The present invention relates to a compound of formula (I):
for use in the treatment or prevention of an autoinflammatory disorder such as cryopyrin-associated periodic syndrome (CAPS), tumor necrosis factor receptor associated periodic syndrome (TRAPS), hyperimmunoglobulin D syndrome (HIDS)/mevalonate kinase deficiency (MKD), familial mediterranean fever (FMF), Behcet Disease, Pyoderma Gangraenosum, systemic onset of juvenile idiopathic arthritis (sJIA), Schnitzler syndrome, or Hidradenitis Suppurativa.
NLRP3 has been implicated in a number of autoinflammatory disorders, including tumor necrosis factor receptor associated periodic syndrome (TRAPS), hyperimmunoglobulin D syndrome (HIDS)/mevalonate kinase deficiency (MKD), and familial mediterranean fever (FMF) (Cook et al., Eur J Immunol, 40: 595-653, 2010; Timerman et al., J Clin Rheumatology, 19(8): 452-453, 2013; and Ozyilmaz et al., Int J Immunogenetics, 46: 232-240, 2019), Behcet Disease (Masters, Clin Immunol, 147(3): 223-228, 2013; Kim et al., J Inflammation, 12: article 41, 2015; and Yüksel et al., Int Immunol, 26(2): 71-81, 2014), Pyoderma Gangraenosum (Marzano et al., British Journal of Dermatology, 175(5): 882-891, 2016), systemic onset of juvenile idiopathic arthritis (sJIA) (Nirmala et al., Current Opinion in Rheumatology, 26(5): 543-552, 2014; Yang et al., Scandinavian Journal of Rheumatology, 43(2): 146-152, 2014; and Mejbri et al., Pediatric Drugs, 22: 251-262, 2020), Schnitzler syndrome (de Koning et al., J Allergy Clin Immunol, 135(2): 561-564, 2015; and Corcoran et al., Wellcome Open Research, 5:247, 2020), and Hidradenitis Suppurativa (Alikhan et al., J Am Acad Dermatol, 60(4): 539-61, 2009; Lima et al., British Journal of Dermatology, 174: 514-521, 2016; and Shah et al., Inflamm Res, 66: 931-945, 2017). In particular, NLRP3 mutations have been found to be responsible for a set of rare autoinflammatory diseases known as CAPS (Ozaki et al., J Inflammation Research, 8: 15-27, 2015; Schroder et al., Cell, 140: 821-832, 2010; and Menu et al., Clinical and Experimental Immunology, 166: 1-15, 2011). Cryopyrin-associated periodic syndromes (CAPS), also called cryopyrin-associated autoinflammatory syndromes, are three diseases related to a defect in the same gene: neonatal-onset multisystem inflammatory disease (NOMID), Muckle-Wells syndrome (MWS) and familial cold autoinflammatory syndrome (FCAS). The differences in these diseases lie in their severity and the organs involved. The aberrant activity of NLRP3 is pathogenic in CAPS. Although the other diseases mentioned above are not clinically diagnosed by mutations in the NLRP3 gene, the clinical phenotype including the periodic fever occurrence and their responsiveness to IL-1 inhibitors allow them to be categorized into the group of autoinflammatory diseases. There is also evidence showing that patients diagnosed with, for example, a condition that mimics FMF (Jeru et al., Arthritis & Rheumatism, 54(2): 508-514, 2006), Schnitzler syndrome (de Koning et al., J Allergy Clin Immunol, 135(2): 561-564, 2015) and Behcet Disease (Yuksel et al., Int Immunol, 26(2): 71-81, 2014), do harbour mutations in NLRP3 (https://infevers.umai-montpellier.fr/web/).
This invention is based on the discovery that the compound of formula (I) is particularly effective in the treatment of autoinflammatory disorders especially CAPS, most especially via the oral route.
In a first aspect of the present invention, there is provided a compound of formula (I):
or a pharmaceutically acceptable salt thereof, for use in the treatment or prevention of an autoinflammatory disorder.
In one embodiment, the autoinflammatory disorder is cryopyrin-associated periodic syndrome (CAPS). In one embodiment, the cryopyrin-associated periodic syndrome is Muckle-Wells syndrome (MWS). In another embodiment, the cryopyrin-associated periodic syndrome is familial cold autoinflammatory syndrome (FCAS). In another embodiment, the cryopyrin-associated periodic syndrome is neonatal-onset multisystem inflammatory disease (NOMID).
In one embodiment, the autoinflammatory disorder is tumor necrosis factor receptor associated periodic syndrome (TRAPS), hyperimmunoglobulin D syndrome (HIDS)/mevalonate kinase deficiency (MKD), familial mediterranean fever (FMF), Behcet Disease, Pyoderma Gangraenosum, systemic onset of juvenile idiopathic arthritis (sJIA), Schnitzler syndrome, or Hidradenitis Suppurativa.
In one embodiment, the treatment or prevention comprises the treatment or prevention of inflammation. Typically, the treatment or prevention of inflammation is achieved via NLRP3 inhibition. As used herein, the term “NLRP3 inhibition” refers to the complete or partial reduction in the level of activity of NLRP3 and includes, for example, the inhibition of active NLRP3 and/or the inhibition of activation of NLRP3.
In one embodiment, the treatment or prevention comprises the oral administration of the compound or the salt thereof. In a further embodiment, the treatment or prevention comprises the twice daily oral administration of the compound or the salt thereof. In a further embodiment, the treatment or prevention comprises the oral administration of the compound or the salt thereof at a dose of 2-4 mg/kg/dose, or at a dose of 3-3.6 mg/kg/dose, or at a dose of about 3.3 mg/kg/dose. In a further embodiment, the treatment or prevention comprises the twice daily oral administration of the compound or the salt thereof at a dose of 2-4 mg/kg/dose, or at a dose of 3-3.6 mg/kg/dose, or at a dose of about 3.3 mg/kg/dose.
In one embodiment, the compound or salt is a sodium salt, such as a monosodium salt. In one embodiment, the compound or salt is a monohydrate. In one embodiment, the compound or salt is crystalline. In one embodiment, the compound or salt is a crystalline monosodium monohydrate salt. In one embodiment, the crystalline monosodium monohydrate salt has an XRPD spectrum comprising peaks at: 4.3°2θ, 8.7°2θ, and 20.6°2θ, all ±0.2°2θ. In one embodiment, the crystalline monosodium monohydrate salt has an XRPD spectrum in which the 10 most intense peaks include 5 or more peaks which have a 2θ value selected from: 4.3°2θ, 6.2°2θ, 6.7°2θ, 7.3°2θ, 8.7°2θ, 9.0°2θ, 12.1°2θ, 15.8°2θ, 16.5°2θ, 18.0°2θ, 18.1°2θ, 20.6°2θ, 21.6°2θ, and 24.5°2θ, all ±0.2°2θ. The XRPD spectrum may be obtained as described in WO 2019/206871, which is incorporated in its entirety herein by reference.
In one embodiment, the crystalline monosodium monohydrate salt is as described in WO 2019/206871, which is incorporated in its entirety herein by reference. In one embodiment, the crystalline monosodium monohydrate salt has the polymorphic form described in WO 2019/206871, which is incorporated in its entirety herein by reference. In one embodiment, the crystalline monosodium monohydrate salt is prepared according to the method described in WO 2019/206871, which is incorporated in its entirety herein by reference.
Typically, in accordance with any embodiment of the first aspect of the invention, the treatment or prevention comprises the administration of the compound or the salt thereof to a patient. The patient may be any human or other animal. Typically, the patient is a mammal, more typically a human or a domesticated mammal such as a cow, pig, lamb, sheep, goat, horse, cat, dog, rabbit, mouse etc. Most typically, the patient is a human.
In a second aspect of the present invention, there is provided a pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound or salt of the first aspect of the present invention. In one embodiment, the pharmaceutical composition is suitable for oral administration.
In a third aspect of the present invention, there is provided a method for the treatment or prevention of an autoinflammatory disorder in a patient in need thereof, wherein the method comprises administering to the patient in need thereof a therapeutically or prophylactically effective amount of a compound of formula (I):
or a pharmaceutically acceptable salt thereof.
In one embodiment, the autoinflammatory disorder is cryopyrin-associated periodic syndrome (CAPS). In one embodiment, the cryopyrin-associated periodic syndrome is Muckle-Wells syndrome (MWS). In another embodiment, the cryopyrin-associated periodic syndrome is familial cold autoinflammatory syndrome (FCAS). In another embodiment, the cryopyrin-associated periodic syndrome is neonatal-onset multisystem inflammatory disease (NOMID).
In one embodiment, the autoinflammatory disorder is tumor necrosis factor receptor associated periodic syndrome (TRAPS), hyperimmunoglobulin D syndrome (HIDS)/mevalonate kinase deficiency (MKD), familial mediterranean fever (FMF), Behcet Disease, Pyoderma Gangraenosum, systemic onset of juvenile idiopathic arthritis (sJIA), Schnitzler syndrome, or Hidradenitis Suppurativa.
In one embodiment, the treatment or prevention comprises the treatment or prevention of inflammation. Typically, the treatment or prevention of inflammation is achieved via NLRP3 inhibition.
In one embodiment, the treatment or prevention comprises the oral administration of the compound or the salt thereof. In a further embodiment, the treatment or prevention comprises the twice daily oral administration of the compound or the salt thereof. In a further embodiment, the treatment or prevention comprises the oral administration of the compound or the salt thereof at a dose of 2-4 mg/kg/dose, or at a dose of 3-3.6 mg/kg/dose, or at a dose of about 3.3 mg/kg/dose. In a further embodiment, the treatment or prevention comprises the twice daily oral administration of the compound or the salt thereof at a dose of 2-4 mg/kg/dose, or at a dose of 3-3.6 mg/kg/dose, or at a dose of about 3.3 mg/kg/dose.
In one embodiment, the compound or salt is a sodium salt, such as a monosodium salt. In one embodiment, the compound or salt is a monohydrate. In one embodiment, the compound or salt is crystalline. In one embodiment, the compound or salt is a crystalline monosodium monohydrate salt. In one embodiment, the crystalline monosodium monohydrate salt has an XRPD spectrum comprising peaks at: 4.3°2θ, 8.7°2θ, and 20.6°2θ, all ±0.2°2θ. In one embodiment, the crystalline monosodium monohydrate salt has an XRPD spectrum in which the 10 most intense peaks include 5 or more peaks which have a 2θ value selected from: 4.3°2θ, 6.2°2θ, 6.7°2θ, 7.3°2θ, 8.7°2θ, 9.0°2θ, 12.1°2θ, 15.8°2θ, 16.5°2θ, 18.0°2θ, 18.1°2θ, 20.6°2θ, 21.6°2θ, and 24.5°2θ, all ±0.2°2θ. The XRPD spectrum may be obtained as described in WO 2019/206871, which is incorporated in its entirety herein by reference.
In one embodiment, the crystalline monosodium monohydrate salt is as described in WO 2019/206871, which is incorporated in its entirety herein by reference. In one embodiment, the crystalline monosodium monohydrate salt has the polymorphic form described in WO 2019/206871, which is incorporated in its entirety herein by reference. In one embodiment, the crystalline monosodium monohydrate salt is prepared according to the method described in WO 2019/206871, which is incorporated in its entirety herein by reference.
In accordance with any embodiment of the third aspect of the invention, the patient may be any human or other animal. Typically, the patient is a mammal, more typically a human or a domesticated mammal such as a cow, pig, lamb, sheep, goat, horse, cat, dog, rabbit, mouse etc. Most typically, the patient is a human.
Figures
Ethical approval was obtained from the University of Queensland Animal Ethics Committee (ABS) prior to commencement of the study. All protocols conform to the NHMRC animal welfare guidelines.
NLRP3-activating mutation in mice were backcrossed to C57BL/6 for at least ten generations. Heterozygote MWS-associated mutation Nlrp3 (A350VneoR) mice were crossed with homozygote LysMcre mice (B6.129P2-Lyz2tm1(cre)Ifo/J). The NLRP3 mutant×LysM-Cre offspring were then injected with either saline (vehicle), MCC950 (3 mg/kg), or the compound of formula (I) (3 mg/kg) intraperitoneally every second day starting at day 4 after birth (P4). Where possible, a litter of saline-injected mice were included alongside each drug treatment experiment to ensure model consistency. The weight of each mouse was recorded daily, and dosing volumes adjusted accordingly, and mortalities or welfare euthanasias recorded. All mice still alive at day 22 were euthanised, and recorded as alive for the purpose of generating a survival curve.
In
A general improvement of health was further indicated by the weight gain of the animals (
The superiority of the compound of formula (I) in this model is further demonstrated over standard of care treatment, rilonacept. In a study published by Brydges et al. (Immunity, 30: 875-887, 2009), NlrP3 A350V/+/CreL mice treated with subcutaneously injected mouse form of rilonacept, mIL-1 Trap, every other day beginning day 1-2 post-birth, led to 100% of the animals succumbing to death by day ˜17 (Brydges et al., 2009). Despite doses up to 60 times those typically administered to humans, this led to only a three-day survival extension over control mice receiving no treatment (where all animals succumbed to death by day ˜14).
Summary: The ex vivo activity of the compound of formula (I) on inhibition of cytokine release was determined in CAPS and Schnitzler syndrome patient PBMCs. Inhibition of IL-1β production by the compound of formula (I) was determined in 19 CAPS patient samples and 3 Schnitzler syndrome patient samples.
45 ml whole blood was collected from adult patients into Lithium Heparin tubes (Greiner VACUETTE® LH Lithium Heparin), and a volume appropriate to the patient age and weight from the paediatric patients. Following donation, blood samples were maintained at room temperature and PBMCs isolated from whole blood within 90 minutes of blood donation.
At the termination of the experiments, the supernatants were collected for quantification of IL-1β by ELISA (Cat no. DLB50, R&D) as per manufacturer's standard procedure. Samples that were not analysed on the same day, were kept at −80° C.
Data on the compound of formula (I) are presented from ex vivo stimulated PBMCs. The data provide evidence that the compound of formula (I) can effectively block aberrant IL-1β production ex vivo in patients with active NLRP3-mediated disease. The compound of formula (I) acted to inhibit IL-1β production in MWS, FCAS and NOMID patient PBMC (
A 70 year old male CAPS patient was treated with compound (I). He was diagnosed with CAPS in 2010. His typical symptoms were rash, fever, fatigue, severe hearing loss, conjunctivitis, pain, and joint stiffness. He had been treated with anakinra since 2010 with almost normal C-reactive protein (CRP) since. He was found to have NLRP3 mutation Arg260Trp. He has three children and two grandchildren all affected by CAPS.
After cessation of anakinra and subsequent flaring, the patient was treated orally twice daily with 3.3 mg/kg/dose for 7 days. The treatment was well tolerated. The patient reinitiated anakinra at day 9.
Clinical score was recorded by daily physician assessment of skin disease, arthralgia, myalgia, headache/migraine, conjunctivitis, fatigue, and other symptoms, using a Likert scale (0=absent, 1=minimal, 2=mild, 3=moderate, 4=severe) summing up to a total of 32 points. It was found that clinical score improved within 2 days of treatment (
C-reactive protein (CRP) levels were measured. It was found that CRP levels reduced within 2 days of treatment (
Number | Date | Country | Kind |
---|---|---|---|
1916238.7 | Nov 2019 | GB | national |
2004335.2 | Mar 2020 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/081290 | 11/6/2020 | WO |