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGC




CCGTCACACCATGAGAGCCGGAAACACCCGAAGTCGTTTGCGTAACCGAAAGGAGCG




CGGCGCCGAAGGTGGGATCGGTGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCG




GAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 67)





GCF_001305095

Clostridiabacterium

TCTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA



UCS 1 2F7
GTCGAACGAGCCGAGGGGAGCTTGCTCCCCAGAGCTAGTGGCGGACGGGTGAGTAAC




ACGTGAGCAACCTGCCTTTCAGAGGGGGATAACGTTTGGAAACGAACGCTAATACCG




CATAACATACCGGGACCGCATGATTCTGGTATCAAAGGAGCAATCCGCTGAAAGATG




GGCTCGCGTCCGATTAGCTAGTTGGCGGGGTAACGGCCCACCAAGGCGACGATCGGT




AGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTCCTA




CGGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCGACGC




CGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCTTTGGGGACGATAATGA




CGGTACCCAAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGGTCTCAA




GTCGAATGTTAAATCTACCGGCTCAACTGGTAGCTGCGTTCGAAACTGGGGCTCTTGA




GTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGA




GGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTTACTGACGCTGAGGCTCGAAAG




CGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTAC




TAGGTGTGGGGGACTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATC




GAGTGACGGCTCTAGAGATAGAGCTTTCCTTCGGGACACAAAGACAGGTGGTGCATG




GTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCT




TATTATTAGTTGCTACATTCAGTTGAGCACTCTAATGAGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGT




AATACAATGGCGATCAACAGAGGGAAGCAAGACCGCGAGGTGGAGCAAACCCCTAA




AAGTCGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTA




GTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC




GTCACACCATGGGAGTCGGTAACACCCGAAGTCAGTAGCCTAACCGCAAAGAGGGCG




CTGCCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGA




AGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 68)





GCF_001305115

Clostridiabacterium

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA



UC5 1 1E11
AGTCGAACGGAGTTAAGAGAGCTTGCTCTTTTAACTTAGTGGCGGACGGGTGAGTAA




CGCGTGAGTAACCTGCCTTTCAGAGGGGAATAACATTCTGAAAAGAATGCTAATACC




GCATGAGATCGTAGTATCGCATGGTACAGCGACCAAAGGAGCAATCCGCTGAAAGAT




GGACTCGCGTCCGATTAGCTAGTTGGTGAGATAAAGGCCCACCAAGGCGACGATCGG




TAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCT




ACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGGGAAACCCTGATGCAGCAACG




CCGCGTGAAGGAAGAAGGTCTTCGGATTGTAAACTTCTGTCCTCAGGGAAGATAATG




ACGGTACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT




AGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGATCTGCA




AGTCAGTAGTGAAATCCCAGGGCTTAACCCTGGAACTGCTATTGAAACTGTGGGTCTT




GAGTGAGGTAGAGGCAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCG




GGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCCTTAACTGACGCTGAGGCACGA




AAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGAT




TACTAGGTGTGGGTGGTCTGACCCCATCCGTGCCGGAGTTAACACAATAAGTAATCCA




CCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACA




AGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGA




CATCCTGCTAACGAGGTAGAGATACGTTAGGTGCCCTTCGGGGAAAGCAGAGACAGG




TGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAG




CGCAACCCCTGCTATTAGTTGCTACGCAAGAGCACTCTAATAGGACTGCCGTTGACAA




AACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACA




CACGTACTACAATGGCCGTCAACAGAGAGAAGCAAAGCCGCGAGGTGGAGCAAAAC




TCTAAAAACGGTCCCAGTTCGGATCGTAGGCTGCAACCCGCCTACGTGAAGTTGGAA




TTGCTAGTAATCGCGGATCATCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACA




CCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGTCTAACCGCAAGG




GGGACGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGT




ATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 69)





GCF_001305135

Clostridiabacterium

TTTAGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCCTAACACATGCA



UC5 1 1D1
AGTCGAACGGGGTTATTTTGGAAATCTCTTCGGAGATGGAATTCTTAACCTAGTGGCG




GACGGGTGAGTAACGCGTGAGCAATCTGCCTTTAGGAGGGGGATAACAGTCGGAAAC




GGCTGCTAATACCGCATAATACGTTTGGGAGGCATCTCTTGAACGTCAAAGATTTTAT




CGCCTTTAGATGAGCTCGCGTCTGATTAGCTGGTTGGCGGGGTAACGGCCCACCAAG




GCGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCGCAATGGGGGAAACCCTGA




CGCAGCAACGCCGCGTGATTGAAGAAGGCCTCGGGTTGTAAAGATCTTTAATCAGGG




ACGAAAAATGACGGTACCTGAAGAATAAGCTCCGGCTAACTACGTGCCAGCAGCCGC




GGTAATACGTAGGGAGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGCGCAGG




CGGGCCGGCAAGTTGGGAGTGAAATCCCGGGGCTTAACCCCGGAACTGCTTTCAAAA




CTGCTGGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCGTGTGTAGCGGTGAAATGC




GTAGATATACGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTGACGC




TGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGT




AAACGATGGATACTAGGTGTGGGAGGTATTGACCCCTTCCGTGCCGCAGTTAACACA




ATAAGTATCCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGG




GGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTA




CCAGGTCTTGACATCCCGATGACCGGCGTAGAGATACGCCCTCTCTTCGGAGCATCGG




TGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCG




CAACGAGCGCAACCCTTACGGTTAGTTGATACGCAAGATCACTCTAGCCGGACTGCC




GTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCT




GGGCTACACACGTACTACAATGGCAGTCATACAGAGGGAAGCAATACCGCGAGGTGG




AGCAAATCCCTAAAAGCTGTCCCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGA




AGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCC




TTGTACACACCGCCCGTCACACCATGAGAGCCGTCAATACCCGAAGTCCGTAGCCTA




ACCGCAAGGGGGGCGCGGCCGAAGGTAGGGGTGGTAATTAGGGTGAAGTCGTAACA




AGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 70)





GCF_001486665

Fournierella

TATGAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCA




massiliensis

AGTCGAACGGAGCTTGCTTGTCAGATCCTTTCGGGGTGACGACTTGTAAGCTTAGTGG




CGAACGGGTGAGTAACACGTGAGTAACCTGCCCCAGAGTGGGGGACAACAGTTGGA




AACGACTGCTAATACCGCATAAGCCCACGGAACCGCATGGTTCAGAGGGAAAAGGA




GCAATTCGCTTTGGGATGGACTCGCGTCCGATTAGCTAGATGGTGAGGTAACGGCCC




ACCATGGCGACGATCGGTAGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAG




ACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAA




ACCCTGATGCAGCGACGCCGCGTGGAGGAAGAAGGCCTTCGGGTTGTAAACTCCTGT




CGTAAGGGACGATAGTGACGGTACCTTACAAGAAAGCCACGGCTAACTACGTGCCAG




CAGCCGCGGTAAAACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGA




GCGCAGGCGGGTCTGCAAGTTGGAAGTGAAACCCATGGGCTCAACCCATGAACTGCT




TTCAAAACTGCGGATCTTGAGTGGTGTAGAGGTAGGCGGAATTCCCGGTGTAGCGGT




GGAATGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACTA




ACTGACGCTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTC




CATGCCGTAAACGATGATTACTAGGTGTGGGAGGATTGACCCCTTCCGTGCCGCAGTT




AACACAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAAT




TGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCCCGTGCATAGCATAGAGATATGTGAAGTCCTTCGGGA




CACGGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAG




TCCCGCAACGAGCGCAACCCTTATCGTTAGTTACTACGCAAGAGGACTCTAGCGAGA




CTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTTAT




GACCTGGGCTACACACGTACTACAATGGCAATTAACAAAGAGAAGCAAAGCCGCGA




GGTGGAGCAAACCTCATAAAAATTGTCTCAGTTCAGATTGCAGGCTGCAACTCGCCTG




CATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTCCGTA




GCCTAACCGCAAGGAGGGCGCGGCCGAAGGTAAAACTGGTGATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 71)





GCF_001695555

Clostridium sp

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA



W14A
AGTCGAACGGAAACAGATTGAAGCTTGCTTTGAACTGTTTTAGTGGCGGACGGGTGA




GTAACGCGTGAGGAACCTGCCTTTCAGAGGGGGATAACGTCTGGAAACGGACGCTAA




TACCGCATGACATTTTGTTGCCGCATGGTGATAAAATCAAAGGAGCAATCCGCTGAG




AGATGGACTCGCGTCCGATTAGCCGGTTGGCGGGGTAACGGCCCACCAAAGCAACGA




TCGGTAGCCGGGCTGAGAGGCTGAACGGCCACATTGGGACTGAGACACGGCCCAGAC




TCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCA




ACGCCGCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCCTCAGGGACGATA




ATGACGGTACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATA




CGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCACT




GCAAGTCAGGTGTGAAAACCATGGGCTTAACTTATGGATTGCACTTGAAACTGTGGTG




CTTGAGTGAAGTAGAGGCAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGAT




CGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGCTGAGGCAC




GAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATG




ATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATC




CACCTGGGAAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCAC




AAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG




ACATCCAACTAACGAAGCAGAGATGCATCAGGTGCCCTTCGGGGAAAGTTGAGACAG




GTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA




GCGCAACCCTTGTGATTAGTTGCTACGCTAAGAGCACTCTAATCAGACTGCCGTTGAC




AAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTA




CACACGTACTACAATGGCCGTTAACAACGGGAAGCGAAGCCGCGAGGCGGAGCAAA




ACCCCAAAAACGGTCTCAGTTCGGATCGCAGGCTGCAACCCGCCTGCGTGAAGCTGG




AATTGCTAGTAATCGCGGATCATCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACA




CACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCGGTAGCCTAACCGCAA




GGAAGGCGCCGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGC




CGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 72)





GCF_002119605

Ruminococcaceae

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




bacterium CPB6

AGTCGAACGAAACTTTTTGCTTCGGTAGAAAGTTTAGTGGCGGACGGGTGAGTAACG




CGTGAGGAACCTGCCTTTCAGAGGGGGATAATGTCTGGAAACGGACACTAATACCGC




ATGACATTTTCTGTTCACATGGACAGAAAATCAAAGGAGCAATCTGCTGAAAGATGG




ACTCGCGTCCGATTAGCTAGATGGTGAGATAATAGCCCACCATGGCGACGATCGGTA




GCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTAC




GGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGAAACTCTGATGCAGCAACGCC




GCGTGAAGGAAGACGGTCTTCGGATTGTAAACTTTTGTACCTAGGGACGATAATGAC




GGTACCTAGGCAGCAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAG




GGAGCGAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCCAAGCAAG




TCAGCTGTGAAAACTATGGGCTTAACCCATAGCCTGCAATTGAAACTGTTTGGCTTGA




GTGAAGTAGAGGTAGGTGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAGATCGGGA




GGAACACCAGTGGCGAAGGCGACCTACTGGGCTTTAACTGACGCTGAAGCACGAAAG




CATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCTGTAAACGATGATTAC




TAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CCAACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGGAAAGTTGAGACAGGTGG




TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGCAGGACTGCCGTTGACAAAAC




GGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTACTACAATGGCCGTTAACAGAGAGAAGCGATACCGCGAGGTGGAGCGAACCTCAA




AAAGCGGTCTCAGTTCGGATTGCAGGCTGAAACCCGCCTGCATGAAGTTGGAATTGC




TAGTAATCGCGGATCATAATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGC




CCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGTCTAACCGCAAGGAGGA




CGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCA




GAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 73)





GCF_002159175

Flavonifractor sp

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



An92
GTCGAACGGAGTGCTCATGACGGAGTTTTCGGACAACGGATTGAGTTACTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTTGGAGTGGGGAATAACAGTTGGAA




ACAGCTGCTAATACCGCATAATGCAGTTGGGTCGCATGGCCCTGACTGCCAAAGATTT




ATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTGGTTGGCGGGGTAACGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGATGAAGGCTTTCGGGTTGTAAACTTCTTTTGTCAGG




GACGAAACAAATGACGGTACCTGACGAATAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGT




AGGCGGGATTGCAAGTCAGATGTGAAAACCAGGGGCTCAACCTCTGGCCTGCATTTG




AAACTGTAGTTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAAA




TGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACTGA




CGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGGATACTAGGTGTGGGGGGACTGACCCCCTCCGTGCCGCAGCTAACG




CAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCT




TACCAGGGCTTGACATCCTACTAACGAAGCAGAGATGCATAAGGTGCCCTTCGGGGA




AAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA




GTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAG




ACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTA




TGTCCTGGGCCACACACGTACTACAATGGTGGTTAACAGAGGGAGGCAAAACCGCGA




GGTGGAGCAAATCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGCAACCCGCCTG




TATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTA




GCCTAACCGCAAGGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 74)





GCF_002159225

Flavonifractor sp

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



An91
GTCGAACGGAGTGCTCATGACGGAGGATTCGTCCAACGGATTGAGTTACTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTCGGAGTGGGGAATAACAGCCCGAA




AGGGTTGCTAATACCGCATGATGCAGTTGGGCCGCATGGCTCTGACTGCCAAAGATTT




ATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTGGTTGGCGGGGTAACGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGATGAAGGCTTTCGGGTTGTAAACTTCTTTTATTCGG




GACGAAGAAAATGACGGTACCGAATGAATAAGCCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTG




TAGGCGGGACTGCAAGTCAGATGTGAAAACTATGGGCTCAACCCATAGCCTGCATTT




GAAACTGTAGTTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAA




ATGCATAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACTG




ACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CCGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAAC




ACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGGCTTGACATCCC (SEQ ID NO: 75)





GCF_002159455

Flavonifractor sp

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



An306
GTCGAACGGAGTGCTCATGACAGAGGATTCGTCCAATGGATTGAGTTACTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTCGGAGTGGGGAATAACAGACCGAA




AGGCCTGCTAATACCGCATGATACAGTTGGGTCGCATGGCTCTGACTGTCAAAGATTT




ATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTAGTTGGCGGGGTAACGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTCTCGGG




GACGAAACAAATGACGGTACCTGAGGAATAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGTGGCGAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTGT




AGGCGGGATTGCAAGTCAGACGTGAAAACTATGGGCTCAACCCATAGCCTGCGTTTG




AAACTGTAGTTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAAA




TGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACTGA




CGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGC




CGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAACA




CAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCT




TACCAGGGCTTGACATCCCACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGGA




AAGTGGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA




GTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAG




ACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTA




TGTCCTGGGCCACACACGTACTACAATGGTGGTTAACAGAGGGAAGCAATACCGCGA




GGTGGAGCAAATCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGAAACCCGCCTG




TATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTA




GCCTAACAGCAATGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 76)





GCF_002160015

Anaerofilum sp

TATAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCA



An201
AGTCGAACGGAGCTATTTCGATAGATCCCTTCGGGGTGACATTGGCTTAGCTTAGTGG




CGAACGGGTGAGTAACACGTGAGGAACCTGCCCTTCAGAGGGGGACAACAGTTGGA




AACGACTGCTAATACCGCATAAGACCACAGAGCCGCATGGCTCAGGGGTCAAAGGAG




AAATCCGCTGAAGGATGGCCTCGCGTCCGATTAGGTAGTTGGCGGGGTAACGGCCCA




CCAAGCCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGA




CACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAA




CCCTGATGCAGCGACGCCGCGTGAGGGAAGAAGATTTTCGGATTGTAAACCTCTGTCT




TCGGGGACGATAATGACGGTACCCGAGGAGGAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGC




GCAGGCGGGTTTGCAAGTTGGATGTTTAATCGAGGGGCTCAACCCCTTTCCGCATTCA




AAACTGCAGATCTTGAGTGGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGGAA




TGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACTAACTGA




CGCTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGC




CGTAAACGATGATTACTAGGTGTGGGGGGATTGACCCCCTCCGTGCCGCAGTTAACA




CAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGAC




GGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCT




TACCAGGTCTTGACATCCCGTGCATAGCATAGAGATATGTGAAGTCCTTCGGGACACG




GAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTACTGATAGTTACTACGCAAGAGGACTCTATCGGGACTGC




CGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTATATGACC




TGGGCTACACACGTACTACAATGGCTATGAACAAAGAGAAGCGAAGCCGCGAGGCA




GAGCAAACCTCATAAAAATAGTCTCAGTTCGGACTGCAGGCTGCAACTCGCCTGCAC




GAAGCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGG




CCTTGTACACACCGCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTCGGTAGTC




TAACCGCAAGGAGGACGCCGCCGAAGGTAAAACTGGTGATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 77)





GCF_002160025

Anaeromassilibacillus

TCTTGTTGCTTAGTGGCGGACGGGTGAGTAACACGTGAGTAACCTGCCTCTCAGAGGG



sp An200
GGATAACGTCTTGAAAAGGACGCTAATACCGCATGATATCTCTTGACCGCATGGTCG




GGAGATCAAAGGAGCAATCCGCTGAGAGATGGACTCGCGTCCGATTAGCCAGTTGGC




GGGGTAACGGCCCACCAAAGCAACGATCGGTAGCCGGACTGAGAGGTTGAACGGCC




ACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTG




CACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAAGGATGAAGGTCTTCGGAT




TGTAAACTTTTGTCCTATGGGAAGAAGAAAGTGACGGTACCATAGGAGGAAGCTCCG




GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTGTCCGGATTT




ACTGGGTGTAAAGGGTGCGTAGGCGGAAGAGCAAGTCAGTAGTGAAATCTGGGGGCT




TAACCCCCAAACTGCTATTGAAACTGTTTTTCTTGAGTGGAGTAGAGGTAGGCGGAAT




TCCCGGTGTAGCGGTGAAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGCG




GCCTACTGGGCTCTAACTGACGCTGAGGCACGAAAGTGTGGGTAGCAAACAGGATTA




GATACCCTGGTAGTCCACACCGTAAACGATGATTACTAGGTGTGGGGGGTCTGACCC




CCTCCGTGCCGGAGTTAACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGT




TGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATT




CGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCAA (SEQ ID NO: 78)





GCF_002160275

Pseudoflavonifractor

AAGTGGCGGACGGGTGAGTAACGCGTGAGGAACCTGCCTCGGAGTGGGGAATAACA



sp An187
GTTGGAAACAGCTGCTAATACCGCATAATGCAACGGAATCGCATGACTCTGTTGCCA




AAGATTTATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTGGTTGGCGGGGTAACGGC




CCACCAAGGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTG




AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCG




CAAGCCTGACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCT




TTTGTCAGGGACGAACAAATGACGGTACCTGACGAATAAGCCACGGCTAACTACGTG




CCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTATTGGGTGTAAA




GGGCGTGTAGGCGGGACTGCAAGTCAGATGTGAAAACCACGGGCTCAACCTGTGGCC




TGCATTTGAAACTGTAGTTCTTGAGTGTCGGAGAGGCAATCGGAATTCCGTGTGTAGC




GGTGAAATGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACG




ATAACTGACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTA




GTCCACGCCGTAAACGATGGATACTAGGTGTGGGGGGACTGACCCCCTCCGTGCCGC




AGTTAACACAGTAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAG




GAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCG




AAGAACCTTACCAGGACTTGACATCCTACTAACGAAGCAGAGATGCATTAGGTGCCC




TTCGGGGAAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATG




TTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACT




CTAGCGAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCAT




GCCCCTTATGTCCTGGGCCACACACGTACTACAATGGCGGTTAACAAAGAGAGGCAA




TACCGCGAGGTGGAGCAAATCTCAAAAAGCCGTCCCAGTTCGGATTGCAGGCTGCAA




CCCGCCTGCATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAAT




ACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGA




AGTCCGTAGCCTAACCGCAAGGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGT




GAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID




NO: 79)





GCF_002160305

Pseudoflavonifractor

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



sp An184
GTCGAACGGAGAGCGTATGACAGAGGATTCGTCCAATGGATTGCGTTTCTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTCGGAGTGGGGAATAACACAACGAA




AGCTGTGCTAATACCGCATGATGCAGCTGGGTCGCATGACTCTGGCTGCCAAAGATTT




ATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTGGTTGGCGGGGTAACGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCCCTCGGGTTGTAAACTTCTTTTGTCAG




GGACGAAGCAAGTGACGGTACCTGACGAATAAGCCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTG




TAGGCGGGATTGCAAGTCAGATGTGAAAACCACGGGCTCAACCTGTGGCCTGCATTT




GAAACTGCAGTTCTTGAGTACTGGAGAGGCAGACGGAATTCCTAGTGTAGCGGTGAA




ATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGTCTGCTGGACAGCAACTG




ACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CTGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAAC




ACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGGCTTGACATCCCGACGACCGGTGTAGAGATACACTTTTCTCTTCGGAGAC




GTCGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAG




TCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAGA




CTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTAT




GTCCTGGGCCACACACGTACTACAATGGTGGTCAACAGAGGGAGGCAAAACCGCGAG




GTGGAGCAAACCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGCAACCCGCCTGC




ATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCG




GGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTAG




CCTAACCGCAAGGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGTA




ACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 80)





GCF_002160515

Anaeromassilibacillus

TTTAGTGGCGGACGGGTGAGTAACGCGTGAGTAACCTGCCTTCAAGAGGGGAATAAC



sp An172
GTTCTGAAAAGAACGCTAATACCGCATAACATACGGATGTCGCATGGCAACCGTATC




AAAGATTTTATCGCTTGAAGATGGACTCGCGTCCGATTAGCCAGTTGGCGGGGTAAC




GGCCCACCAAAGCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGA




CTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCGCAATGGG




GGCAACCCTGACGCAGCAACGCCGCGTGAACGATGAAGGTCTTCGGATTGTAAAGTT




CTTTTATTAAGGACGAAGAAGTGACGGTACTTAATGAATAAGCTCCGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAA




AGGGTGCGTAGGCGGCAGAGCAAGTCAGATGTGAAATCCGTGGGCTTAACCCACGAA




CTGCATTTGAAACTGTTTTGCTTGAGTGAAGTAGAGGCAGGCGGAATTCCCTGTGTAG




CGGTGAAATGCGTAGAGATAGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGC




TTTAACTGACGCTGAGGCACGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGT




AGTCCACGCCGTAAACGATGATTACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGC




AGTTAACACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAG




GAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCG




AAGAACCTTACCAGGTCTTGACATCCAACTAACGAGGTAGAGATACATTAGGTGCCC




TTCGGGGAAAGTTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGT




TGGGTTAAGTCCCGCAACGAGCGCAACCCTTGCTATTAGTTGCTACGCAAGAGCACTC




TAATAGGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATG




CCCCTTATGACCTGGGCTACACACGTACTACAATGGCCATCAACAGAGGGAAGCAAA




GCAGCGATGCAGAGCAAACCCCTAAAAATGGTCCCAGTTCAGATTGCAGGCTGCAAC




TCGCCTGTATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATA




CGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAA




GTCAGTAGTCTAACCGCAAGGAGGACGCTGCCGAAGGTAGGATTGGCGACTGGGGTG




AAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID




NO: 81)





GCF_002160955

Gemmiger sp

TAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAAG



An120
TCGAACGGAGTTATTTTGGCTGAAGTTTTCGGATGGACGCCGGGATAACTTAGTGGCG




AACGGGTGAGTAACACGTGAGGAACCTGCCCTTGAGTGGGGGACAACAGTTGGAAAC




GACTGCTAATACCGCATAAGCCCACAGAGCCGCATGGCTCAGGGGGAAAAGGAGCA




ATTCGCTTAAGGATGGACTCGCGTCCAATTAGGTAGATGGTGAGGTAACGGCCCACC




ATGCCGACGATTGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACA




CGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCC




TGATGCAGCGACGCCGCGTGAAGGAAGAAGGCCTTCGGGTTGTAAACTTCTGTCGTA




AGGGACGATAATGACGGTACCTTACAAGAAAGCCACGGCTAACTACGTGCCAGCAGC




CGCGGTAAAACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGC




AGGCGGGGAGGCAAGTTGGAAGTGAAAAGCGTGGGCTCAACCCACGACCTGCTTTCA




AAACTGTCTCTCTTGAGTAGTGCAGAGGTAAGCGGAATTCCCGGTGTAGCGGTGGAA




TGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGGCACCAACTGA




CGCTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGC




CGTAAACGATGATTACTAGGTGTGGGGAGATTGACCCTCTCCGTGCCGCAGTTAACAC




AATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACG




GGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTT




ACCAGGTCTTGACATCCGATGCATAGTGCAGAGATGCATGAAGTCCTTCGGGACATC




GAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTATCGTCAGTTACTACGCAAGAGGACTCTGGCGAGACTGC




CGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTTATGACC




TGGGCTACACACGTACTACAATGGCGATCAACAAAGAGAAGCGAAGCCGCGAGGCG




GAGCAAACCTCATAAACATCGTCCCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATG




AAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTCCGTAGCCT




AACCGCAAGGAGGGCGCGGCCGAAGGTAAAACTGGTGATTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 82)





GCF_002161175

Flavonifractor sp

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



An100
GTCGAACGGAGTGCTCATGACAGAGGATTCGTCCAATGGAATGAGTTACTTAGTGGC




GGACGGGTGAGTAACGCGTGAGTAACCTGCCTTGGAGTGGGGAATAACACAACGAA




AGCTGTGCTAATACCGCATAATGCAGCTGAGTCGCATGGCTCTGGCTGCCAAAGATTT




ATCGCTCTGAGATGGACTCGCGTCTGATTAGCTAGTTGGCGGGGTAACGGCCCACCA




AGGCGACGATCAGTAGCCGGACTGAGAGGTTGGCCGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCT




GACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTCTCAG




GGACGAAGCAAGTGACGGTACCTGAGGAATAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGT




GTAGGCGGGATTGCAAGTCAGATGTGAAAACCATGGGCTCAACTCATGGCCTGCATT




TGAAACTGTAGTTCTTGAGTACTGGAGAGGCAGACGGAATTCCTAGTGTAGCGGTGA




AATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGTCTGCTGGACAGCAACT




GACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC




GCTGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAA




CACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTG




ACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAAC




CTTACCAGGGCTTGACATCCCGGTGACCGGCTTAGAGATAGGCTTTTCCCTTCGGGGA




CACCGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA




GTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGAG




ACTGCCGTTGACAAAACGGAGGAAGGCGGGGACGACGTCAAATCATCATGCCCCTTA




TGTCCTGGGCCACACACGTACTACAATGGTGGTTAACAGAGGGAAGCAATGCCGCGA




GGCGGAGCAAACCCCTAAAAGCCATCCCAGTTCGGATCGCAGGCTGCAACCCGCCTG




CGTGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCC




GGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGTA




GCTTAACCGCAAGGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCGT




AACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 83)





GCF_002161215

Flavonifractor sp

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



An10
GTCGAACGGAGAACCCCTGATAGAGGATTCGTCCAATTGAAGGGAATTCTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTTGGAGTGGGGAATAACAGTCCGAA




AGGACTGCTAATACCGCATAATGCAGTTGGGCCGCATGGCTCTGACTGCCAAAGATTT




ATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTAGTAGGCGGGGTAACGGCCCACCTA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCCCTCGGGTTGTAAACTTCTTTTGACAG




GGACGAAGAAAATGACGGTACCTGTCGAATAAGCCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTG




TAGGCGGGCTGGCAAGTCAGATGTGAAAACCATGGGCTCAACCCATGGCCTGCATTT




GAAACTGTTGGTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAA




ATGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACTG




ACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CCGTAAACGATGGATACTAGGTGTGGGGGGACTGACCCCCTCCGTGCCGCAGCTAAC




GCAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGGCTTGACATCCTGCTAACGAAGTAGAGATACATTAGGTGCCCTTCGGGG




AAAGCAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTT




AAGTCCCGCAACGAGCGCAACCCTTATTGTTAGTTGCTACGCAAGAGCACTCTAGCG




AGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCT




TATGTCCTGGGCCACACACGTACTACAATGGCGGTTAACAGAGGGAAGCAAAACCGC




GAGGTGGAGCAAATCCCTAAAAGCCGTCCCAGTTCGGATTGCAGGCTGAAACCCGCC




TGTATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGT




AGCCTAACCGCAAGGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 84)





GCF_900067065

Eubacteriaceae

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




bacterium

AGTCGAACGGACGAGAAGGTGCTTGCACCTTCAAGTTAGTGGCGGACGGGTGAGTAA



CHKCI005
CGCGTGAGCAACCTGCCTCAAAGAGGGGGATAACGTCTGGAAACGGACGCTAATACC




GCATGACGTATTCGATAGGCATCTATTGAATACCAAAGGAGCAATCCGCTTTGAGAT




GGGCTCGCGTCTGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCAG




TAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCT




ACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGGGAAACCCTGATGCAGCAACG




CCGCGTGAAGGAAGACGGTTTTCGGATTGTAAACTTCTGTTCTTAGTGACGATAATGA




CGGTAGCTAAGGAGAAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGGCGGGAGATCA




AGTCAGATGTGAAAACTATGGGCTCAACCCATAACCTGCATTTGAAACTGGTTTTCTT




GAGTGAAGTAGAGGCAGGCGGAATTCCGAGTGTAGCGGTGAAATGCGTAGATATTCG




GAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTTACTGACGCTGAGGCTCGAA




AGCATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGATT




ACTAGGTGTGGGGTGGCTGACCCATTCCGTGCCGGAGTTAACACAATAAGTAATCCA




CCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACA




AGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGA




CATCCGACTAACGAAGTAGAGATACATTAGGTGCCCTTCGGGGAAAGTCGAGACAGG




TGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAG




CGCAACCCTTGTCATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGTTGACAA




AACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACA




CACGTACTACAATGGCCGTTAACAGAGGGAAGCAATACTGTGAAGTGGAGCAAACCC




CTAAAAACGGTCCCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGAAGTCGGAAT




TGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACAC




CGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCGGTAGTCTAACCGCAAGGA




GGGCGCCGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGTA




TCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 85)





GCF_900100595

Ruminococcaceae

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA




bacterium P7

AGTCGAACGGAGTTGAGGAGCTTGCTCCTTAACTTAGTGGCGGACGGGTGAGTAACG




CGTGAGTAACCTGCCTCTGAGAGGGGAATAACGTTCTGAAAAGAACGCTAATACCGC




ATGACACATATTTGCCGCATGACAGATATGTCAAAGATTTTATCGCTCAGAGATGGAC




TCGCGTCCGATTAGTTAGTTGGTGAGGTAACGGCTCACCAAGACCGCGATCGGTAGC




CGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGG




GAGGCAGCAGTGGGGGATATTGCGCAATGGGGGCAACCCTGACGCAGCAACGCCGC




GTGAAGGATGAAGGTTTTCGGATTGTAAACTTCTTTTCTCAGGGACGAAATTTGACGG




TACCTGAGGAATAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG




AGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCTTTGTAAGTCA




GATGTGAAATCTATGGGCTCAACCCATAAACTGCATTTGAAACTACAGAGCTTGAGT




GAAGTAGAGGCAGGCGGAATTCCCTGTGTAGCGGTGAAATGCGTAGAGATAGGGAG




GAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGCTGAGGCACGAAAGC




GTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGATTACT




AGGTGTGGGGGGACTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTAATCCACCT




GGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGC




AGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT




CCGACTAACGAAGTAGAGATACATCAGGTGCCCTTCGGGGAAAGTCGAGACAGGTGG




TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTTGCTATTAGTTGCTACGCAAGAGCACTCTAATAGGACTGCCGTTGACAAAAC




GGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACAC




GTACTACAATGGCCATCAACAGAGGGAAGCAAAACAGCGATGTGGAGCAAACCCCT




AAAAATGGTCTCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGAAGTCGGAATTG




CTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCG




CCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGCTTAACCT (SEQ ID




NO: 86)





GCF_900101355

Ruminococcus

TTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCAA




bromii

GTCGAACGGAACTGCTTCGAAGGATTTCTTCGGAATGACATTGATTCAGTTTAGTGGC




GGACGGGTGAGTAACGCGTGAGTAACCTGCCTTCAAGAGGGGGATAACATTCTGAAA




AGAATGCTAATACCGCATGACATATGATTGTCGCATGGCAGACATATCAAAGATTTAT




CGCTTGAAGATGGACTCGCGTCCGATTAGTTAGTTGGTGAGGTAACGGCCCACCAAG




ACCGCGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCGCAATGGGGGCAACCCTGA




CGCAGCAACGCCGCGTGAAGGATGAAGGTTTTCGGATTGTAAACTTCTTTTATTAAGG




ACGAATAATGACGGTACTTAATGAATAAGCTCCGGCTAACTACGTGCCAGCAGCCGC




GGTAATACGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGG




CGGCTAAGCAAGTCAGATGTGAAATCTATGGGCTCAACCCATAAACTGCATTTGAAA




CTGCATAGCTTGAGTGAAGTAGAGGCAGGCGGAATTCCCCGTGTAGCGGTGAAATGC




GTAGAGATGGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACGC




TGAGGCACGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGT




AAACGATGATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACAA




TAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGG




GGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTAC




CAGGTCTTGACATCCAACTAACGAGATAGAGATATGTTAGGTGCCCTTCGGGGAAAG




TTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTC




CCGCAACGAGCGCAACCCTTGCTATTAGTTGCTACGCAAGAGCACTCTAATAGGACT




GCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGA




CCTGGGCTACACACGTACTACAATGGGCGTTAACAGAGGGAAGCAAAATAGCGATAT




GGAGCAAACCCCTAAAAACGTTCTCAGTTCAGATTGCAGGCTGCAACCCGCCTGCAT




GAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGG




CCTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGTTC




AACCGCAAGGAGAGCGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 87)





GCF_900103235

Ruminococcus sp

TCAGTGGCGGACGGGTGAGTAACACGTGAGCAATCTGCCTTTAAGAGGGGAATAACG



YE78
ACTGGAAACGGTCGGTAATACCGCATAACATATCGAAGCCGCATGACTTTGATATCA




AAGATTTATCGCTTAAAGATGAGCTCGCGTCTGATTAGCTAGTTGGTGAGGTAACGGC




CCACCAAGGCGACGATCAGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTG




AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGC




AAGCCTGATGCAGCGATGCCGCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTG




TTGACAGGGACGATAATGACGGTACCTGTTCAGAAAGCTCCGGCTAACTACGTGCCA




GCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGG




AGTGTAGGCGGGACTGCAAGTCAGATGTGAAATGTAGGGGCTCAACCCCTGACCTGC




ATTTGAAACTGTAGTTCTTGAGTGAAGTAGAGGTAAGCGGAATTCCCAGTGTAGCGGT




GAAATGCGTAGATATTGGGAGGAACATCAGTGGCGAAGGCGGCTTACTGGGCTTTAA




CTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCC




ACGCCGTAAACGATGATTACTAGGTGTGGGGGGATTGACCCCTTCCGTGCCGCAGTTA




ACACAATAAGTAATCCACCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATT




GACGGGGGCCCGCACAAGCAGTGGAGTATGTGGATTAATTCGAAGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCGTACGCATAGTGTAGAGATACATGAAGTCCTTCGGGA




CGTATAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAG




TCCCGCAACGAGCGCAACCCTTACTGTTAGTTGCTACGCAAGAGCACTCTAGCAGGA




CTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTAT




GACCTGGGCCTCACACGTACTACAATGGCTGTTAACAGAGGGAAGCGAAGCCGCGAG




GTGGAGCAAATCCCCAAAAGCAGTCTTAGTTCGGATTGTAGGCTGCAACCCGCCTAC




ATGAAGTCGGAATTGCTAGTAATCGCAGATCAGCATGCTGCGGTGAATACGTTCCCG




GGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGGTAACACCCGAAGTCAGTAG




CCTAACCGCAAGGAGGGCGCTGCCGAAGGTGGGATCGATGACTGGGGTGAAGTCGTA




ACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 88)





GCF_900104495

Ruminococcaceae

ATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCTTAACACATGCAA




bacterium FB2012

GTCGAACGGAGTTATTTGAGCTTGCTTAAATAACTTAGTGGCGGACGGGTGAGTAAC




ACGTGAGCAATCTGCCTTTCAGAGGGGGATAGCAGTTGGAAACGACTGATAATACCG




CATAATATAACGAAACCGCATGACCCTGCTATCAAAGATTTATCGCTGAAAGATGAG




CTCGCGTCTGATTAGGTAGTTGGTGAGGTAACGGCTCACCAAGCCGACGATCAGTAG




CCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACG




GGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGATGCCGC




GTGAGGGAAGAAGGTTTTAGGATTGTAAACCTCTGTCCTATGGAAAGATAATGACGG




TACCATAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGG




AGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGTAGGCGGGACTGCAAGTC




AGATGTGAAAACTATGGGCTTAACCCATAGACTGCATTTGAAACTGCAGTTCTTGAGT




GAAGTAGAGGTAAGCGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGG




AACATCAGTGGCGAAGGCGGCTTACTGGGCTTTAACTGACGCTGAGGCTCGAAAGCG




TGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTACTA




GGTGTGGGGGGACTGACCCCTTC (SEQ ID NO: 89)





GCF_900104565

Ruminococcaceae

CTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCACGCCTAACACATGCAAG




bacteriumMarseille

TCGAACGGAGCTATTTTAGCGGAAGCCTTCGGGCAGAAGCTGGCTTAGCTTAGTGGC



P2935
GGACGGGTGAGTAACACGTGAGCAACCTGCCTTTGCGAGGGGGATAACGTTTGGAAA




CGAACGCTAATACCGCATAATGTCAGAAGGTCGCATGATTTTCTGACCAAAGATTTAT




CGCGCAAAGATGGGCTCGCGTCCGATTAGATAGTTGGTGAGGTAACGGCCCACCAAG




TCTGCGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGAGGGAACTCTGA




TGCAGCGATGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCTTCAGG




GACGAACACAATGACGGTACCTGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGC




CGCGGTAATACGTAGGGAGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGT




AGGCGGGTCTCCAAGTCCGTTGTCAAATCTATCGGCTCAACCGATAGCCGCGGCGGA




AACTGGAGGTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAAT




GCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGAC




GCTGAGGCTCGAAAGTGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACACT




GTAAACGATGATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGGAGTTAACAC




AATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACG




GGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTT




ACCAGGTCTTGACATCGGATGCATACCATAGAGATATGGGAAGCCCTTCGGGGCATC




CAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTATCCTTAGTTGCTACGCAAGAGCACTCTAAAGAGACTGC




CGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTACTACAATGGCGATTAACAAAGGGATGCAACACGGCGACGTGA




AGCGGAACCCAAAAAATCGTCTCAGTTCAGATTGCAGGCTGCAACCCGCCTGCATGA




AGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCC




TTGTACACACCGCCCGTCACACCATGGGAGTCGGTAACACCCGAAGTCAGTAGCCTA




ACCGCAAGGAGGGCGCTGCCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACA




AGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 90)





GCF_900110045

Hydrogenoanaero-

AGTTTAGTGGCGGACGGGTGAGTAACACGTGAGCAACCTGCCTTTCAGAGGGGAATA




bacterium

ACATTCGGAAACGAATGCTAATACCGCATAATGCAACGAGATGGCATCATCTTGCTG




saccharovorans

CCAAAGATTTATCGCTGAAAGATGGGCTCGCGCCCGATTAGCTAGTTGGTGAGGTAA




TGGCCCACCAAGGCAACGATCGGTAGCCGGACTGAGAGGTTGATCGGCCACATTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGG




GCGAAAGCCTGATGCAGCGACGCCGCGTGAGGGAAGACGGTTTTCGGATTGTAAACC




TCTGTCTTCAGGGACGATAATGACGGTACCTGAGGAGGAAGCACCGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGTGTAA




AGGGAGCGTAGGCGGGATTGTAAGTTGGATGTGTAATGTACCGGCTCAACCGGTAAC




TTGCATTCAAAACTGCAGTTCTTGAGTGAAGTAGAGGCAGGCGGAATTCCTAGTGTAG




CGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCT




TTTACTGACGCTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTA




GTCCATGCCGTAAACGATGATTACTAGGTGTGGGTGTGCAAGCATCCGTGCCGCAGCT




AACGCAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAAT




TGACGGGGGCCCGCACAAGCAGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGA




ACCTTACCAGGTCTTGACATCCCTTGCATACCATAGAGATATGGGAAGCCCTTCGGGG




CAAGGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA




GTCCCGCAACGAGCGCAACCCTTACTATTAGTTGCTACGCAAGAGCACTCTAATAGG




ACTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTA




TGACCTGGGCTACACACGTAATACAATGACGATAAACAGAGGGTAGCGAAGCCGCGA




GGTGGAGCCAATCCCCAAAAGTCGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGC




ATGAAGTCGGAATTGCTAGTAATCGCAGGTCAGCATACTGCGGTGAATACGTTCCCG




GGCCTTGTACACACCGCCCGTCACACCATGGGAGTCGGTAACACCCGAAGCCAGTAG




TCTAACCGCAAGGAGGACGCTGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTA




ACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 91)





GCF_900113995

Ruminococcaceae

CAAAGATTTATCGCTGTGAGATGGATTCGCGTCCGATTAGATAGTTGGTGAGGTAACG




bacterium D5

GCCCACCAAGTCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGAC




TGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGC




GCAAGCCTGATGCAGCGACGCCGCGTGTGGGAAGACGGCCCTCGGGTTGTAAACCAC




TGGCTTTGGGGACGATAATGACGGTACCCAAGGAGGAAGCTCCGGCTAACTACGTGC




CAGCAGCCGCGGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAG




GGAGCGTAGGCGGGAGTGCAAGTTGAATGTTTAATCTATGGGCTCAACCCATATCAG




CGTTCAAAACTGCATTTCTTGAGTGAAGTAGAGGTTGGCGGAATTCCTAGTGTAGCGG




TGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCAACTGGGCTTTT




ACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTC




CACGCCGTAAACGATGAATACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGT




TAACACAATAAGTATTCCACCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAA




TTGACGGGGGCCCGCACAAGCAGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAG




AACCTTACCAGGCCTTGACATCTCCTGAGTAGCCTAGAGATAGGTGATGCCCTTCGGG




GCAGGAAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTA




AGTCCCGCAACGAGCGCAACCCTTACGGATAGTTGCTACGCAAGAGCACTCTATCAG




GACTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTT




ATGGCCTGGGCTACACACGTAATACAATGGCGTTTAACAGAGGGAAGCAAGACCGCG




AGGTGGAGCGAATCCTCAAAAGGCGTCTCAGTTCAGATTGCAGGCTGCAACCCGCCT




GCATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCT




CGGGCCTTGTACACACCGCCCGTCACACCATGGAAGTCGGTAACACCCGAAGTCAGT




AGCCTAACCGCAAGGGGGGCGCTGCCGAAGGTGGGATTGGTAACTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 92)





GCF_900115635

Oscillibacter sp

TGCCAAAGATTTATCGCTGAAAGATGGCCTCGCGTCTGATTAGCTAGTTGGTGGGGTA



PC13
ACGGCCCACCAAGGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGG




GACTGAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATG




GACGCAAGTCTGACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAAC




TTCTTTTAAGTGGGAAGAGCAGAAGACGGTACCACTTGAATAAGCCACGGCTAACTA




CGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTG




TAAAGGGCGTGTAGCCGGGTGTGCAAGTCAGATGTGAAATCTGGAGGCTCAACCTCC




AAACTGCATTTGAAACTGTGCATCTTGAGTATCGGAGAGGTAATCGGAATTCCTTGTG




TAGCGGTGAAATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATTACTG




GACGACAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCC




TGGTAGTCCACGCTGTAAACGATCAATACTAGGTGTGCGGGGACTGATCCCCTGCGTG




CCGCAGTTAACACAATAAGTATTGCACCTGGGGAGTACGATCGCAAGGTTGAAACTC




AAAGGAATTGACGGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAA




CGCGAAGAACCTTACCAGGGCTTGACATCCTACTAATGAAGCAGAGATGCATTAAGT




GCCCTTCGGGGAAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGA




GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAG




CACTCTAGCGAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCA




TCATGCCCCTTATGTCCTGGGCTACACACGTAATACAATGGCGGTTAACAGAGGGATG




CAAATCCGCGAGGAGGAGCGAACCCCGAAAAGCCGTCTCAGTTCGGATCGCAGGCTG




CAACCCGCCTGCGTGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTG




AATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACC




CGAAGTCCGTAGCCTAACCGCAAGGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGG




GGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT




(SEQ ID NO: 93)





GCF_900169975

Pseudoflavonifractor

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



sp Marseille P3106
GTCGAACGGAGAGCCAATGACGGAGTTTTCGGACAACGGATTTGGTTTCTTAGTGGC




GGACGGGTGAGTAACGCGTGAGCAACCTGCCTTGGAGTGGGGAATAACAGCTGGAA




ACAGTTGCTAATACCGCATAATGCAGCGAGGGGACATCCTCTTGCTGCCAAAGATTTA




TCGCTCTGAGATGGACTCGCGTCTGATTAGCTGGTTGGCGGGGTAACGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGATACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGAAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCCCTCGGGTTGTAAACTTCTTTTATCAG




GGACGAAACAAATGACGGTACCTGATGAATAAGCCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTG




TAGGCGGGTCTGCAAGTCAGGTGTGAAATTCCAGGGCTCAACCCTGGAACTGCACTT




GAAACTGTGGGTCTTGAGTGATGGAGAGGCAGGCGGAATTCCGTGTGTAGCGGTGAA




ATGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGACATTAACTG




ACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CTGTAAACGATGGATACTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGCAGTTAAC




ACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGGCTTGACATCCTACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGG




AAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTA




AGTCCCGCAACGAGCGCAACCCTTATTGCTAGTTGCTACGCAAGAGCACTCTAGCGA




GACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTT




ATGTCCTGGGCCACACACGTACTACAATGGCGGTCAACAGAGGGAAGCAATACCGCG




AGGTGGAGCGAATCCCTAAAAGCCGTCCCAGTTCGGATTGCAGGCTGAAACCCGCCT




GCATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGT




AGCCTAACCGCAAGGGGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 94)





GCF_900197595

Neglecta sp

TTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCAA




Marseille P3890

GTCGAACGGAGTTAAGAGAAGCTTGCTTTTATTAACTTAGTGGCGGACGGGTGAGTA




ACGCGTGAGCAATCTGCCTTTCAGTGGGGAATAACGTTCTGAAAAGAACGCTAATAC




CGCATAATATTGTTGAGCCGCATGGTTTGATAATCAAAGGATTTATTCGCTGAAAGAT




GAGCTCGCGTCCGATTAGATAGTTGGTGAGGTAACGGCTCACCAAGTCGACGATCGG




TAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCT




ACGGGAGGCAGCAGTGAGGGATATTGGTCAATGGGGGAAACCCTGAACCAGCAACG




CCGCGTGAGGGAAGACGGTTTTCGGATTGTAAACCTCTGTCCTCTGTGAAGATAATGA




CGGTAGCAGAGGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTA




GGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCTATGCAA




GTCAGGAGTGAAATCTATGGGCTTAACCCATAAACTGCTCTTGAAACTGTATAGCTTG




AGTGAAGTAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGGAATGCGTAGAGATCGGG




AGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTTTAACTGACGCTGAAGCACGAAA




GCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTA




CTAGGTGTGGGGGGTCTGACCCCCTCCGTGCCGGAGTTAACACAATAAGTAATCCAC




CTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA




GCAGTGGAGTATGTGGATTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGAC




ATCCCTCTGACCGCTCTAGAGATAGAGCTTCTCTTCGGAGCAGAGGTGACAGGTGGTG




CATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAA




CCCCTATGATTAGTTGCTACGCAAGAGCACTCTAATCAGACTGCCGTTGACAAAACGG




AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCCTCACACGT




ACTACAATGGCCGTTAACAACGGGATGCAATATAGCGATATGGAGCAAAACCCCAAA




AACGGTCTCAGTTCGGATTGTAGGCTGAAACTCGCCTGCATGAAGCTGGAATTGCTAG




TAATCGCAGATCAGAATGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCG




TCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGCCTAACCGTAAGGAGGGCGC




TGCCGAAGGTAGGGTTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAA




GGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 95)





GCF_900199495

Clostridium sp

TATTGAGAGTTTGATCCTGGCTCAGGATGAACGCTGGCGGCGTGCTTAACACATGCAA



SN20
GTCGAACGGAGTGCTCATGACGGAGTTTTCGGACAACGGATTGGGTTACTTAGTGGC




GGACGGGTGAGTAACGCGTGAGGAACCTGCCTCGGAGTGGGGAATAACATACCGAA




AGGTGTGCTAATACCGCATAATGCAGTTGGGTCGCATGACTCTGACTGCCAAAGATTT




ATCGCTCTGAGATGGCCTCGCGTCTGATTAGCTAGTTGGCGGGGTAACGGCCCACCAA




GGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGGCGCAAGCCTG




ACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTGTCAG




GGACGAAACAAATGACGGTACCTGACGAATAAGCCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGCGTG




TAGGCGGGACTGCAAGTCAGGTGTGAAAACCAGGGGCTCAACCTCTGGCCTGCATTT




GAAACTGTAGTTCTTGAGTGCTGGAGAGGCAATCGGAATTCCGTGTGTAGCGGTGAA




ATGCGTAGATATACGGAGGAACACCAGTGGCGAAGGCGGATTGCTGGACAGTAACTG




ACGCTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACG




CCGTAAACGATGGATACTAGGTGTGGGGGGACTGACCCCCTCCGTGCCGCAGTTAAC




ACAATAAGTATCCCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCAGGGCTTGACATCCTACTAACGAAGCAGAGATGCATTAGGTGCCCTTCGGGG




AAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTA




AGTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCACTCTAGCGA




GACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTT




ATGTCCTGGGCCACACACGTACTACAATGGTGGTTAACAGAGGGAAGCAATACCGCG




AGGTGGAGCAAATCCCTAAAAGCCATCCCAGTTCGGATTGCAGGCTGAAACCCGCCT




GTATGAAGTTGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCCGAAGTCCGT




AGCCTAACCGCAAGGAGGGCGCGGCCGAAGGTGGGTTCGATAATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 96)





GCF_900199635

Anaerotruncus sp

CAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAAG



AT3
TCGAACGGAGTGTTTTCACGGAAGTTTTCGGATGGAAGTGGTTACACTTAGTGGCGGA




CGGGTGAGTAACACGTGAGCAACCTGCCTTTCAGAGGGGGATAACAGTTGGAAACGA




CTGCTAATACCGCATGATATTACCGGGTCACATGGCCTGGCAATCAAAGGAGCAATC




CGCTGAAAGATGGGCTCGCGTCCGATTAGCCAGTTGGCGGGGTAATGGCCCACCAAA




GCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGCGAAAGCCTGA




TGCAGCGACGCCGCGTGAGGGAAGACGGTCTTCGGATTGTAAACCTCTGTCTTAGGG




GAAGAAAATGACGGTACCCTAAGAGGAAGCTCCGGCTAACTACGTGCCAGCAGCCGC




GGTAATACGTAGGGAGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTAGG




CGGGATGCCAAGTAGAATGTTAAATCCATCGGCTCAACTGGTGGCAGCGTTCTAAAC




TGGCGTTCTTGAGTGAGGTAGAGGCAGGCGGAATTCCTAGTGTAGCGGTGAAATGCG




TAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCCTTAACTGACGCT




GAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTA




AACGATGAATCCTAGGTGTGGGGGGACTGACACCTTCCGTGCCGCAGTTAACACAAT




AAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGG




GCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACC




AGGTCTTGACATCGGATGCATACCATAGAGATATGGGAAGCCCTTCGGGGCATCCAG




ACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCA




ACGAGCGCAACCCTTATTATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGTT




GACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGG




CTACACACGTACTACAATGGCACTCAAACAGAGGGAAGCGACACCGCGAGGTGAAG




CGGATCCCAAAAAAGTGTCTCAGTTCGGATCGCAGGCTGCAACCCGCCTGCGTGAAG




TCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTG




TACACACCGCCCGTCACACCATGGGAGTCGGTAACACCCGAAGCCAGTAGCCTAACC




GCAAGGAGGGCGCTGTCGAAGGTGGGATTGATGACTGGGGTGAAGTCGTAACAAGGT




AGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 97)





GCF_900291955

Anaeromassilibacillus

TTTTGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCAA



sp Marseille
GTCGAACGAAGCTTTGAGGAGCTTGCTTTTTAAAGCTTAGTGGCGGACGGGTGAGTA



P3876
ACGCGTGAGCAACCTGCCTCTCAGAGGGGGATAACGTTTTGAAAAGAACGCTAATAC




CGCATAACATATCGGAACCGCATGATTCTGATATCAAAGGAGCAATCCGCTGAGAGA




TGGGCTCGCGTCCGATTAGTTAGTTGGTGAGGTAACGGCTCACCAAGACTACGATCG




GTAGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACACGGCCCAGACTCC




TACGGGAGGCAGCAGTGGGGGATATTGCGCAATGGGGGAAACCCTGACGCAGCAAC




GCCGCGTGAAGGAAGAAGGTCTTCGGATTGTAAACTTCTTTTGTCAGGGACGAAGAA




AGTGACGGTACCTGACGAATAAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAAT




ACGTAGGGAGCGAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCGGCCG




AGCAAGTCAGTTGTGAAAACTATGGGCTTAACCCATAACGTGCAATTGAAACTGTCC




GGCTTGAGTGAAGTAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGAAATGCGTAGAG




ATCGGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTTTAACTGACGCTGAGGC




ACGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGA




TGATTACTAGGTGTGGGGGGACTGACCCCTTCCGTGCCGCAGTTAACACAATAAGTA




ATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCG




CACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTC




TTGACATCCTGAGAATCCTTAAGAGATTAGGGAGTGCCTTCGGGAACTCAGAGACAG




GTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGA




GCGCAACCCTTGCTATTAGTTGCTACGCAAGAGCACTCTAATAGGACTGCCGTTGACA




AAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGACCTGGGCTAC




ACACGTACTACAATGGCCATTAACAGAGGGAAGCAAAACCGCGAGGCAGAGCAAAC




CCCTAAAAATGGTCCCAGTTCGGATTGTAGGCTGCAACCCGCCTACATGAAGTTGGA




ATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACAC




ACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGTCTAACAGCAAT




GAGGACGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAACAAGGTAGCC




GTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 98)





STS00001

Gemmigerformicilis

TATAAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCA




AGTCGAACGGAACTTGAGAGAGCTTGCTTTTTCAAGTTTAGTGGCGAACGGGTGAGT




AACGCGTGAGTAACCTGCCCTGGAGTGGGGGACAACAGTTGGAAACGACTGCTAATA




CCGCATAAGCCCACGGCACCGCATGGTACTGAGGGAAAAGGATTTATTCGCTTCAGG




ATGGACTCGCGTCCAATTAGCTAGTTGGTGAGGTAACGGCCCACCAAGGCGACGATT




GGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGGCCCAGACTC




CTACGGGAGGCAGCAGTGGGGGATATTGCACAATGGGGGAAACCCTGATGCAGCGA




CGCCGCGTGGAGGAAGAAGGTTTTCGGATTGTAAACTCCTGTCGTACGGGACGATAA




TGACGGTACCGTACAAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAAAAC




GTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGCAGGCGGACCGG




CAAGTTGGAAGTGAAATCTATGGGCTCAACCCATAAATTGCTTTCAAAACTGCTGGCC




TTGAGTAGTGCAGAGGTAGGCGGAATTCCCGGTGTAGCGGTGGAATGCGTAGATATC




GGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCACCAACTGACGCTGAGGCTC




GAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATG




ATTACTAGGTGTTGGAGGATTGACCCCTTCAGTGCCGCAGTTAACACAATAAGTAATC




CACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCAC




AAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTG




ACATCCGATGCATAGTGCAGAGATGCATGAAGTCCTTCGGGACATCGAGACAGGTGG




TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGC




AACCCTTATTGCCAGTTACTACGCAAGAGGACTCTGGCGAGACTGCCGTTGACAAAA




CGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCTTTATGACCTGGGCTACACA




CGTACTACAATGGCGTTTAACAAAGAGAAGCAATACCGCGAGGTGGAGCAAAACTCA




AAAACAACGTCTCAGTTCAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATT




GCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACC




GCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTCCGTAGTCTAACCGCAAGGAG




GACGCGGCCGAAGGTAAAACTGGTGATTGGGGTGAAGTCGTAACAAGGTAGCCGTAT




CGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 99)





STS00002

Ruminococcaceae

TTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCAA



unnamed sp 1
GTCGAACGGAACTTCTTTAAAGGATTTCTTCGGAATGAATTTGATTAAGTTTAGTGGC




GGACGGGTGAGTAACGCGTGAGTAACCTGCCTCTAAGAGGGGAATAACATTCTGAAA




AGAATGCTAATACCGCATAATATATATTTATCGCATGGTAGATATATCAAAGATTTAT




CGCTTAGAGATGGACTCGCGTCCGATTAGTTAGTTGGTGAGGTAACGGCTCACCAAG




ACCGCGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGACACGG




CCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCGCAATGGGGGAAACCCTGA




CGCAGCAACGCCGCGTGAAGGATGAAGGTCTTCGGATTGTAAACTTCTTTTATTAAGG




ACGAAGAAAGTGACGGTACTTAATGAATAAGCTCCGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTA




GGCGGCTTTGCAAGTCAGATGTGAAATCTATGGGCTCAACCCATAGCCTGCATTTGAA




ACTGCAGAGCTTGAGTGAAGTAGAGGCAGGCGGAATTCCCCGTGTAGCGGTGAAATG




CGTAGAGATGGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCTTTAACTGACG




CTGAGGCACGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTG




TAAACGATGATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGGAGTTAACACA




ATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTGACGG




GGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTA




CCAGGTCTTGACATCCTACTAACGAGATAGAGATATGTTAGGTGCCCTTCGGGGAAA




GTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGT




CCCGCAACGAGCGCAACCCTTGCTATTAGTTGCTACGCAAGAGCACTCTAATAGGACT




GCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTTATGA




CCTGGGCTACACACGTACTACAATGGACATTAACAGAGGGAAGCAATACAGTGATGT




GGAGCAAACCCCTAAAAATGTTCTCAGTTCAGATTGCAGGCTGCAACCCGCCTGTATG




AAGATGGAATTGCTAGTAATCGCAGATCAGCATGCTGCGGTGAATACGTTCCCGGGC




CTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGTAGTCT




AACCGCAAGGAGGACGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTCGTAAC




AAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 100)





STS00003

Ruminococcaceae

GAACGGCCACATTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGG



unnamed sp 2
GGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACGCCGCGTGATTGAAGAAG




GCCTTCGGGTTGTAAAGATCTTTAATTGGGGACGAAAAATGACGGTACCCAAAGAAT




AAGCTCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGAGCAAGCGTTAT




CCGGATTTACTGGGTGTAAAGGGCGAGTAGGCGGGCTGGCAAGTTGGGAGTGAAATC




CCGGGGCTTAACCCCGGAACTGCTTTCAAAACTGCTGGTCTTGAGTGATGGAGAGGC




AGGCGGAATTCCGTGTGTAGCGGTGAAATGCGTAGATATACGGAGGAACACCAGTGG




CGAAGGCGGCCTGCTGGACATTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCAA




ACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGGATACTAGGTGTGGGAG




GTATTGACCCCTTCCGTGCCGGAGTTAACACAATAAGTATCCCACCTGGGGAGTACGG




CCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGT




GGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCTCTGACCGCC




CTAGAGATAGGGTTTCCCTTCGGGGCAGAGGTGACAGGTGGTGCATGGTTGTCGTCA




GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTACGGTTAGT




TGATACGCAAGATCACTCTAGCCGGACTGCCGTTGACAAAACGGAGGAAGGTGGGGA




CGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTACTACAATGGCAGT




CATACAGAGGGAAGCAAAACAGTGATGTGGAGCAAATCCCTAAAAGCTGTCCCAGTT




CAGATTGCAGGCTGCAACTCGCCTGCATGAAGTCGGAATTGCTAGTAATCGCGGATC




AGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGA




GAGCCGGTAATACCCGAAGTCCGTAGCCTAACCGCAAGGAGGGCGCGGCCGAAGGT




AGGACTGGTAATTAGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTG




GATCACCTCCTTT (SEQ ID NO: 101)





STS00004

Gemmigerformicilis

AAAAGGATTTATTCGCTTTAGGATGGACTCGCGTCCAATTAGCTAGTTGGTGAGGTAA




CGGCCCACCAAGGCGACGATTGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGG




ACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCACAATGG




GGGAAACCCTGATGCAGCGACGCCGCGTGGAGGAAGAAGGTTTTCGGATTGTAAACT




CCTGTCGTTAGGGACGATAATGACGGTACCTAACAAGAAAGCACCGGCTAACTACGT




GCCAGCAGCCGCGGTAAAACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGTGTAA




AGGGAGCGCAGGCGGGAAGACAAGTTGGAAGTGAAAACCATGGGCTCAACCCATGA




ATTGCTTTCAAAACTGTTTTTCTTGAGTAGTGCAGAGGTAGATGGAATTCCCGGTGTA




GCGGTGGAATGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGTCTACTGGGC




ACCAACTGACGCTGAGGCTCGAAAGCATGGGTAGCAAACAGGATTAGATACCCTGGT




AGTCCATGCCGTAAACGATGATTACTAGGTGTTGGGGGATTGACCCCCTCAGTGCCGC




AGTTAACACAATAAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAG




GAATTGACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCG




AAGAACCTTACCAGGTCTTGACATCCGATGCATAGCACAGAGATGTGTGAAATCCTTC




GGGACATCGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGT




TAAGTCCCGCAACGAGCGCAACCCTTATTGCCAGTTACTACGTTAAGAGGACTCTGGC




GAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCT




TTATGACCTGGGCTACACACGTACTACAATGGCGTTAAACAAAGAGAAGCAAGACCG




CGAGGTGGAGCAAAACTCAAAAACAACGTCTCAGTTCAGATTGCAGGCTGCAACTCG




CCTGCATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGT




TCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGCCGGGGGGACCCGAAGTC




GATAGTCTAACCGCAAGGAGGACGTCGCCGAAGGTAAAACTGGTGATTGGGGTGAAG




TCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID




NO: 102)





STS00005

Ruminococcaceae

GCTTAGTGGCGGACTGGTGAGTAACGCGTGAGGAACCTGCCTTTCAGAGGGGGACAA



unnamed sp 3
CAGTTGGAAACGACTGCTAATACCGCATGATGCATATTGACCGCATGGTCGGTATGTC




AAAGATTTATCGCTGAAAGATGGCCTCGCGTCTGATTAGCTTGTTGGTGAGGTAACGG




CCCACCAAGGCGACGATCAGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACT




GAGATACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGAC




GCAAGTCTGACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTC




TTTGACAGGGGAAGAGTAGAAGACGGTACCCTGAAAACAAGCCACGGCTAACTACGT




GCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAA




AGGGCGTGTAGCCGGGAAGGCAAGTCAGATGTGAAATCTGGAGGCTCAACCTCCAAA




CTGCATTTGAAACTGTCTTTCTTGAGTATCGGAGAGGTAATCGGAATTCCTTGTGTAG




CGGTGAAATGCGTAGATATAAGGAGGAACACCAGTGGCGAAGGCGGATTACTGGAC




GACAACTGACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGG




TAGTCCACGCTGTAAACGATCAATACTAGGTGTGCGGGGACTGACCCCCTGCGTGCC




GGAGTTAACACAATAAGTATTGCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAA




AGGAATTGACGGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAACG




CGAAGAACCTTACCAGGGCTTGACATCCTACTAATGAAGCAGAGATGCATTAAGTGC




CCTTCGGGGAAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGA




TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATTGTTAGTTGCTACGCAAGAGCA




CTCTAGCGAGACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATC




ATGCCCCTTATGTCCTGGGCCACACACGTAATACAATGGCGGTAAACAGAGGGATGC




AAAGCCGTGAGGTGGAGCGAACCCCTAAAAGCCGTCCCAGTTCGGATTGCAGGCTGC




AACCCGCCTGCATGAAGTCGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGA




ATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGGGAACACCC




GAAGCCCGTAGCCTAACAGCAATGAGGGCGCGGTCGAAGGTGGGTTCGATAATTGGG




GTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ




ID NO: 103)





STS00006

Ruminococcaceae

TATAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCA



unnamed sp 4
AGTCGAACGGAGCACCCCTGAATGAGGTTTCGGCCAAAGGAAGGGAATGCTTAGTGG




CGGACTGGTGAGTAACGCGTGAGGAACCTGCCTTTCAGAGGGGGACAACAGTTGGAA




ACGACTGCTAATACCGCATGACACATGAATGGGGCATCCCATTGATGTCAAAGATTT




ATCGCTGAAAGATGGCCTCGCGTCCCATTAGCTAGTAGGCGGGGTAACGGCCCACCT




AGGCGACGATGGGTAGCCGGACTGAGAGGTTGACCGGCCACATTGGGACTGAGATAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGGCAATGGACGCAAGTCT




GACCCAGCAACGCCGCGTGAAGGAAGAAGGCTTTCGGGTTGTAAACTTCTTTTGTCA




GGGAACAGTAGAAGAGGGTACCTGACGAATAAGCCACGGCTAACTACGTGCCAGCA




GCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGT




GCAGCCGGGCTGGCAAGTCAGGCGTGAAATCCCAGGGCTCAACCCTGGAACTGCGTT




TGAAACTGCTGGTCTTGAGTACCGGAGAGGTCATCGGAATTCCTTGTGTAGCGGTGAA




ATGCGTAGATATAAGGAAGAACACCAGTGGCGAAGGCGGATGACTGGACGGCAACT




GACGGTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCA




CGCTGTAAACGATCAATACTAGGTGTGCGGGGACTGACCCCCTGCGTGCCGCAGTTA




ACACAATAAGTATTGCACCTGGGGAGTACGATCGCAAGGTTGAAACTCAAAGGAATT




GACGGGGGCCCGCACAAGCGGTGGATTATGTGGTTTAATTCGAAGCAACGCGAAGAA




CCTTACCAGGGCTTGACATCCTACTAACGAAGTAGAGATACATTAGGTGCCCTTCGGG




GAAAGTAGAGACAGGTGGTGCATGGTTGTCGTCAGCT (SEQ ID NO: 104)





STS00007

Ruminococcaceae

TTTAGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCA



unnamed sp 5
AGTCGAACGGAGTTATTTAAATAGAACCCTTCGGGGTGACGTTTTAATAACTTAGTGG




CGGACGGGTGAGTAACGCGTGAGTAACCTGCCTTTCAGAGGGGGATAACGTCCTGAA




AAGGACGCTAATACCGCATGATATATTTGTGCCGCATGGTATGGATATCAAAGGAGC




AATCCGCTGGAAGATGGACTCGCGTCCGATTAGCTAGTTGGAGGGGTAACGGCCCAC




CAAGGCGACGATCGGTAGCCGGACTGAGAGGTTGAACGGCCACATTGGGACTGAGAC




ACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGGATATTGCGCAATGGGGGAAAC




CCTGACGCAGCAACGCCGCGTGAAGGAAGAAGGTTTTCGGATTGTAAACTTCTTTTCT




AAGGGACGAAGAAGTGACGGTACCTTAGGAATAAGCTCCGGCTAACTACGTGCCAGC




AGCCGCGGTAATACGTAGGGAGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTG




CGTAGGCGGCAATGCAAGTCAGATGTGAAATGCACGGGCTCAACCCGTGAGCTGCAT




TTGAAACTGTGTTGCTTGAGTGAGGTAGAGGCAGGCGGAATTCCCGGTGTAGCGGTG




AAATGCGTAGAGATCGGGAGGAACACCAGTGGCGAAGGCGGCCTGCTGGGCCTTAAC




TGACGCTGATGCACGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCA




CGCTGTAAACGATGATTACTAGGTGTGGGGGGTCTGACCCCTTCCGTGCCGCAGTTAA




CACAATAAGTAATCCACCTGGGGAGTACGGCCGCAAGGTTGAAACTCAAAGGAATTG




ACGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAAC




CTTACCAGGTCTTGACATCCAGCTAACGAAGTAGAGATACATTAGGTGCCCTTCGGGG




AAAGCTGAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTA




AGTCCCGCAACGAGCGCAACCCTTGCTGTTAGTTGCTACGCAAGAGCACTCTAACAG




GACTGCCGTTGACAAAACGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTT




ATGACCTGGGCTACACACGTACTACAATGGCCGTCAACAGAGGGAAGCAAGACCGCG




AGGTGGAGCAAACCCCCAAAAACGGCCCCAGTTCGGATTGTAGGCTGCAACCCGCCT




ACATGAAGTCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGGGAGCCGGTAATACCCGAAGTCAGT




AGCCTAACCGCAAGGAGGGCGCTGCCGAAGGTAGGATTGGCGACTGGGGTGAAGTC




GTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 105)





STS00008

Ruminococcaceae

ACGAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGTGCCTAACACATGCAAG



unnamed sp 6
TCGAACGAGAATCTTTGAACAGATCTTTTCGGAGTGACGTTCAAAGAGGAAAGTGGC




GGACGGGCGAGTAACGCGTGAGTAACCTGCCCATAAGAGGGGGATAATCCATGGAA




ACGTGGACTAATACCGCATATTGTAGTTAAGTTGCATGACTTGATTATGAAAGATTTA




TCGCTTATGGATGGACTCGCGTCAGATTAGATAGTTGGTGAGGTAACGGCTCACCAA




GTCAACGATCTGTAGCCGAACTGAGAGGTTGATCGGCCGCATTGGGACTGAGACACG




GCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCGCAATGGGGGCAACCCTG




ACGCAGCAACGCCGCGTGCAGGAAGAAGGTCTTCGGATTGTAAACTGTTGTCGCAAG




GGAAGAAGACAGTGACGGTACCTTGTGAGAAAGTCACGGCTAACTACGTGCCAGCAG




CCGCGGTAATACGTAGGTGACAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGCG




TAGGCGGACTGTCAAGTCAGTCGTGAAATACCGGGGCTTAACCCCGGGGCTGCGATT




GAAACTGACAGCCTTGAGTATCGGAGAGGAAAGCGGAATTCCTAGTGTAGCGGTGAA




ATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTTCTGGACGACAACTG




ACGCTGAGGCGCGAAAGTGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACA




CCGTAAACGATGGATACTAGGTGTAGGAGGTATCGACCCCTTCTGTGCCGCAGTTAAC




ACAATAAGTATCCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGA




CGGGGGCCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACC




TTACCTGGGCTTGACATCCCTGGAATCGAGTAGAGATACTTGAGTGCCTTCGGGAATC




AGGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTC




CCGCAACGAGCGCAACCCCTATTGTCAGTTGCCATCATTAAGTTGGGCACTCTGGCGA




GACTGCCGGTGACAAATCGGAGGAAGGTGGGGACGACGTCAAATCATCATGCCCCTT




ATGCCCAGGGCTACACACGTACTACAATGGCCGATAACAAAGTGCAGCGAAACCGTG




AGGTGGAGCGAATCACAAAACTCGGTCTCAGTTCAGATTGCAGGCTGCAACTCGCCT




GCATGAAGTTGGAATTGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTCC




CGGGCCTTGTACACACCGCCCGTCACACCATGAGAGTCGATAACACCCGAAGCCTGT




GAGCTAACCTTTAGGAGGCAGCAGTCGAAGGTGGGGTTGATGATTGGGGTGAAGTCG




TAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 106)





STS00009

Ruminococcaceae

ATTAAGAGTTTGATCCTGGCTCAGGACGAACGCTGGCGGCGCGCCTAACACATGCAA



unnamed sp 7
GTCGAACGAAGTTTCATAACGGAAGTTTTCGGATGGAAGATATGAAACTTAGTGGCG




GACGGGTGAGTAACACGTGAGCAACCTGCCTTTTAGAGGGGGATAACGTTTGGAAAC




GAACGCTAATACCGCATAACGTAGTCGATCGGCATCGATTGACTACCAAAGGAGCAA




TCCGCTGAAAGATGGGCTCGCGTCCGATTAGATAGTTGGCGGGGTAACGGCCCACCA




AGTCGACGATCGGTAGCCGGACTGAGAGGTTGATCGGCCACATTGGGACTGAGACAC




GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCT




GATGCAGCGACGCCGCGTGAGGGAAGAAGGTTTTCGGATTGTAAACCTCTGTCCTTG




GTGACGATAATGACGGTAGCCAAGGAGGAAGCCACGGCTAACTACGTGCCAGCAGCC




GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGCGTA




GGCGGGAAAGCAAGTTGAATGTTTAAACTATCGGCTCAACCGATAATCGCGTTCAAA




ACTGTTTTTCTTGAGTGAAGTAGAGGTAGGCGGAATTCCTAGTGTAGCGGTGAAATGC




GTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCCTACTGGGCTTTAACTGACGC




TGAGGCTCGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGT




AAACGATGATTACTAGGTGTGGGGGGATCAACCCTTCCGTGCCGCAGCAAACGCAAT




AAGTAATCCACCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGG




ACCCGCACAAGCAGTGGAGTATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACC




AGGTCTTGACATCCAACGAACTCGCTAGAGATAGCAAGGTGCCCTTCGGGGAGCGTT




GAGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCC




GCAACGAGCGCAACCCTTACTGATAGTTGCTACGCAAGAGCACTCTATCGGGACTGC




CGTTGACAAAACGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACC




TGGGCTACACACGTACTACAATGGCTATTAACAACGGGAAGCGAAGAGGTGACTCGG




AGCCAATCCAAAAAAATAGTCTCAGTTCGGATTGCAGGCTGCAACTCGCCTGCATGA




AGCCGGAATTGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGTC




TTGTACACACCGCCCGTCACACCATGAGAGTTGGCAACACCCGAAGTCAGTAGTCTA




ACCGCAAGGAGGACGCTGCCGAAGGTGGGGTCGATGATTGGGGTGAAGTCGTAACA




AGGTAGCCGTATCGGAAGGTGCGGCTGGATCACCTCCTTT (SEQ ID NO: 107)









REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

  • Callahan et al. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581-583.
  • Edgar, R. C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinforma. Oxf. Engl. 26, 2460-2461.
  • Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996-998.
  • Frankel et al. 2017. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia. 2017 October; 19(10):848-855. doi: 10.1016/j.neo.2017.08.004.
  • Gopalakrishnan et al. 2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science January 5; 359(6371):97-103. doi: 10.1126/science.aan4236.
  • Routy et al 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018 Jan. 5; 359 (6371): 91-97. doi: 10.1126/science.aan3706.
  • Matson et al. 2018. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. January 5; 359(6371):104-108. doi: 10.1126/science.aao3290.
  • Quast et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 (D1): D590-D596. doi: 10.1093/nar/gks1219.

Claims
  • 1. A therapeutic composition comprising an effective amount of an isolated population of bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 2. A therapeutic composition comprising an effective amount of an isolated population of bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 3. The therapeutic composition of claim 2, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 4. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more genera within the family Ruminococcaceae, e.g., the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof.
  • 5. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 6. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof.
  • 7. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 8. A therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 9. A therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 10. A therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 11. A therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.
  • 12. The therapeutic composition of any of claims 4-7, wherein the therapeutic composition comprises bacteria belonging to two or more genera.
  • 13. The therapeutic composition of any of claims 4-7, wherein the therapeutic composition comprises bacteria belonging to three or more genera.
  • 14. The therapeutic composition of any of claims 4-7, wherein the therapeutic composition comprises bacteria belonging to four or more genera.
  • 15. The therapeutic composition of any of claims 5-7, wherein the therapeutic composition comprises bacteria belonging to five or more genera.
  • 16. The therapeutic composition of any of claims 8-11, wherein the therapeutic composition comprises bacteria belonging to two or more species.
  • 17. The therapeutic composition of any of claims 8-11, wherein the therapeutic composition comprises bacteria belonging to three or more species.
  • 18. The therapeutic composition of any of claims 8-11, wherein the therapeutic composition comprises bacteria belonging to four or more species.
  • 19. The therapeutic composition of any of claims 8-11, wherein the therapeutic composition comprises bacteria belonging to five or more species.
  • 20. A therapeutic composition comprising an effective amount of a purified population of bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 21. A therapeutic composition comprising an effective amount of a purified population of bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 22. The therapeutic composition of claim 21, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 23. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof.
  • 24. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 25. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof.
  • 26. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 27. A therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 28. A therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacteriumbiforme, Parabacteroides distasonis or combinations thereof.
  • 29. A therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacteriumbiforme, Parabacteroides distasonis or combinations thereof.
  • 30. A therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.
  • 31. The therapeutic composition of any of claims 23-26, wherein the therapeutic composition comprises bacteria belonging to two or more genera.
  • 32. The therapeutic composition of any of claims 23-26, wherein the therapeutic composition comprises bacteria belonging to three or more genera.
  • 33. The therapeutic composition of any of claims 23-26, wherein the therapeutic composition comprises bacteria belonging to four or more genera.
  • 34. The therapeutic composition of any of claims 24-26, wherein the therapeutic composition comprises bacteria belonging to five or more genera.
  • 35. The therapeutic composition of any of claims 27-30, wherein the therapeutic composition comprises bacteria belonging to two or more species.
  • 36. The therapeutic composition of any of claims 27-30, wherein the therapeutic composition comprises bacteria belonging to three or more species.
  • 37. The therapeutic composition of any of claims 27-30, wherein the therapeutic composition comprises bacteria belonging to four or more species.
  • 38. The therapeutic composition of any of claims 27-30, wherein the therapeutic composition comprises bacteria belonging to five or more species.
  • 39. The therapeutic composition of any one of claims 1-38, further comprising an anticancer agent.
  • 40. The therapeutic composition of claim 39, wherein the anticancer agent is a checkpoint inhibitor.
  • 41. The therapeutic composition of claim 40, wherein the checkpoint inhibitor is selected from an anti-PD-1 antibody, an anti-CTLA-4 antibody, an anti-PD-L1 antibody or combinations thereof.
  • 42. The therapeutic composition of claim 41, wherein the checkpoint inhibitor is selected from pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, ipilimumab, pidilizumab, AMP-224, AMP-514, STI-A1110, TSR-042, RG-7446, BMS-936559, BMS-936558, MK-3475, CT 011, MPDL3280A, MEDI-4736, MSB-0020718C, AUR-012, LAG-3, OX40 inhibitors, OX40L inhibitors, TIGIT inhibitors or STI-A1010.
  • 43. The therapeutic composition of claim 39, wherein the anticancer agent is cyclophosphamide.
  • 44. The therapeutic composition of any of claims 1-43, wherein each of the isolated populations of bacteria is present in the composition at a concentration of at least about 1×102 viable colony forming units.
  • 45. The therapeutic composition of any of claims 1-44, wherein each isolated population of bacteria is present in the composition at a concentration of about 1×102 to 1×109 viable colony forming units.
  • 46. The therapeutic composition of any of claims 1-45, wherein a fraction of the isolated population of bacteria comprises a spore-forming bacteria.
  • 47. The therapeutic composition of any of claims 1-45, wherein a fraction of the isolated population of bacteria is in spore form.
  • 48. The therapeutic composition of any of claims 1-47, wherein the composition further comprises a pharmaceutically acceptable excipient.
  • 49. The therapeutic composition of any of claims 1-47, wherein the composition is formulated for delivery to the intestine.
  • 50. The therapeutic composition of any of claims 1-47, wherein the composition is enterically coated.
  • 51. The therapeutic composition of any of claims 1-47, wherein the composition is formulated for oral administration.
  • 52. The therapeutic composition of claim 51, wherein the composition is formulated into a food or beverage.
  • 53. The therapeutic composition of any of claims 1-52, wherein the composition can reduce the rate of tumor growth in an animal model.
  • 54. The composition of any one of claims 1-53, wherein the composition is formulated for multiple administrations.
  • 55. The composition of any one of claims 1-54, wherein each of the populations of bacteria is present in the composition at a concentration of at least 1×103 viable CFU.
  • 56. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 57. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 58. The method of claim 57, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 59. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof.
  • 60. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 61. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof.
  • 62. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 63. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 64. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 65. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 66. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of an isolated population of bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.
  • 67. The method of any of claims 59-62, wherein the therapeutic composition comprises bacteria belonging to two or more genera.
  • 68. The method of any of claims 59-62, wherein the therapeutic composition comprises bacteria belonging to three or more genera.
  • 69. The method of any of claims 59-62, wherein the therapeutic composition comprises bacteria belonging to four or more genera.
  • 70. The method of any of claims 60-62, wherein the therapeutic composition comprises bacteria belonging to five or more genera.
  • 71. The method of any of claims 63-66, wherein the therapeutic composition comprises bacteria belonging to two or more species.
  • 72. The method of any of claims 63-66, wherein the therapeutic composition comprises bacteria belonging to three or more species.
  • 73. The method of any of claims 63-66, wherein the therapeutic composition comprises bacteria belonging to four or more species.
  • 74. The method of any of claims 63-66, wherein the therapeutic composition comprises bacteria belonging to five or more species.
  • 75. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 76. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 77. The method of claim 76, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 78. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof.
  • 79. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 80. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof.
  • 81. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 82. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 83. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 84. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 85. A method of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition comprising an effective amount of a purified population of bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.
  • 86. The method of any of claims 78-81, wherein the therapeutic composition comprises bacteria belonging to two or more genera.
  • 87. The method of any of claims 78-81, wherein the therapeutic composition comprises bacteria belonging to three or more genera.
  • 88. The method of any of claims 78-81, wherein the therapeutic composition comprises bacteria belonging to four or more genera.
  • 89. The method of any of claims 79-81, wherein the therapeutic composition comprises bacteria belonging to five or more genera.
  • 90. The method of any of claims 82-85, wherein the therapeutic composition comprises bacteria belonging to two or more species.
  • 91. The method of any of claims 82-85, wherein the therapeutic composition comprises bacteria belonging to three or more species.
  • 92. The method of any of claims 82-85, wherein the therapeutic composition comprises bacteria belonging to four or more species.
  • 93. The method of any of claims 82-85, wherein the therapeutic composition comprises bacteria belonging to five or more species.
  • 94. The method of any one of claims 56-93, further comprising administering an anticancer agent to the subject.
  • 95. The method of claim 94, wherein the anticancer agent is a checkpoint inhibitor.
  • 96. The method of claim 95, wherein the checkpoint inhibitor is selected from an anti-PD-1 antibody, an anti-CTLA-4 antibody, an anti-PD-L1 antibody or combinations thereof.
  • 97. The method of claim 95, wherein the checkpoint inhibitor is selected from pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, ipilimumab, pidilizumab, AMP-224, AMP-514, STI-A1110, TSR-042, RG-7446, BMS-936559, BMS-936558, MK-3475, CT 011, MPDL3280A, MEDI-4736, MSB-0020718C, AUR-012, LAG-3, OX40 inhibitors, OX40L inhibitors, TIGIT inhibitors, STI-A1010 or combinations thereof.
  • 98. The method of claim 94, wherein the anticancer agent is cyclophosphamide.
  • 99. The method of any of claims 56-98, wherein the isolated population of bacteria is administered at a concentration of at least about 1×102 viable colony forming units.
  • 100. The method of any of claims 56-98, wherein the isolated population of bacteria is administered at a concentration of at a concentration of about 1×102 to 1×109 viable colony forming units.
  • 101. The method of any of claims 56-100, wherein a fraction of the isolated population of bacteria comprises a spore-forming bacteria.
  • 102. The method of any of claims 56-100, where a fraction of the isolated population of bacteria is in spore form.
  • 103. The method of any of claims 56-102, wherein the composition further comprises a pharmaceutically acceptable excipient.
  • 104. The method of any of claims 56-103, wherein the composition is formulated for delivery to the intestine.
  • 105. The method of method of any of claims 56-103, wherein the composition is enterically coated.
  • 106. The method of any of claims 56-102, wherein the composition is formulated for oral administration.
  • 107. The method of claim 106, wherein the composition is formulated into a food or beverage.
  • 108. The method of any of claims 56-107, wherein the mammalian subject is a human.
  • 109. The method of any of claims 56-107, wherein the cancer is selected from metastatic melanoma, melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, Merkel cell skin cancer (Merkel cell carcinoma), or Hodgkin lymphoma.
  • 110. The method of any of claims 56-109, wherein prior to administration of the isolated population of bacteria the subject is subjected to antibiotic treatment and/or a bowel cleanse.
  • 111. The method of any one of claims 56-110, wherein the subject has previously been treated for the cancer.
  • 112. The method of claim 111, wherein the subject has been determined to be a non-responder to the previous treatment.
  • 113. The method of claim 111 or 112, wherein the subject has been determined to have a toxic response to the previous treatment.
  • 114. The method of any one of claims 111-113, wherein the previous treatment comprises immune checkpoint blockade monotherapy or immune checkpoint blockade combination therapy.
  • 115. The method of any one of claims 56-114, wherein the cancer is recurrent cancer.
  • 116. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the genera of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 117. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the genera of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 118. The method of claim 117, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 119. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the genera of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof.
  • 120. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the genera of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 121. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the genera of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof.
  • 122. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the genera of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 123. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the species of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 124. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the species of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 125. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the species of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 126. A method of identifying a mammalian subject as a candidate for immune checkpoint therapy in combination with adjuvant microbiome therapy, the method comprising: a) obtaining a microbiome sample from the subject,b) determining the prevalence of the species of bacteria in the microbiome sample, andc) determining that the subject is a candidate for the therapy if the microbiome sample comprises bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof.
  • 127. The method of any of claims 116-126, wherein the subject is determined to be a candidate for immune checkpoint inhibitor therapy.
  • 128. The method of any one of claims 116-127, wherein the wherein the immune checkpoint therapy comprises immune checkpoint blockade monotherapy or immune checkpoint blockade combination therapy.
  • 129. The method of any of claims 116-126, wherein the subject is determined to be a candidate for cyclophosphamide therapy.
  • 130. The method of any of claims 116-129, wherein the mammalian subject is a human.
  • 131. The method of any of claims 116-130, wherein the cancer is selected from metastatic melanoma, melanoma of the skin, non-small cell lung cancer, kidney cancer, bladder cancer, head and neck cancers, Merkel cell skin cancer (Merkel cell carcinoma), or Hodgkin lymphoma.
  • 132. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to the genera Ruminococcus, Gemmiger, Faecalibacterium and Subdoligranulum.
  • 133. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter and Parabacteroides.
  • 134. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter and Parabacteroides.
  • 135. A therapeutic composition comprising an effective amount of an isolated population of bacteria species Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacteriumbiforme and Parabacteroides distasonis.
  • 136. A therapeutic composition comprising an effective amount of an isolated population of bacteria species Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus and Parabacteroides distasonis.
  • 137. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11.
  • 138. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11.
  • 139. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to three or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11.
  • 140. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to four or more of the species listed in Tables 1A, 1B, 2A, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10 or 11.
  • 141. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 1A.
  • 142. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 1B.
  • 143. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 10.
  • 144. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the species listed in Table 11.
  • 145. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 1A.
  • 146. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 1B.
  • 147. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 10.
  • 148. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to two or more of the species listed in Table 11.
  • 149. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the species in a clade selected from clade 101, clade 14, clade 126, clade 61, clade 125, clade 135, or combinations thereof.
  • 150. A therapeutic composition comprising an effective amount of purified population of bacteria belonging to one or more of the species in a clade selected from clade 101, clade 14, clade 126, clade 61, clade 125, clade 135, or combinations thereof.
  • 151. A therapeutic composition comprising an effective amount of an isolated population of bacteria belonging to one or more of the species in the phylogenetic tree of FIG. 6.
  • 152. A therapeutic composition comprising an effective amount of a purified population of bacteria belonging to one or more of the species in the phylogenetic tree of FIG. 6.
  • 153. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 154. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 155. The method of claim 154, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 156. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 157. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the prevalence and/or abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more of the bacteria species in one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135.
  • 158. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 159. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises bacterial species that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 160. The method of claim 159, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 161. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 162. A method of identifying a mammalian subject as a donor whose feces are useful for fecal matter transfer, the method comprising: a) obtaining a microbiome sample from the potential donor,b) determining the abundance of the species of bacteria in the microbiome sample, andc) determining that the donor's feces is useful for fecal matter transfer if the microbiome sample comprises one or more of the bacteria species in one or more of clade 101, clade 14, clade 126, clade 61, clade 125 or clade 135.
  • 163. A therapeutic composition derived from fecal matter from a donor identified using the method of any one of claims 153-162.
  • 164. The therapeutic composition of claim 163, further comprising a pharmaceutically acceptable excipient.
  • 165. The therapeutic composition of claim 163, wherein the therapeutic composition comprises bacteria that are in vegetative and/or spore form.
  • 166. The therapeutic composition of claim 163, wherein the therapeutic composition further comprises a checkpoint inhibitor.
  • 167. The therapeutic composition of claim 166, wherein the checkpoint inhibitor is selected from anti-PD-1 antibody, an anti-CTLA-4 antibody, an anti-PD-L1 antibody or combinations thereof.
  • 168. The therapeutic composition of claim 166, wherein the checkpoint inhibitor is selected from pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab, ipilimumab, pidilizumab, AMP-224, AMP-514, STI-A1110, TSR-042, RG-7446, BMS-936559, BMS-936558, MK-3475, CT 011, MPDL3280A, MEDI-4736, MSB-0020718C, AUR-012, LAG-3, OX40 inhibitors, OX40L inhibitors, TIGIT inhibitors, STI-A1010 or combinations thereof.
  • 169. A of treating a cancer in a mammalian subject comprising administering to the subject a therapeutic composition of any one of claims 163-168.
  • 170. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii.
  • 171. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 172. The method of claim 171, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 173. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof.
  • 174. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 175. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof.
  • 176. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof.
  • 177. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof.
  • 178. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Alistipes senegalensis, Barnesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 179. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof.
  • 180. A method of treating cancer comprising administering an anticancer treatment to a subject determined to have a microbiome sample comprising bacteria species selected from Barnesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof178. A method comprising evaluating a microbiome profile for bacteria that are phylogenetic descendants of the most recent common ancestor (MRCA) of Faecalibacterium prausnitzii and Flavonifractor plautii in a sample from a subject.
  • 181. A method comprising evaluating a microbiome profile for bacteria that have 16S rDNA sequence identity of at least 94.5% to 16S rDNA sequences of species belonging to the family Ruminococcaceae in a sample from a subject.
  • 182. The method of claim 181, wherein the bacteria have 16S rDNA sequence identity of at least 98.7% to 16S rDNA sequences of species belonging to the family Ruminococcaceae.
  • 183. A method comprising evaluating a microbiome profile for bacteria belonging to one or more of the genera Ruminococcus, Gemmiger, Faecalibacterium, Subdoligranulum or combinations thereof in a sample from the subject.
  • 184. A method comprising evaluating a microbiome profile for bacteria belonging to one or more of the genera Alistipes, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium, Eubacterium, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof in a sample from a subject.
  • 185. A method comprising evaluating a microbiome profile for bacteria belonging to one or more of the genera Alistipes, Bacteroides, Blautia, Clostridium, Eubacterium, Parabacteroides or combinations thereof in a sample from a subject.
  • 186. A method comprising evaluating a microbiome profile for one or more of the genera Barnesiella, Bifidobacterium, Blautia, Erysipelotrichaceae, Odoribacter, Parabacteroides or combinations thereof in a sample from a subject.
  • 187. A method comprising evaluating a microbiome profile for bacteria species selected from Eubacterium siraeum, Clostridium leptum (GCF_000154345), Anaerotruncus colihominis, Subdoligranulum variabile, Clostridium methylpentosum, Pseudoflavonifractor capillosus, Ethanoligenens harbinense (GCF_000178115), Ruminococcus albus (GCF_000179635), Ruminococcus champanellensis (GCF_000210095), Flavonifractor plautii, Oscillibacter valericigenes, Oscillibacter ruminantium, Clostridium sporosphaeroides, Ruminococcus callidus, Ruminococcus flavefaciens (GCF_000518765), Clostridium jeddahense, Clostridium viride, Ruminococcus albus (GCF_000621285), Agathobaculum desmolans, Ruminococcus bicirculans, Ruthenibacterium lactatiformans, Clostridium phoceensis, Intestinimonas massiliensis, Anaeromassilibacillus senegalensis, Ruminococcus champanellensis (GCF_001312825), Bittarella massiliensis, Butyricicoccus porcorum, Acutalibacter muris, Clostridium leptum (GCF_002556665), Ruminococcus bromii (GCF_002834225, Monoglobus pectinilyticus, Ethanoligenens harbinense (GCF_003020045), Neglecta timonensis, Anaerotruncus rubiinfantis, Massilioclostridium coli, Angelakisella massiliensis, Sporobacter termitidis, Negativibacillus massiliensis, Massilimaliae massiliensis, Intestinibacillus massiliensis, Eubacterium coprostanoligenes, Provencibacterium massiliense, Papillibacter cinnamivorans, Clostridium merdae, Marasmitruncus massiliensis, Massilimaliae timonensis, Pygmaiobacter massiliensis, Clostridium minihomine, Neobitarella massiliensis, Faecalibacterium prausnitzii, Ruminococcus flavefaciens (GCF_000174895), Ruminococcaceae bacterium D16, Ruminococcus albus (GCF_000178155), Anaerotruncus sp_G3 2012, Oscillibacter sp 1 3, Clostridiales bacterium NK3B98, Oscillibacter sp KLE 1728, Firmicutes bacterium ASF500, Ruminococcus sp FC2018, Ruminococcus sp NK3A76, Ruminococcus flavefaciens (GCF_000701945), Ruminococcus sp HUN007, Bacterium MS4, Intestinimonas butyriciproducens, Oscillibacter sp ER4, Candidatus Soleaferrea massiliensis, Clostridium cellulosi, Clostridia bacterium UC5 1 2F7, Clostridia bacterium UC5 1 1E11, Clostridia bacterium UC5 1 1D1, Fournierella massiliensis, Clostridium sp W14A, Ruminococcaceae bacterium CPB6, Flavonifractor sp An92, Flavonifractor sp An91, Flavonifractor sp An306, Anaerofilum sp An201, Anaeromassilibacillus sp An200, Pseudoflavonifractor sp An187, Pseudoflavonifractor sp An184, Anaeromassilibacillus sp An172, Gemmiger sp An120, Flavonifractor sp An100, Flavonifractor sp An10, Eubacteriaceae bacterium CHKCI005, Ruminococcaceae bacterium P7, Ruminococcus bromii (GCF_900101355), Ruminococcus sp YE78, Ruminococcaceae bacterium FB2012, Ruminococcaceae bacterium Marseille P2935, Hydrogenoanaerobacterium saccharovorans, Ruminococcaceae bacterium D5, Oscillibacter sp PC13, Pseudoflavonifractor sp Marseille P3106, Neglecta sp Marseille P3890, Clostridium sp SN20, Anaerotruncus sp AT3, Anaeromassilibacillus sp Marseille P3876, Gemmiger formicilis (STS00001), Ruminococcaceae unnamed sp 1 (STS00002), Ruminococcaceae unnamed sp 2 (STS00003), Gemmiger formicilis (STS00004), Ruminococcaceae unnamed sp 3 (STS00005), Ruminococcaceae unnamed sp 4 (STS00006), Ruminococcaceae unnamed sp 5 (STS00007), Ruminococcaceae unnamed sp 6 (STS00008), Ruminococcaceae unnamed sp 7 (STS00009) or combinations thereof in a sample from a subject.
  • 188. A method comprising evaluating a microbiome profile for bacteria species selected from Alistipes senegalensis, Bamesiella intestinihominis, Bacteroides dorei, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium_SC64, Clostridium innocuum, Odoribacter splanchnicus, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof in a sample from a subject.
  • 189. A method comprising evaluating a microbiome profile for bacteria species selected from Alistipes senegalensis, Bacteroides dorei, Blautia_SC109, Clostridium_SC64, Eubacterium_biforme, Parabacteroides distasonis or combinations thereof in a sample from a subject.
  • 190. A method comprising evaluating a microbiome profile for bacteria species selected from Bamesiella intestinihominis, Bifidobacterium bifidum, Bifidobacterium longum, Blautia_SC102, Blautia_SC109, Clostridium innocuum, Odoribacter splanchnicus, Parabacteroides distasonis or combinations thereof in a sample from a subject.
  • 191. The method of any one of claims 181-190, wherein the method further comprises comparing the microbiome profile to a control microbiome.
  • 192. The method of claim 191, wherein the control microbiome comprises a microbiome sample from a subject determined to be a responder to an anticancer treatment.
  • 193. The method of claim 191, wherein the control microbiome comprises a microbiome sample from a subject determined to be a non-responder to an anticancer treatment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase application under 35 U.S.C. § 371 of International Application No. PCT/US 2019/024519, filed Mar. 28, 2019, which claims priority to U.S. Patent Application No. 62/649,453, filed Mar. 28, 2018, and 62/818,601, filed Mar. 14, 2019, each of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/024519 3/28/2019 WO 00
Provisional Applications (2)
Number Date Country
62818601 Mar 2019 US
62649453 Mar 2018 US