The present invention is based on a treatment process for hot rolling stock made of metal. The rolling stock is rolled in at least one roll stand and then cooled in a cooling section arranged downstream of the at least one roll stand.
The present invention is also based on a treatment device for hot rolling stock made of metal. The treatment device has at least one roll stand, in which the rolling stock is rolled. The treatment device has a cooling section, which is arranged downstream of the roll stand and in which the rolling stock is cooled.
Such treatment processes and associated treatment devices are generally known. Also generally known are finishing trains in which a flat rolling stock of this type, for example a rolling stock made of steel or aluminum, is rolled. Each finishing train has a downstream cooling section, in which the metallurgical properties, and consequently the mechanical properties, of the rolling stock are set.
In the prior art, it is endeavored in this respect to arrange the cooling section as close as possible after the last roll stand of the rolling train, in order that the cooling can begin as quickly as possible. In the cooling section, the setting of the mechanical properties of the rolling stock usually takes place by applying an exactly adjusted amount of water from above and below and in exceptional cases, only from above or only from below. In particular, it is important that the rolling stock cools down with a temperature profile (as a function of time) that is as exactly correct as possible. This particularly influences the grain structure of the rolling stock.
The object of the present invention is to create possible ways in which the grain structure of the rolling stock can be additionally influenced.
The object is achieved by a treatment process with the features disclosed herein.
According to the invention, a treatment process of the type mentioned above is distinguished by coupling sound generated by a sound generator arrangement into the rolling stock by means of a coupling device, so that a standing sound wave is formed at least in the region of the rolling stock that is located in the vicinity of the coupling device.
The standing sound wave leads to mechanical movements (albeit only slight) of the flat rolling stock at the frequency of the sound wave at some points of the rolling stock. Those points are specifically wherever the so-called antinodes of the sound wave are located. At other points, specifically where the so-called nodes of the standing sound wave are located, there is no such movement of the flat rolling stock. The points on the rolling stock at which the antinodes are located consequently lead to a movement in relation to the points of the rolling stock at which the nodes are located. These relative movements influence the increase in grain size of the rolling stock, to be precise, both the beginning of the increase in grain size and the rate of the increase in grain size. The process is similar to an example of sodium acetate trihydrate, which remains liquid well below its melting point until the phase transformation into a solid can be initiated by a sound pulse. By choosing a suitable frequency and a suitable amplitude of the standing sound wave, a specific influence can consequently be brought to bear on the grain size. The sound generator arrangement may have a single sound generator or a number of sound generators, according to requirements. The sound generators may for example be designed as so-called transducers.
The sound preferably has a frequency in the MHz range or above. In particular, the propagation rate of the sound lies in the range of about 5000 m/s in the case of steel, and even above 6000 m/s in the case of aluminum. At an assumed frequency of 50 MHz, a wavelength of about 0.1 mm is consequently obtained in the case of steel, and a wavelength of about 0.08 mm in the case of aluminum. At an assumed frequency of 500 MHz, the wavelength is correspondingly shorter and is about 10 μm and about 8 μm, respectively. The grain sizes are also of such orders of magnitude.
The sound generator arrangement may be possibly uncontrolled, possibly except for a switching signal for switching it on and off. However, the sound generator arrangement is preferably fed at least one control variable by a control device. In this case, the sound generator arrangement sets a characteristic quantity of the sound coupled into the rolling stock in dependence on the control variable. As a result, a specific setting of the effect caused by the standing sound wave can be realized.
The characteristic quantity may be a frequency and/or an amplitude of the sound and/or, if the sound generator arrangement has a number of sound generators which each independently couple a sound signal into the rolling stock, that is a phase position of the sound signals of the sound generators in relation to one another.
The control device preferably determines the at least one control variable in dependence on actual properties of the rolling stock before it reaches the cooling section and/or on setpoint properties that the rolling stock is intended to have after passing the cooling section. The temperature and the dimensions of the rolling stock, for example for a flat rolling stock, its width and its thickness, come into consideration as actual properties of the rolling stock preceding the cooling section. Desired mechanical or metallurgical or microcrystalline properties of the flat rolling stock come into consideration as setpoint properties.
It is theoretically possible to couple the generated sound into the rolling stock without contact, by way of an air gap. However, coupling in by a means involving contact has considerably better efficiency. It is possible that the coupling device is a working roller of the last roll stand before the cooling section. In this case, the implementation of the treatment process is particularly simple, since no additional device is required. Alternatively, it is possible that the coupling device is a roller that is arranged between the last roll stand and the cooling section and is placed against the rolling stock. This design has the advantage that the coupling device can be optimized specifically for the coupling in of the sound. Other locations may also be appropriate for coupling in the sound, for example a point between the last-but-one roll stand and the last roll stand of the rolling train, a point within the cooling section or a point after the cooling section, possibly before a coiler arranged downstream of the cooling section.
The rolling stock may in principle be of any desired shape. In many cases, however, the rolling stock is a flat rolling stock, in particular a strip.
The object of the invention is achieved by a treatment device disclosed herein.
According to the invention, a treatment device of the type mentioned at the beginning is designed such that the treatment device has a sound generator arrangement, by means of which sound is generated. It is also designed such that the treatment device has a coupling device, by means of which the sound generated by means of the sound generator arrangement is coupled into the rolling stock. This forms a standing sound wave at least in the region of the rolling stock that is located in the vicinity of the coupling device.
The advantages that can be achieved as a result correspond to those of the treatment process. The advantageous designs of the treatment device correspond to the designs of the treatment process. The advantages that can be achieved with these are also the same as in the case of the designs of the treatment process.
The properties, features and advantages of this invention described above and also the manner in which they are achieved become clearer and more clearly understandable in connection with the following description of the exemplary embodiments, which are explained more specifically in conjunction with the schematically represented drawings, in which:
According to
Often, before the rolling in the roll stand 2 shown in
The hot rolling stock 1 may in principle have any desired cross section. In many cases, the hot rolling stock 1 is a flat rolling stock, in particular a strip. Accordingly, the roll stand 2 is formed as a roll stand for rolling the flat rolling stock 1. In particular, the roll stand 2 may in this case have back-up rolls 4 in addition to its working rollers 3.
After the rolling in the roll stand 2, the rolling stock 1 continues to be conveyed in the transporting direction x, and therefore runs through a cooling section 5 arranged downstream of the roll stand 2. If the hot rolling stock 1 is a flat rolling stock, the cooling section 5 is formed as a cooling section for cooling the flat rolling stock 1. In the cooling section 5, the rolling stock 1 is cooled by liquid cooling medium 6, usually water, being applied to it. In a way corresponding to the representation in
Further devices may be arranged downstream of the cooling section 5, for example a coiler 7, by which the rolling stock 1 is coiled up, if it is a strip.
A sound generator arrangement 8 generates sound. For this purpose, the sound generator arrangement 8 has a plurality of sound generators 9, for example transducers. The sound is coupled into the hot rolling stock 1 by a coupling device 10. Corresponding to the representation in
The coupled-in sound has the effect of forming a standing sound wave, at least in the region of the hot rolling stock 1, that is located in the vicinity of the point at which the sound is coupled into the hot rolling stock 1.
In many cases, the point at which the sound is coupled into the hot rolling stock 1 is chosen such that a standing sound wave is formed at least between the roll stand 2 and an entry region of the cooling section 5. In some cases, however, other points may also be appropriate.
The sound wave has the effect of influencing the microstructural transformation of the hot rolling stock 1. In particular, the microstructure becomes more fine-grained based on the greater the frequency f of the coupled-in sound, and consequently also of the standing sound wave, is. The frequency f of the coupled-in sound should therefore lie in the MHz range or above, or the sound generator arrangement 8 should be correspondingly formed, to correspond to such a frequency.
The sound generator arrangement 8 is preferably formed as a sound generator arrangement that can be set. In this case, corresponding to the representation in
For example, corresponding to the representation in
The at least one control variable C may be determined by the control device 12, according to requirements. For example, actual properties P of the hot rolling stock 1 before the cooling section 5 may be specified to the control device 12. The actual properties P of the hot rolling stock 1 before the cooling section 5 may, for example, be its temperature T and/or at least one geometrical dimension. On a flat rolling stock, the dimension may be its width b or its thickness d (see also
The present invention has many advantages. In particular, it is easily possible when cooling down the hot rolling stock 1 to additionally influence the microstructural transformation independently of the cooling. The microstructural properties of the rolling stock 1 can be improved, set more precisely and especially made more uniform. The construction of the cooling section 5 can be simplified. The distance from the last roll stand 2 can be increased without any problem.
Although the invention has been illustrated more specifically and described in detail by the preferred exemplary embodiment, the invention is not restricted by the examples disclosed and other variations may be derived therefrom by a person skilled in the art without departing from the scope of protection of the invention.
1 Rolling stock
2 Roll stand
3 Working rollers
4 Back-up rolls
5 Cooling section
6 Cooling medium
7 Coiler
8 Sound generator arrangement
9 Sound generators
10 Coupling device
11 Roller
12 Control device
A Amplitudes
b Width
C Control variable
d Thickness
f Frequency
P Actual properties
P* Setpoint properties
S Sound signals
T Temperature
x Transporting direction
φ Phase positions
Number | Date | Country | Kind |
---|---|---|---|
18195234 | Sep 2018 | EP | regional |
The present application is a division of U.S. Ser. No. 17/270,904 filed on Feb. 24, 2021, which is a national phase application of PCT/EP2019/070503, filed Jul. 30, 2019, which claims priority to European Patent Application No. 18195234.2, filed Sep. 18, 2018, the contents of all said applications are incorporated by reference herein. The PCT International Application was published in the German language.
Number | Name | Date | Kind |
---|---|---|---|
3550419 | Zentko | Dec 1970 | A |
3592051 | Kubo et al. | Jul 1971 | A |
5904204 | Teraoka | May 1999 | A |
7559221 | Horita | Jul 2009 | B2 |
20150344984 | Hua | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
1150825 | May 1997 | CN |
101850361 | Oct 2010 | CN |
103333995 | Oct 2013 | CN |
104438323 | Mar 2015 | CN |
1 901 941 | Oct 1969 | DE |
H04-339505 | Nov 1992 | JP |
734296 | May 1980 | SU |
1398943 | May 1988 | SU |
1764729 | Sep 1992 | SU |
Entry |
---|
International Search Report dated Sep. 30, 2019 in corresponding PCT International Application No. PCT/EP2019/070503. |
Written Opinion dated Sep. 30, 2019 in corresponding PCT International Application No. PCT/EP2019/070503. |
European Search Report dated Mar. 6, 2019 in corresponding European Patent Application No. 18195234.2. |
Russian Federation Office Action, dated Nov. 10, 2021, issued in corresponding Russian Patent Application No. 2021106899/05(014869). English translation. Total 11 pages. |
Chinese Office Action, dated Mar. 7, 2022, issued in corresponding Chinese Patent Application No. 201980061148.7. English translation. |
Number | Date | Country | |
---|---|---|---|
20220126338 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17270904 | US | |
Child | 17570485 | US |