Berkow et al. “Merck Manual of Diagnosis and Therapy”, Merck Sharp & Dohme Research Laboratories, pp. 475-477, 1992.* |
File CAplus on STN, No. 122:314463. Hidaka et al. JP 06293730. Abstract only, 1995.* |
File CAplus on STN, No. 114:159690. Yasugawa et al. ‘Autophosphorylation of Calcium/Calmodulin Dependent Protein Kinase II: Effects on Interaction Between Enzyme and Substrate’, Jpn. J. Pharmacology, vol. 55, No. 2, pp. 263-274. abstract only, 1991.* |
File CAplus on STN, No. 109:142429. Meerson et al. ‘Prevention of Ischemic and Reperfusion Arrhythmias with Calmodulin Blocker, Trifluperazine,’ Kardiologiya. vol. 28, No. 5, pp. 91-95, 1988.* |
Berkow et al. Merck Manual of Diagnosis and Therapy, Merck Sharp & Dohme Research Laboratories, pp. 479-480, 1992.* |
Ishikawa et al. ‘Effect of New CA+ 2-Calmodulin-Dependent Protein Kinase II Inhibitor on Gaba Release in Cerebrospinal Fluid of the Rat’, J. of Pharm. and Exp. Ther. vol. 254, No. 2, pp. 598-602, 1990.* |
File Caplus on STN, DN No. 121:277477. Okakazi et al. ‘KN-62, a specific Ca+ /calmodlulin-dependent protien kinase inhibitor, reversibly depresses teh rate of beating of cultured fetal mouse cardiac myocytes’ J. Pharmacol. Exp. Thr. vol. 270, No. 3, pp., 1994.* |
Berkow et al. Merck Manual of Diagnosis and Tehrapy, Merck Sharp & Dhome Research Laboratories pp. 460-475 (1992).* |
File Medline on STN. AN No. 77049877. Matsubara et al. “Experimental Anti Arrhythmic Effects of a New Beta Adrnergic Receptor Agent, dl-I-(tert. butylamino)-3-[(2-propinyloxy)phenoxy]2-propanol hydrochloride (dl Ko 1400-Cl). ” Nippon Yakurigaku Zasshi. Folia pharmacologica Japonica (Jul. 1976) vol. 72, No. 5, pp. 557-571. Abstract only.* |
File Toxlit on STN. DN No. CA-114-156919Q. Cheng et al. “Effects of a New Intracellular Calcium Antagonist, KT-362, on Delayed Afterdepolarization oand Triggered Activity in Guinea Pig Ventricular Myocardium” Yakuri to Chiryo. vol. 18, Supp. 13, p. s5313-s3514. Abstract Only. (1990).* |
Ellenbogen et al. “Safety and Efficacy of Intravenous Diltiazem in Atrial Fibrillation or Atrial Flutter”, The American Journal of Cardiology 75:45-49 (Jan. 1, 1995). |
Goldenberg et al. “Intravenous Diltiazem for the Treatment of Patients with Atrial Fibrillation or Flutter and Moderate to Severe Congestive Heart Failure” The American Journal of Cardiology 74:884-889 (Nov. 1, 1994). |
Ishida et al. “Inactivation of Ca2+/Calmodulin-Dependent Protein Kinase II by Ca 2+/Calmodulin” Journal of Biochemistry 115(6):1075-1082 (1994). |
Ishikawa et al. “Effect of a New Ca2+-Calmodulin-Dependent Protein Kinase II Inhibitor on GABA Release in Cerebrospinal Fluid of the Rat” The Journal of Pharmacology and Experimental Therapeutics 254(2):598-602 (1990). |
Levin et al. “Mechanism by Which Psychotropic Drugs Inhibit Adenosine Cyclic 3′,5′-Monophosphate Phosphodiesterase of Brain” Molecular Pharmacology 12:581-589 (1976). |
Okazaki et al. “KN-62, a Specific Ca++/ Calmodulin-Dependent Protein Kinase Inhibitor, Reversibly Depresses the Rate of Beating of Cultured Fetal Mouse Cardiac Myocytes ” The Journal of Pharmacology and Experimental Therapeutics 270(3):1319-1324 (1994). |
Prozialeck et al. “Photoaffinity Labeling of Calmodulin by Phenothiazine Antipsychotics” Molecular Pharmacology 19:264-269 (1981). |
Rich et al. “Substrate-directed Function of Calmodulin in Autophosphorylation of Ca2+/Calmodulin-dependent Protein Kinase II” The Journal of Biological Chemistry 273(43):28424-28429 (Oct. 23, 1998). |
Roufogalis “Phenothiazine Antagonism of Calmodulin: A Structurally-Nonspecific Interaction” Biochemical and Biophysical Research Communications 98(3):607-613 (Feb. 12, 1981). |
Schaffer et al. “Phenothiazine Protection in Calcium Overload-Induced Heart Failure: A Possible Role For Calmodulin” The American Physiological Society H328-H334 (1983). |
Tokumitsu et al. “KN-62, 1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine, a Specific Inhibitor of Ca2+/Calmodulin-dependent Protein Kinase II” The Journal of Biological Chemistry 265(8):4315-4320 (Mar. 15, 1990). |
Waxman et al. “Verapamil for Control of Ventricular Rate in Paroxysmal Supraventricular Tachycardia and Atrial Fibrillation or Flutter” Annals of Internal Medicine 94(1):1-6 (1/81). |
Weiss et al. “Interaction of Calmodulin with Psychotropic Drugs: Neuropsychopharmacological Implications” Psychopharmacology Bulletin 19(3)378-386 (1983). |
Weiss et al. “Interaction of Drugs with Calmodulin: Biochemical, Pharmacological and Clinical Implications” Biochemical Pharmacology 31(13):2217-2226 (1982). |
Weiss et al. “Mechanism for Selectively Inhibiting the Activation of Cyclic Nucleotide Phosphodiesterase and Adenylate Cyclase by Antipsychotic Agents” Advances in Cyclic Nucleotide Research 9:285-303 (1978). |
Anderson et al., “Multifunctional Ca2+/Calmodulin-Dependent Protein Kinase Mediates Ca2+/Induced Enhancement of the L-type Ca2+Current in Rabbit Ventricular Myocytes,” Circ. Res., 75:854-861 (1994). |
Berkow et al., “Merck Manual of Diagnosis and Therapy,” Merck Sharp & Dohme Research Laboratories, 439-442 (1987). |
Braun et al., “The Multifunctional Calcium/Calmodulin-Dependent Protein Kinase: From Form to Function,” Annual Review of Physiology, 57:417-445 (1995). |
Braun et al., “A Non-Selective Cation Current Activated via the Multifunctional Ca2+-Calmodulin-Dependent Protein Kinase in Human Epithelial Cells,” Journal of Physiology, 488:37-55 (1995). |
De Koninck et al., “Sensitivity of CaM Kinase II to the Frequency of Ca2+ Oscillations,” Science, 279:227-230 (1998). |
Lee et al., “Effect of Ischemia on Calcium-Dependent Fluorescence in Rabbit Hearts Containing Indo 1,” Circulation, 78:1047-1059 (1988). |
Li et al., “The Effect of Ca2+-Calmodulin-Dependent Protein Kinase II on Cardiac Excitation-Contraction Coupling in Ferret Ventricular Myocytes,” Journal of Physiology, 501:17-31 (1997). |
Sumi et al., “The Newly Synthesized Selective Ca2+/Calmodulin Dependent Protein Kinase II Inhibitor KN-93 Reduces Dopamine Contents in PC12h Cells,” Biochem. Biophys. Res. Comm., 181:968-975 (1991). |
Thandroyen et al., “Intracellular Calcium Transients and Arrhythmia in Isolated Heart Cells,” Circ. Res., 69:810-819 (1991). |
Tieleman et al., “Verapamil Reduces Tachydcardia-induced Electrical Remodeling of the Atria,” Circulation, 95:1945-1953 (1997). |
Anderson et al., “A Role for L-Type Calcium Current, Calmodulin, and Multifunctional Calcium/Calmodulin-Dependent Protein Kinase in Early After Depolarizations,” NASPE Abstracts & Program, 19:685 (1996). |
Anderson et al., “Early Afterdepolarizations Due to L-Type Ca2+ Current are Suppressed by Inhibition of the Multifunctional Ca2+/Calmodulin-Dependent Protein Kinase in Rabbit Myocardium,” American Heart Association 69th Scientific Sessions, Nov., 1996. |
De Ferrari et al, “Distinct Patterns of Calcium Transients During Early and Delayed Afterdepolarizations Induced by Isoproterenol in Ventricular Myocytes,” Circ., 91:2510-2515 (1995). |
Enslen et al., “Characterization of Ca2+/Calmodulin-Dependent Protein Kinase IV,” The Journal of Biological Chemistry, 269:15520-15527 (1994). |
Griffith et al., “Inhibition of Calcium/Calmodulin-Dependent Protein Kinase in Drosophila Disrupts Behavioral Plasticity,” Neuron, 10:501-509 (1993). |